JPH01132048A - Manufacture of hydrogen storage alloy electrode - Google Patents

Manufacture of hydrogen storage alloy electrode

Info

Publication number
JPH01132048A
JPH01132048A JP62290020A JP29002087A JPH01132048A JP H01132048 A JPH01132048 A JP H01132048A JP 62290020 A JP62290020 A JP 62290020A JP 29002087 A JP29002087 A JP 29002087A JP H01132048 A JPH01132048 A JP H01132048A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
sintering
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62290020A
Other languages
Japanese (ja)
Other versions
JP2733231B2 (en
Inventor
Munehisa Ikoma
宗久 生駒
Yasuko Ito
康子 伊藤
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62290020A priority Critical patent/JP2733231B2/en
Publication of JPH01132048A publication Critical patent/JPH01132048A/en
Application granted granted Critical
Publication of JP2733231B2 publication Critical patent/JP2733231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase high rate discharge performance and cycle life by immersing hydrogen storage alloy powder in an acidic solution or an alkaline solution, then sintering. CONSTITUTION:Hydrogen storage alloy powder is immersed in an acidic solution or an alkaline solution, washed, dried, then mixed with a binder. The mixture is applied to the substrate, dried, and pressed, then sintered at the temperature less than the melting point of the alloy in a vacuum, or in an atmosphere of inert gas or hydrogen gas. The hydrogen storage alloy powder is preferable to have CaCu5 type crystal structure and to be sintered at 850-1100 deg.C. A hydrogen storage alloy electrode having good high rate discharge performance and long cycle life is produced at a low price.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル・水素蓄電池等のアルカリ蓄電池の負
極に用いる水素吸蔵合金電極の製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a hydrogen storage alloy electrode used as a negative electrode of an alkaline storage battery such as a nickel-hydrogen storage battery.

従来の技術 従来この種の電極はまだ実用化には至っていないが、そ
の製法として次のような方法が提案されている。すなわ
ち、三次元の網目状金属多孔体(発泡メタル)に水素吸
蔵合金粉末と結着剤を混練したペーストを充填、乾燥後
、加圧操作を施すことによシ水素吸蔵合金電極を作製す
る方法が提案(特公昭57−34678号公報)されて
いる。
BACKGROUND OF THE INVENTION Although this type of electrode has not yet been put into practical use, the following methods have been proposed for its production. That is, a method of producing a hydrogen storage alloy electrode by filling a three-dimensional mesh porous metal body (foamed metal) with a paste made by kneading hydrogen storage alloy powder and a binder, drying it, and applying pressure. has been proposed (Japanese Patent Publication No. 57-34678).

また、水素吸蔵合金の粉末をポリテトラフルオロエチレ
ン(PTFK )と均一に混合すると同時にPTFKを
1維化し、ニッケルネット等の芯材の両面にこれらを塗
着、加圧し水素吸蔵合金電極を作製する方法も提案(特
公昭81−86372号公報)されている。
In addition, a hydrogen storage alloy powder is uniformly mixed with polytetrafluoroethylene (PTFK), PTFK is made into a single fiber, and these are applied to both sides of a core material such as nickel net and pressure is applied to produce a hydrogen storage alloy electrode. A method has also been proposed (Japanese Patent Publication No. 86372/1981).

発明が解決しようとする問題点 このような従来の調法では、P T F−Eが水素吸蔵
合金粉末の重量に対して1〜5%含有されている。した
がって、このような製造法で作製された負極を用論て密
閉形二ソケル・水素蓄電池を構成した場合、合金粒子表
面がPTFEに被覆されているだめ、粒子間の導電性や
反応面積が低下し、高率放電特性が劣るという問題があ
った。また、芯材に発泡メタルを用いた場合は、電池の
特性面では特に問題を生じないが、ニッケルネットやパ
ンチングメタル等の芯材と比較するとコスト高になると
いう問題点があった。
Problems to be Solved by the Invention In such conventional preparation methods, P T F-E is contained in an amount of 1 to 5% based on the weight of the hydrogen storage alloy powder. Therefore, when a sealed two-sokel hydrogen storage battery is constructed using a negative electrode manufactured by this manufacturing method, the conductivity and reaction area between particles will decrease because the surfaces of the alloy particles are coated with PTFE. However, there was a problem that the high rate discharge characteristics were inferior. Further, when foamed metal is used as the core material, there is no particular problem in terms of battery characteristics, but there is a problem in that the cost is higher compared to core materials such as nickel net or punched metal.

さらに、これらの製造法のように、合金を粉砕した後に
結着剤と混練し、芯材に塗着あるいは充填して作裂した
水素吸蔵合金負極は、密閉形電池内で過充電時にニアケ
ル正極から発生する酸素ガスにより合金表面が酸化され
、充放電サイクル寿命が短いという間頂があった。
Furthermore, as in these manufacturing methods, the hydrogen storage alloy negative electrode, which is produced by crushing the alloy, kneading it with a binder, and applying or filling it to the core material to rupture, can be used as a nickel positive electrode when overcharged in a sealed battery. The alloy surface was oxidized by the oxygen gas generated, resulting in a short charge-discharge cycle life.

本発明はこのような問題点を解決するもので、高率放電
特性とサイクル寿命特性に優れ、比較的低コストの水素
吸蔵合金電極を提供することを目的とするものである。
The present invention solves these problems and aims to provide a relatively low-cost hydrogen storage alloy electrode that has excellent high rate discharge characteristics and cycle life characteristics.

問題点を解決するための手段 この問題点を解決するために本発明は、可逆的に水素を
吸蔵・放出する水素吸蔵合金の粉末を酸またはアルカリ
性の溶液に浸漬する工程と、水洗乾燥の後、粉末と結着
剤の混練物を芯金に塗着。
Means for Solving the Problem In order to solve this problem, the present invention provides a step of immersing a powder of a hydrogen storage alloy that reversibly stores and releases hydrogen in an acid or alkaline solution, and a process of immersing the powder of a hydrogen storage alloy that reversibly stores and releases hydrogen, and after washing and drying with water. , apply a mixture of powder and binder to the core metal.

乾燥し加圧操作を施す工程と、真空中、不活性ガス中も
しくは水素ガス中で合金の融点以下の温度1、で焼結す
る工程を有する水素吸蔵合金電極の製造法としたもので
ある。
This is a method for producing a hydrogen storage alloy electrode, which includes a step of drying and applying pressure, and a step of sintering at a temperature 1 below the melting point of the alloy in vacuum, inert gas, or hydrogen gas.

作用 酸またはアルカリ性の溶液に浸漬する工程を有する製造
法により、合金粒子表面から一部金属が廖解し耐酸化性
皮膜を粒子表面に形成する結果、密閉電池内でニッケル
正極から発生する酸素による酸化が抑制され、サイクル
寿命特性が向上することとなる。さらに、酸またはアル
カリ性の溶液に浸漬後、焼結する工程を有する製造法に
より、合金表面に凹凸が形成されるため、反応表面積が
増大し、さらに焼結性が向上することと、芯金に塗着す
る工程で用いた結着剤は分解され電極中にはほとんど残
存しない。その結果、粒子と粒子間の導電性および表面
積は低下せず、高率放電特性は向上することとなる。
Due to the manufacturing method that involves immersion in a working acid or alkaline solution, some of the metal from the surface of the alloy particles is dissolved and an oxidation-resistant film is formed on the particle surface. Oxidation is suppressed and cycle life characteristics are improved. Furthermore, the manufacturing method, which involves sintering after immersion in an acid or alkaline solution, forms irregularities on the alloy surface, which increases the reaction surface area and further improves sinterability. The binder used in the coating process is decomposed and hardly remains in the electrode. As a result, the conductivity between particles and the surface area do not decrease, and the high rate discharge characteristics improve.

実施例 以下、本発明の一実施例を第1図と第2図によシ説明す
る。市販のミツシュメタルMm  (希土類元素の混合
物)、例えばCa45wt% 、La30wt%Nd5
wt%、他の希土類元素約20Wtチ)とNi。
EXAMPLE Hereinafter, an example of the present invention will be explained with reference to FIGS. 1 and 2. Commercially available Mitsushmetal Mm (mixture of rare earth elements), e.g. Ca45wt%, La30wt%Nd5
wt%, other rare earth elements (approximately 20 Wt) and Ni.

五g、Mn、Goの各試料をMmNi 3.55Mn0
.4ムロo、3C’o、7sの組成比に秤量し混合した
。これらの試料をアーク溶解炉に入れて、10−4〜1
O−5Torrまで真空状態にしだ後、アルゴンガス雰
囲気中でアーク放電し、加熱溶解させた。試料の均質化
を図るために数回反転させてアーク溶解を行い、0IL
Ou 5型の結晶構造を有する水素吸蔵合金を得た。こ
れと同様な方法で、組成がMmNi4,5Mno、4五
la、sである水素吸蔵合金を作製した。次に、これら
の合金の均質性をさらに良好にし、水素吸蔵量を増大さ
せるだめに、アルゴンガス雰囲気中にて1050゜Cで
6時間熱処理を行った。これらの合金を粗粉砕後、ボー
ルミルで機械的に38μm以下の粉末に微粉砕した。
MmNi 3.55Mn0 each sample of 5g, Mn, Go
.. They were weighed and mixed to have a composition ratio of 4Mroo, 3C'o, and 7s. These samples were placed in an arc melting furnace and heated to 10-4 to 1
After vacuuming to O-5 Torr, arc discharge was performed in an argon gas atmosphere to heat and melt. Arc melting was performed by inverting the sample several times to homogenize the sample, and the sample was melted at 0IL.
A hydrogen storage alloy having an Ou 5 type crystal structure was obtained. A hydrogen storage alloy having a composition of MmNi4,5Mno,45la,s was prepared in a similar manner. Next, in order to further improve the homogeneity of these alloys and increase their hydrogen storage capacity, heat treatment was performed at 1050° C. for 6 hours in an argon gas atmosphere. After coarsely pulverizing these alloys, they were mechanically pulverized into powders of 38 μm or less using a ball mill.

次に、これらの粉末を80’Cの水酸化カリウム水溶液
(比重1.30)中で12時間処理(以下、アルカリ処
理と称す)した後、水洗・乾燥し、負極に用いる水素吸
蔵合金粉末を得た。
Next, these powders were treated in a potassium hydroxide aqueous solution (specific gravity 1.30) at 80'C for 12 hours (hereinafter referred to as alkali treatment), washed with water and dried, and the hydrogen storage alloy powder used for the negative electrode was prepared. Obtained.

これらの粉末1oOfに対してポリビニルアルコール6
胃t、% の水溶液23gとポリエチレン粉末を22添
加して練合を行い、ペースト状態とした。ついで、これ
らのペーストをパンチングメタルに塗着し、120′C
で乾燥後、加圧を施してペースト式電極を得た。さらに
、これらのペースト式電極をアルゴンガス雰囲気中で8
00−1200゜Cの各温度で1時間焼結を行い、本発
明の水素吸蔵合金電極を得た。本実施例に用いた電極の
合金組成と各焼結温度、アルカリ処理の有無を表に示す
。比紋例として、合金粉末を前記と同様な結着剤を用い
てペースト状態として、パンチングメタルに塗着後、乾
燥、加圧を施したペースト式電極Hを用いた。
6 polyvinyl alcohol per 1oOf these powders
23 g of an aqueous solution of 10% and 22 g of polyethylene powder were added and kneaded to form a paste. Next, apply these pastes to punched metal and heat at 120'C.
After drying, a paste type electrode was obtained by applying pressure. Furthermore, these paste-type electrodes were heated for 8 hours in an argon gas atmosphere.
Sintering was performed at each temperature of 00-1200°C for 1 hour to obtain a hydrogen storage alloy electrode of the present invention. The alloy composition, each sintering temperature, and presence or absence of alkali treatment of the electrodes used in this example are shown in the table. As a comparative example, a paste-type electrode H was used in which alloy powder was made into a paste using the same binder as described above, applied to a punched metal, dried, and pressurized.

(以下余白) 次に、酸化ニッケル正極として、公知の方法で得られた
発泡メタル式ニッケル正極(理論充填電気量1050〜
1100mAh)を用い、セA レータにはポリアミド
の不織布、電解液に水酸化リチウムを4o1/!l溶解
した比重1.30のKOH水溶液を使用し、前記A〜H
の負極と組み合わせ、公称容量1000tllAhの単
3サイズ(ムムサイズ)の各種密閉形ニッケルー水素蓄
電池を構成した。□第1図には、O’Cで種々の放電率
で放電を行った場合の容量比率を示した。容量比率は、
O’C。
(Left below) Next, as a nickel oxide positive electrode, a foamed metal nickel positive electrode obtained by a known method (theoretical charge amount of electricity 1050~
1100mAh), polyamide non-woven fabric for the serator, and lithium hydroxide for the electrolyte at 4o1/! Using a KOH aqueous solution with a specific gravity of 1.30, the above A to H
In combination with the negative electrode, various sealed nickel-metal hydride storage batteries of AA size (Mumu size) with a nominal capacity of 1000 tllAh were constructed. □Figure 1 shows the capacity ratio when discharge was performed at various discharge rates at O'C. The capacity ratio is
O'C.

0.20mム放電における容量を基準にして計算した。It was calculated based on the capacity at 0.20 mm discharge.

なお、各放電は20゜Cで0.10mムで正極容量に対
し160%の充電後、0゜Cで2時間放置した後例行っ
た。第1図から明らかなように、比較例のペースト式電
極Hを用いた電池は、O’C,3Cm人の容量比率が3
5%であり、高率放電時の特性に劣ることがわかる。こ
れに対し、本発明の電極A。
Each discharge was carried out after charging to 160% of the positive electrode capacity at 20° C. and 0.10 mm, and then leaving the battery at 0° C. for 2 hours. As is clear from Fig. 1, the battery using the paste type electrode H of the comparative example has a capacity ratio of O'C, 3Cm of 3
5%, which indicates that the characteristics during high rate discharge are inferior. In contrast, electrode A of the present invention.

B、Dを用いた電池は、0℃、30mム における容量
比率は63〜70チであり、電極Hを用いた電池に比べ
、放電特性は著しく向上する。これは、950’(!で
焼結を施すことによシ、ポリビニルアルコールやポリエ
チレンの結着剤が分解し、負極中に存在しないこと、粒
子−粒子一芯材間の結合が良好で導電性が低下しないこ
とにより、30m人放電における負極の分極が減少した
ことに起因する。また、アルカリ処理を施していないF
は、ムに比べ放電特性が劣る。これは、焼結前に合金粉
末にアルカリ処理を施すことによシ、合金中に含まれる
コバルトが優先的に溶解し、粒子表面に凹凸を形成して
いるため、有効反応表面積が増大したことおよび、凹凸
面での焼結性が良好になり、導電性が向上し、放電特性
が改善された。
Batteries using electrodes B and D have a capacity ratio of 63 to 70 at 0° C. and 30 mm, and their discharge characteristics are significantly improved compared to batteries using electrode H. By sintering at 950' (!), the binder of polyvinyl alcohol and polyethylene is decomposed and does not exist in the negative electrode, and the bond between the particles and the core material is good, resulting in conductivity. This is due to the fact that the polarization of the negative electrode in the 30 m discharge was reduced due to the fact that the F
The discharge characteristics are inferior to those of MU. This is because by applying alkali treatment to the alloy powder before sintering, the cobalt contained in the alloy dissolves preferentially and forms irregularities on the particle surface, increasing the effective reaction surface area. In addition, the sinterability on uneven surfaces was improved, the conductivity was improved, and the discharge characteristics were improved.

第2図には、20℃における充放電サイクル寿命特性を
示した。充放電条件は、充電が%CmAX4.5 hr
、放電が10mムで終止電圧は0,8 Vである。本発
明の電極人、B 、Dを用いた電池は、600サイクル
の充放電を繰シ返しても容量はほとんど低下しない。こ
れに対して、比較例のHを用いた電池は、80サイクル
程度で劣化する。また、焼結を施した電極2を用いた電
池も、80サイクル程度で容量低下をきたす。F、Hの
ようにアルカリ処理を施していない電極を用いた電池は
、過充電時に正極から発生する酸素ガスにより合金が酸
化されて容量低下をきたす。また、アルカリ処理を施し
ていない合金粉末を焼結した場合、合金表面から蒸気圧
の低いMnが一部蒸発することにより、表面層の組成が
変化し、負極の充電効率の低下によっても容量が低下す
る。
FIG. 2 shows the charge/discharge cycle life characteristics at 20°C. The charging and discharging conditions are %CmAX4.5 hr
, the discharge is 10 mm and the final voltage is 0.8 V. Batteries using electrodes B and D of the present invention show almost no decrease in capacity even after 600 charging and discharging cycles. On the other hand, the battery using H in the comparative example deteriorates after about 80 cycles. Further, a battery using a sintered electrode 2 also suffers a capacity drop after about 80 cycles. In batteries such as F and H that use electrodes that have not been subjected to alkali treatment, the alloy is oxidized by oxygen gas generated from the positive electrode during overcharging, resulting in a decrease in capacity. In addition, when alloy powder that has not been subjected to alkali treatment is sintered, some of the Mn with low vapor pressure evaporates from the alloy surface, resulting in a change in the composition of the surface layer, and a decrease in the charging efficiency of the negative electrode, resulting in a decrease in capacity. descend.

次に、コバルトを含有しない電極Gを用いた電池は、7
0サイクル程度で容量が劣化する。また、焼結における
最適な温度範囲は、860〜1100゜Cである。これ
は、860゜C以下の温度では焼結が不可能であfi、
1100’C以上になると焼結が進行しすぎ電池構成が
不可能となる。本実施例では、アルゴンガス雰囲気中で
焼結を施したが、N2ガスやN2ガス中およびN2とN
2等の混合ガス中あるいは真空中で焼結を施しても同様
な効果が得られた。また、アルカリ処理を施した場合の
一実施例を示したが、アルカリ処理温度は45〜90″
C処理時間が0.5〜20時間であれば同様な効果が得
られる。さらに、塩酸等の酸中で処理を施しても同様な
効果が得られる。本実施例ではアルカリ処理を施した後
に焼結する工程で電極を作製したが、焼結を行った後、
アルカリ処理または酸処理を施して電極を作製しても同
様な効果が得られる。
Next, a battery using electrode G that does not contain cobalt is 7
Capacity deteriorates after about 0 cycles. Further, the optimum temperature range for sintering is 860 to 1100°C. This is because sintering is impossible at temperatures below 860°C.
When the temperature exceeds 1100'C, sintering progresses too much and it becomes impossible to construct a battery. In this example, sintering was performed in an argon gas atmosphere, but in N2 gas, N2 gas, and N2 and N2 gas.
Similar effects were obtained even when sintering was performed in a mixed gas such as No. 2 or in vacuum. In addition, an example in which alkali treatment was performed was shown, but the alkali treatment temperature was 45 to 90''.
Similar effects can be obtained if the C treatment time is 0.5 to 20 hours. Furthermore, the same effect can be obtained even if the treatment is performed in an acid such as hydrochloric acid. In this example, the electrode was fabricated in the process of sintering after alkali treatment, but after sintering,
A similar effect can be obtained even if the electrode is prepared by performing an alkali treatment or an acid treatment.

なお、芯材に発泡状ニッケルに比べ安価なパンチングメ
タルを用いることができ、負極のコストダウンが図れる
Note that punching metal, which is cheaper than foamed nickel, can be used as the core material, and the cost of the negative electrode can be reduced.

発明の効果 以上のように、本発明によれば、水素吸蔵合金の粉末を
酸またはアルカリ性の溶液に浸漬する工程と、水洗・乾
燥の後、粉末と結着剤との混合物を芯金に塗着、乾燥し
加圧操作を施す工程と、真空中、不活性ガス中もしくは
水素ガス中で合金の融点以下の温度で焼結する工程とを
有する水素吸蔵電極の製造法とすることによシ、高率放
電特性に優れ、充放電サイクル寿命の良好な電池を提供
できるという効果が得られる。
Effects of the Invention As described above, according to the present invention, the steps of immersing hydrogen storage alloy powder in an acid or alkaline solution, washing with water and drying, and then applying a mixture of the powder and a binder to the core metal are performed. The method for producing a hydrogen storage electrode includes the steps of depositing, drying, and pressurizing, and sintering at a temperature below the melting point of the alloy in vacuum, inert gas, or hydrogen gas. , it is possible to provide a battery with excellent high rate discharge characteristics and a good charge/discharge cycle life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における放電率と容量比率の
関係を示す図、第2図は充放電サイクル数と放電容量の
関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 炙 贋ζ 率  (C請杓
FIG. 1 is a diagram showing the relationship between the discharge rate and the capacity ratio in one embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the number of charge/discharge cycles and the discharge capacity. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Diagram fake ζ rate (C claim rate

Claims (3)

【特許請求の範囲】[Claims] (1)可逆的に水素を吸蔵・放出する水素吸蔵合金の粉
末を酸またはアルカリ性の溶液に浸漬する工程と、水洗
乾燥の後、粉末と結着剤の混練物を芯金に塗着、乾燥し
加圧操作を施す工程と、合金の融点以下の温度で焼結す
る工程とを有することを特徴とする水素吸蔵合金電極の
製造法。
(1) The process of immersing the powder of a hydrogen storage alloy that reversibly stores and releases hydrogen in an acid or alkaline solution, washing with water and drying, then applying a mixture of powder and binder to the core metal and drying. 1. A method for producing a hydrogen storage alloy electrode, comprising the steps of applying pressure and sintering at a temperature below the melting point of the alloy.
(2)水素吸蔵合金の粉末は、CaCu_5型の結晶構
造を有し、焼結を施す温度が850〜1100゜Cの範
囲であることを特徴とする特許請求の範囲第1項記載の
水素吸蔵合金電極の製造法。
(2) The hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy powder has a CaCu_5 type crystal structure, and the sintering temperature is in the range of 850 to 1100°C. Method for manufacturing alloy electrodes.
(3)少なくともコバルトを含有する水素吸蔵合金を用
いたことを特徴とする特許請求の範囲第1項記載の水素
吸蔵合金電極の製造法。
(3) A method for manufacturing a hydrogen storage alloy electrode according to claim 1, characterized in that a hydrogen storage alloy containing at least cobalt is used.
JP62290020A 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JP2733231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290020A JP2733231B2 (en) 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290020A JP2733231B2 (en) 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH01132048A true JPH01132048A (en) 1989-05-24
JP2733231B2 JP2733231B2 (en) 1998-03-30

Family

ID=17750749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290020A Expired - Fee Related JP2733231B2 (en) 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2733231B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0975033A1 (en) * 1997-01-31 2000-01-26 SANYO ELECTRIC Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925135A (en) * 1972-06-29 1974-03-06
JPS5416632A (en) * 1977-07-07 1979-02-07 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925135A (en) * 1972-06-29 1974-03-06
JPS5416632A (en) * 1977-07-07 1979-02-07 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0696823A4 (en) * 1994-02-25 1996-04-24 Yuasa Battery Co Ltd Hydrogen absorbing electrode and production method thereof
US5935732A (en) * 1994-02-25 1999-08-10 Yuasa Corporation Hydrogen absorbing electrode and its manufacturing method
EP0975033A1 (en) * 1997-01-31 2000-01-26 SANYO ELECTRIC Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same
EP0975033A4 (en) * 1997-01-31 2006-05-24 Sanyo Electric Co Hydrogen storage alloy powder ane method of manufacturing the same

Also Published As

Publication number Publication date
JP2733231B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JPH01132048A (en) Manufacture of hydrogen storage alloy electrode
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
JP4743997B2 (en) Hydrogen storage alloy electrode
JP3432870B2 (en) Method for producing metal hydride electrode
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS63264867A (en) Manufacture of hydrogen storage electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP3098948B2 (en) Hydrogen storage alloy-containing composition and electrode using the same
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3322449B2 (en) Method for producing metal hydride electrode
JP3010989B2 (en) Hydrogen storage electrode and method for producing the same
JP2586752B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees