JP2623409B2 - Hydrogen storage electrode and method for producing the same - Google Patents

Hydrogen storage electrode and method for producing the same

Info

Publication number
JP2623409B2
JP2623409B2 JP4179462A JP17946292A JP2623409B2 JP 2623409 B2 JP2623409 B2 JP 2623409B2 JP 4179462 A JP4179462 A JP 4179462A JP 17946292 A JP17946292 A JP 17946292A JP 2623409 B2 JP2623409 B2 JP 2623409B2
Authority
JP
Japan
Prior art keywords
electrode
binder
hydrogen storage
vol
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4179462A
Other languages
Japanese (ja)
Other versions
JPH0644964A (en
Inventor
隆司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to EP95118249A priority Critical patent/EP0714145A1/en
Publication of JPH0644964A publication Critical patent/JPH0644964A/en
Application granted granted Critical
Publication of JP2623409B2 publication Critical patent/JP2623409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ密閉蓄電池の
負極として用いる水素吸蔵電極並びにその製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode used as a negative electrode of a sealed alkaline storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】従来、負極活物質として水素を利用する
アルカリ密閉蓄電池の負極として、水素を吸蔵・放出で
きる水素吸蔵合金を主体とする水素吸蔵電極は公知であ
る。該水素吸蔵電極の製造は、水素吸蔵合金粉末を主体
とし、これに結着材としてPTFE粉末やPE粉末を混
ぜて加熱溶融により、或いは未焼成PTFE粉末を繊維
化してその結着材のネットワークで該合金粉末を結着し
て、その脱落を防止することが行われている。この場
合、Ni粉などの導電材を混合し、電極の導電性を増大し
たり、CMCなどの増粘材を混合して混合物をスラリー
化して、これを多孔導電基板に塗布、乾燥、圧延成形
し、次でその電極成形体を真空中で熱処理することによ
り水素吸蔵電極を製造することが一般である。
2. Description of the Related Art Conventionally, a hydrogen storage electrode mainly composed of a hydrogen storage alloy capable of storing and releasing hydrogen has been known as a negative electrode of an alkaline sealed storage battery utilizing hydrogen as a negative electrode active material. The hydrogen storage electrode is manufactured mainly by mixing a hydrogen storage alloy powder with a PTFE powder or a PE powder as a binder and heating and melting the mixture, or by forming an unfired PTFE powder into fibers to form a network of the binder. It has been practiced to bind the alloy powder to prevent the alloy powder from falling off. In this case, a conductive material such as Ni powder is mixed to increase the conductivity of the electrode, or a thickening material such as CMC is mixed to form a slurry, which is applied to a porous conductive substrate, dried, and roll-formed. Then, generally, the electrode molded body is heat-treated in a vacuum to produce a hydrogen storage electrode.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、上記従来
の各種の製造で作られた水素吸蔵電極は、蓄電池の負極
として使用し、アルカリ電解液中で充放電を繰り返すう
ちに水素吸蔵合金は微粉化し、電極から脱落することが
防止できない。その結果、電池容量の低下を招くと共
に、微粉化の影響による電極の機械的強度及び導電性の
低下が著しく、長期に極板容量を維持することが困難で
あった。
However, the hydrogen storage electrodes manufactured by the above-mentioned various conventional manufacturing methods are used as negative electrodes of storage batteries. It cannot be prevented that the powder is pulverized and drops from the electrode. As a result, the battery capacity is reduced, and the mechanical strength and the conductivity of the electrode are significantly reduced due to the effect of pulverization, making it difficult to maintain the electrode plate capacity for a long period of time.

【0004】[0004]

【課題を解決するための手段】本発明は、従来の上記の
水素吸蔵電極の不都合を解消し、充放電サイクル寿命の
向上、容量維持率の向上などをもたらす水素吸蔵電極を
提供するもので、熱処理後の体積分率は、水素吸蔵合金
42〜84vol.%、結着材3〜13vol.%、導
電材3〜15vol.%、残存気孔10〜30vol.
%から成り、該結着材は、ポリフッ化ビニリデンであ
り、該導電材の平均粒径は1.3μm以下であることを
特徴とする
SUMMARY OF THE INVENTION The present invention is to provide a hydrogen storage electrode which solves the above-mentioned disadvantages of the conventional hydrogen storage electrode, improves the charge / discharge cycle life, and improves the capacity retention ratio. The volume fraction after the heat treatment was set to 42 to 84 vol. %, Binder 3 to 13 vol. %, Conductive material 3 to 15 vol. %, Residual pores 10 to 30 vol.
% To become, the binder material is a polyvinylidene fluoride, an average particle diameter of the conductor material is less der Rukoto 1.3μm
Features .

【0005】[0005]

【作用】本発明の水素吸蔵電極の構成を、熱処理後の体
積分率を水素吸蔵合金42〜84vol.%の範囲、結
着材3〜13vol.%の範囲及び導電材3〜15vo
l.%の範囲及び残存気孔10〜30vol.%の範囲
とし、且つ該結着材として、ポリフッ化ビニリデンを用
い、該導電材の平均粒径は1.3μm以下とすることに
より、後記に明らかにするように、水素吸蔵合金粉末の
脱落が防止され、且つ充放電サイクル寿命、容量維持率
が大きい而も電池内圧を低く抑えることができる電極が
得られる。上記の本発明の水素吸蔵電極の製造におい
て、結着材としてポリフッ化ビニリデンを用い、真空中
又は不活性ガス雰囲気中で約160〜約200℃で、即
ち該結着材粒子を溶融又は溶融に近い状態として相互に
結着してネットワークを形成し、このネットワークによ
り、表面を導電材微粒子で被覆された無数の合金粒子を
強固に、且つその体積の膨脹収縮に順応し得るように結
着保持し得られ、アルカリ電解液中でも長時間その結着
ネットワークが初期の状態を維持できるので、合金粒子
の脱落を良好に防止でき、充放電サイクル寿命が長く、
容量維持率を向上するに有効である。
The structure of the hydrogen storage electrode of the present invention is the same as that of the body after heat treatment.
The integration rate was set to 42 to 84 vol. %, Binder 3 to 13 vol. % And conductive material 3 to 15 vo
l. % And residual pores of 10 to 30 vol. The percent range, and as the binder material, using a polyvinylidene fluoride, an average particle diameter of the conductor material by Rukoto to and 1.3μm or less, to reveal the below, dropping of hydrogen absorbing alloy powder Thus, an electrode can be obtained in which the charge and discharge cycle life and the capacity retention ratio are large and the internal pressure of the battery can be kept low. In the production of the hydrogen storage electrode of the present invention, polyvinylidene fluoride is used as the binder, and the binder particles are melted or melted at about 160 to about 200 ° C. in a vacuum or an inert gas atmosphere. As a close state, they are bound to each other to form a network. With this network, countless alloy particles whose surfaces are coated with conductive fine particles are firmly bound and held so that they can adapt to the expansion and contraction of the volume. The binding network can maintain the initial state for a long time even in the alkaline electrolyte, so that the alloy particles can be prevented from falling off, and the charge / discharge cycle life is long,
This is effective for improving the capacity maintenance rate.

【0006】[0006]

【実施例】本発明の水素吸蔵電極並びにその製造法の実
施例を次に説明する。本発明の水素吸蔵電極の製造に用
いられる水素吸蔵合金としては、MmNi系合金その他
公知の各種の合金組成のもので良い。該合金の配合量が
42vol.%未満であるときは、所定の容量が得られ
ず、84vol.%を越える場合は、結着材、導電材等
の量が相対的に減り、合金粒子の保持が不充分となり、
導電性も低下し、所定の電極が得られない。結着材とし
て使用する特にポリフッ化ビニリデン(PVdF)は、
耐アルカリ性であり、而も加熱温度が約160〜約20
0℃と低くてすみ、溶融温度が350℃前後と非常に高
い加熱温度と特別の処理炉を要求するポリテトラフルオ
ロエチレン(PTFE)に比し有利である。かゝる結着
材粉末粒子の相互の結着により、合金粒子相互を強固に
結着し、而も合金体積の膨脹収縮に対応する追従性を有
する結着ネットワークを生成する点で有利である。加熱
温度が約160℃より低い場合は、結着材粒子は互いに
結着せず、合金粒子を充分に保持できない。約200℃
より高い場合は、その合金表面の不活性化が起こり易く
好ましくない。導電材としては、カーボニルニッケル粉
末など電気伝導性の良いものが好ましく、その平均粒径
は、後記に明らかなように、1.3μmより大きい場合
は、合金粒子間に侵入し難く、合金表面を良好に被覆し
難く、電極の利用率が低下する。増粘材は、スラリー状
混合物を作製する場合には必要であり、その材料として
はCMC、MC、PVAなど公知の任意の種類のものが
使用できる。かくして、所望の水素吸蔵合金粉末、PV
dF粉末、CMCなどの増粘材を適当な量の水または有
機溶剤と共に混合した所定の粘性をもつスラリーを調製
し、これをニッケル多孔シートなどの導電多孔基板の両
面に適当な厚さに塗布し、乾燥し、圧延し、その電極成
形体を作製した後、これを加熱炉に入れ、真空中または
窒素などの不活性ガス雰囲気中で、約160〜約200
℃の温度で所要時間加熱して、残存気孔は10〜30v
ol.%をもつ本発明の水素吸蔵電極を製造する。残存
気孔10vol.%未満の場合は、電極のガス吸収が悪
くなり、30vol.%を越える場合は、活物質の脱落
が生じ易くなり、高い容量が出ない。
EXAMPLES Examples of the hydrogen storage electrode of the present invention and a method for producing the same will be described below. The hydrogen storage alloy used for manufacturing the hydrogen storage electrode of the present invention may be an MmNi-based alloy or any other known alloy composition. When the compounding amount of the alloy is 42 vol. %, The predetermined capacity cannot be obtained, and 84 vol. %, The amount of the binder, the conductive material, etc. is relatively reduced, and the retention of the alloy particles becomes insufficient.
The conductivity also decreases, and a predetermined electrode cannot be obtained. In particular, polyvinylidene fluoride (PVdF) used as a binder is
A resistance alkali resistance, also about the heating temperature is about 160 Thus 20
This is advantageous in comparison with polytetrafluoroethylene (PTFE), which requires a low heating temperature of 0 ° C. and a very high melting temperature of about 350 ° C. and requires a special processing furnace. Such binding of the binder powder particles is advantageous in that the alloy particles are firmly bound to each other and a binding network having a followability corresponding to expansion and contraction of the alloy volume is generated. . If the heating temperature is lower than about 160 ° C., the binder particles do not bind to each other and the alloy particles cannot be sufficiently held. About 200 ° C
If it is higher, the surface of the alloy is likely to be inactivated, which is not preferable. As the conductive material, a material having good electric conductivity such as carbonyl nickel powder is preferable. If the average particle size is larger than 1.3 μm, it is difficult to penetrate between the alloy particles, and the It is difficult to coat well and the utilization rate of the electrode decreases. The thickener is necessary when preparing a slurry-like mixture, and any known material such as CMC, MC, and PVA can be used as the material. Thus, the desired hydrogen storage alloy powder, PV
A slurry having a predetermined viscosity is prepared by mixing a thickener such as dF powder and CMC with an appropriate amount of water or an organic solvent, and this is applied to both sides of a conductive porous substrate such as a nickel porous sheet to an appropriate thickness. After drying and rolling to produce an electrode compact, it is placed in a heating furnace, and is heated in a vacuum or in an inert gas atmosphere such as nitrogen for about 160 to about 200 hours.
C. for a required time, leaving 10-30 v of residual pores.
ol. % Of the hydrogen storage electrode of the present invention. Residual pores 10 vol. %, The gas absorption of the electrode becomes poor, and the vol. %, The active material tends to fall off, and a high capacity cannot be obtained.

【0007】更に本発明の実施例につき詳述する。MmNi
3.5 Co1.0 Al0.5 から成る水素吸蔵合金を機械的に粉砕
して得られたその合金粉末と、結着材としてポリフッ化
ビニリデン(PVdF)粉末と、導電材として、平均粒
径 1.3μmのカーボニルニッケル粉末とを下記表1の割
合で配合し、これに増粘材としてCMCの1%水溶液を
所定量加え、攪拌して均一に混合して得られた夫々のス
ラリーをニッケル多孔シートの両面に塗布、乾燥、圧延
して水素吸蔵電極板を成形し、この成形板を加熱炉に入
れ、真空雰囲気下で、約 160〜約 200℃の範囲の温度
で、例えば 170℃で2時間熱処理した。かくして、夫々
の水素吸蔵電極A〜Qを製造した。また、比較のため、
結着材として前記のPVdF粉末に代えてポリエチレン
(PE)粉末を配合した以外は、前記と同じ製造法によ
り電極Rを製造した。また、結着材として前記のPVd
F粉末に代えてポリテトラフルオロエチレン(PTF
E)粉末を配合し、増粘材としてCMCを添加しない
で、混合PTFEを繊維化して含む混合物を、該ニッケ
ル多孔シートの両面に加圧結着して電極を成形し、前記
の熱処理をしない電極Sを製造した。更にまた、導電材
として前記の平均粒径 1.3μmのカーボニルニッケル粉
末に代えて、平均粒径 2.8μmのカーボニルニッケルを
配合した以外は、前記と同じ製造法により電極Tを製造
した。夫々の電極A〜Tの残存気孔は表1に示す通りで
あった。
Further, embodiments of the present invention will be described in detail. MmNi
An alloy powder obtained by mechanically pulverizing a hydrogen storage alloy composed of 3.5 Co 1.0 Al 0.5 , polyvinylidene fluoride (PVdF) powder as a binder, and carbonyl nickel having an average particle diameter of 1.3 μm as a conductive material The powder and the powder are blended in the ratio shown in Table 1 below, a predetermined amount of a 1% aqueous solution of CMC is added as a thickener, and the resulting mixture is stirred and uniformly mixed, and the respective slurries are applied to both sides of a nickel porous sheet. After drying, rolling and forming a hydrogen-absorbing electrode plate, the formed plate was placed in a heating furnace and heat-treated under a vacuum atmosphere at a temperature in the range of about 160 to about 200 ° C., for example, at 170 ° C. for 2 hours. Thus, each of the hydrogen storage electrodes A to Q was manufactured. Also, for comparison,
Electrode R was manufactured by the same manufacturing method as described above, except that polyethylene (PE) powder was blended in place of the PVdF powder as the binder. Further, the above-mentioned PVd is used as a binder.
F powder instead of polytetrafluoroethylene (PTF
E) A powder is blended, without adding CMC as a thickening agent, a mixture containing fiberized mixed PTFE is pressure-bonded to both sides of the nickel porous sheet to form electrodes, and the heat treatment is not performed. The electrode S was manufactured. Further, an electrode T was manufactured by the same manufacturing method as described above, except that carbonyl nickel having an average particle size of 2.8 μm was blended in place of the carbonyl nickel powder having an average particle size of 1.3 μm as the conductive material. The remaining pores of each of the electrodes A to T were as shown in Table 1.

【0008】[0008]

【表1】[Table 1]

【0009】上記の電極A〜Tの夫々を負極とし、ニッ
ケル極板を正極とし、これらの間に厚さ0.18mmのナイロ
ンセパレータを介在させて積層捲回して、捲回極板群と
し、これを常法によりニッケルメッキを施した鉄製缶に
挿入し、気密に施蓋し、所定のアルカリ電解液を注入、
封口して円筒形密閉蓄電池を製造した。尚、該正極板
は、水酸化ニッケル粉末とカーボニルニッケル粉末とを
混合し、更に 1.2%CMC水溶液を加えペースト状とし
たものを、発泡ニッケル基板に充填し、乾燥、圧延成形
を行い製造したものである。このようにして電極A〜T
を負極として用いて製造した上記の対応する蓄電池を以
下A〜T電池と称する。
Each of the above-mentioned electrodes A to T is used as a negative electrode, a nickel electrode plate is used as a positive electrode, and a 0.18 mm-thick nylon separator is interposed between them to form a wound electrode plate group. Into a nickel-plated iron can in the usual manner, cover it tightly, inject a predetermined alkaline electrolyte,
The container was sealed to produce a cylindrical sealed storage battery. The positive electrode plate was prepared by mixing nickel hydroxide powder and carbonyl nickel powder, further adding a 1.2% CMC aqueous solution to form a paste, filling the foamed nickel substrate, drying and rolling. It is. Thus, the electrodes A to T
The corresponding storage batteries manufactured using the as a negative electrode are hereinafter referred to as AT batteries.

【0010】これらA〜T電池について、下記のように
充放電サイクル試験、内圧試験、率別放電試験を行っ
た。A〜T電池は、定格AA−Typeの1100mA
とする。
These A to T batteries were subjected to a charge / discharge cycle test, an internal pressure test, and a rate-specific discharge test as described below. A to T batteries have a rated AA-Type of 1100 mA.
h .

【0011】1)充放電サイクル試験: 充放電サイクル試験は、1100mAで75分充電し、
終止電圧を1Vとして1100mAで放電した。温度は
室温とした。その結果を図1に示す。図1から明らかな
ように、A〜K電池は、充放電サイクルの進行に伴い、
その容量低下は極めて小さかったが、これに対し、L〜
T電池では、容量低下が増大した。この原因は、表1に
徴し明らかなように、L電池の負極Lのように結着材の
配合量が少なすぎたり、R電池の負極Rや、S電池の負
極Sのように、結着材の配合量は充分であっても、PV
dFでなく、加熱溶融されたPEや未加熱の繊維化され
たPTFEでは、水素吸蔵合金の微粉化により合金粉の
電極からの脱落が容易に起こり、電極の機械的強度及び
導電性の低下をもたらすことによると考えられ、また逆
に、M電池の負極Mの如く、結着材の配合量が多すぎる
と負極の分極特性が悪くなり、又利用率も低下すると考
えられ、L電池の負極Lの如く、導電材が少なすぎる場
合は、導電性が悪く、利用命が低下し、逆にO電池の負
極Oの如く導電材が多すぎる場合は、これに比例して効
果が更に向上することが認められず、何故か、サイクル
寿命の低下をもたらし、またP電池の負極Pの如く残存
気孔が著しく低い場合は、ガス吸収性に劣り、良好な充
放電特性を維持できず容易に劣化するものと考えられ、
逆にQ電池の負極Qの如く、残存気孔が高すぎると、合
金の脱落が生じ易く、急激に利用率が低下する傾向があ
り、T電池の負極Tの如く、同じ配合比率でも、導電材
の粒径が大きすぎると、導電性に悪影響を及ぼし利用率
が低下する傾向があると考えられる。これに対し、A〜
K電池の負極A〜Kの如き水素吸蔵合金、結着材、導電
材組成比及び残存気孔の比率であり、且つ結着材として
PVdFを使用し、導電材の平均粒径が1.3μmであ
、且つ熱処理された場合は、結着材の溶融粒子相互の
結着により生成するネットワークが、合金の微粉化によ
る脱落を抑え、且つ電極の機械的強度の増大をもたら
し、導電材の微粒子は合金粒子の表面にメッキのように
付着して良好な導電性による良好な利用率をもたらし、
その残存気孔の比率は、良好なガス吸収性、電極中への
電解液の良好な浸透拡散と、これに伴い良好な水素の吸
蔵・放出をもたらし、その結果、図1のように、充放電
サイクルの進行によっても容量低下は極めて小さく、初
期と殆ど同じ高い容量を維持するものと思われる。 2)内圧試験: 内圧試験は、充電を1100mAで4.5時間、終止電
圧1Vとして220mAで放電した。温度は20℃とし
た。その結果を表2に示す。
1) Charge / discharge cycle test: In the charge / discharge cycle test, the battery was charged at 1100 mA for 75 minutes,
Discharging was performed at 1100 mA with an end voltage of 1 V. The temperature was room temperature. The result is shown in FIG. As is evident from FIG. 1, the AK batteries have the following characteristics as the charge / discharge cycle progresses.
The decrease in the capacity was extremely small.
In the T battery, the capacity decrease increased. The cause of this is clearly shown in Table 1, and the amount of the binder is too small as in the case of the negative electrode L of the L battery, or the amount of the binder is low as in the negative electrode R of the R battery and the negative electrode S of the S battery. Even if the compounding amount of the material is sufficient, PV
In the case of heat-melted PE or unheated fibrous PTFE instead of dF, the alloy powder easily falls off the electrode due to the pulverization of the hydrogen storage alloy, and the mechanical strength and conductivity of the electrode decrease. On the contrary, when the amount of the binder is too large, as in the case of the negative electrode M of the M battery, the polarization characteristics of the negative electrode are deteriorated, and the utilization factor is considered to decrease. When the amount of the conductive material is too small, as in L, the conductivity is poor and the service life is reduced. Conversely, when the amount of the conductive material is too large, as in the negative electrode O of the O battery, the effect is further improved in proportion to this. When the residual pores are remarkably low, such as the negative electrode P of a P battery, the gas absorption is inferior and good charge / discharge characteristics cannot be maintained. Is considered
Conversely, if the residual pores are too high, as in the negative electrode Q of the Q battery, the alloy tends to fall off and the utilization tends to decrease rapidly. It is considered that if the particle size of the particles is too large, the conductivity is adversely affected and the utilization rate tends to decrease. In contrast, A ~
The hydrogen storage alloys such as the negative electrodes A to K of the K battery, the binder, the composition ratio of the conductive material and the ratio of the residual pores, and PVdF was used as the binder, and the average particle size of the conductive material was 1.3 μm. Ah
When heat-treated, the network formed by the binding of the molten particles of the binder restrains the alloy from falling off due to pulverization and increases the mechanical strength of the electrode. Adhering to the surface of the alloy particles like plating to provide good utilization by good conductivity,
The ratio of the remaining pores leads to good gas absorption, good penetration and diffusion of the electrolytic solution into the electrode, and good absorption and desorption of hydrogen. As a result, as shown in FIG. Even with the progress of the cycle, the capacity decrease is extremely small, and it is considered that the capacity is maintained almost as high as the initial capacity. 2) Internal pressure test: In the internal pressure test, charging was performed at 1100 mA for 4.5 hours, and discharging was performed at 220 mA with a final voltage of 1 V. The temperature was 20 ° C. Table 2 shows the results.

【0012】[0012]

【表2】[Table 2]

【0013】表2から明らかなように、A〜K電池の内
圧は全て著しく低かった。これに対し、L〜T電池は、
かゝる大電流で過充電してもその内圧は著しく高かっ
た。これら電池の内圧の差は、表1に示す電極の各構成
部材の配合量の相異、結着材の相異、導電材の相異、熱
処理の有無などに依存して水素吸蔵合金の水素の吸蔵・
放出の性能、充放電性能、導電材による導電性、結着
性、ガス吸収性などの優劣を生ずるものであると思われ
る。 3)率別放電試験:率別放電試験は、充電を 220mAで 7.5
時間、終止電圧を1Vとして 220mA( 0.2C)、1650mA
( 1.5C)、3300mA( 3.0C)の3種の電流で放電し
た。温度は20℃とした。その結果を表3に示す・
As is apparent from Table 2, the internal pressures of the AK cells were all extremely low. On the other hand, LT batteries are
Even when overcharging with such a large current, the internal pressure was remarkably high. The difference between the internal pressures of these batteries depends on the amount of each component of the electrode shown in Table 1, the difference in the binder, the difference in the conductive material, the presence or absence of heat treatment, etc. Occlusion /
It is considered that the properties such as discharge performance, charge / discharge performance, conductivity by the conductive material, binding property, and gas absorbability are produced. 3) Discharge test by rate: Discharge test by rate is 7.5 mA at 220 mA.
220mA (0.2C), 1650mA with time and end voltage as 1V
(1.5 C) and 3300 mA (3.0 C). The temperature was 20 ° C. The results are shown in Table 3.

【0014】[0014]

【表3】[Table 3]

【0015】表3から明らかなように、A〜K電池はL
〜T電池に比し、放電電流を大きくしても、その放電特
性の低下率は小さく良好な放電特性を維持することが
分かる。
As is apparent from Table 3, A to K batteries are L
It can be seen that, even when the discharge current is increased, the rate of decrease in the discharge characteristics is small and good discharge characteristics are maintained, as compared with the T cells.

【0016】このように、A〜K電池は、上記の充放電
サイクル試験、内圧試験及び率別放電試験のいずれも良
好であった。そこで、その電極A〜Kの構成を更に種々
試験研究した所、その構成は、水素吸蔵合金は42〜84vo
l.%、PVdF結着材は3〜13vol.%、導電材は3〜15
vol.%、残存気孔10〜30vol.%、導電材は平均粒径 1.3
μm以下であること、その電極の製造法において、約 1
60〜約 200℃で該電極形成体を真空または不活性雰囲気
下で熱処理することにより得られる水素吸蔵電極である
限り、上記のような夫々の優れたサイクル寿命、放電特
性、内圧低下特性が得られることを確認した。
As described above, the AK batteries were good in all of the above-mentioned charge / discharge cycle test, internal pressure test, and rate-specific discharge test. Then, when the structure of the electrodes A to K was further variously studied, the structure was as follows.
l.%, PVdF binder 3 ~ 13vol.%, conductive material 3 ~ 15
vol.%, residual pores 10-30vol.%, conductive material average particle size 1.3
μm or less, and about 1
As long as the hydrogen storage electrode is obtained by heat-treating the electrode formed body at 60 to about 200 ° C. in a vacuum or an inert atmosphere, each of the above excellent cycle life, discharge characteristics, and internal pressure reduction characteristics can be obtained. I confirmed that

【0017】[0017]

【発明の効果】このように本発明によるときは、水素吸
蔵電極を熱処理後の体積分率が水素吸蔵合金42〜84
vol.%、PVdF結着材3〜13vol.%、平均
粒径1.3μm以下の導電材3〜15vol.%、残存
気孔10〜30vol.%で構成し、その製造におい
て、その電極成形体を約160〜約200℃で真空中又
は不活性ガス雰囲気中で熱処理するときは、比較的製造
容易且つ安価で而も充放電サイクル寿命、放電特性の優
れた電池容量低下の小さいアルカリ密閉蓄電池用負極を
もたらす。
As described above, according to the present invention, the volume fraction of the hydrogen-absorbing electrode after the heat treatment is reduced to the hydrogen-absorbing alloy 42-84.
vol. %, PVdF binder 3 to 13 vol. %, A conductive material having an average particle size of 1.3 μm or less, 3 to 15 vol. %, Residual pores 10 to 30 vol. When the electrode molded body is heat-treated in a vacuum or an inert gas atmosphere at about 160 to about 200 ° C. in the production thereof, the production is relatively easy and inexpensive, and the charge-discharge cycle life, discharge A negative electrode for an alkaline sealed storage battery having excellent characteristics and a small decrease in battery capacity is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵電極の充放電サイクル特性を
比較例と共に示すグラフである。
FIG. 1 is a graph showing charge / discharge cycle characteristics of a hydrogen storage electrode of the present invention together with a comparative example.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱処理後の体積分率は、水素吸蔵合金4
2〜84vol.%、結着材3〜13vol.%、導電
材3〜15vol.%、残存気孔10〜30vol.
ら成り、該結着材は、ポリフッ化ビニリデンであり、
該導電材の平均粒径は1.3μm以下であることを特徴
とする水素吸蔵電極。
(1) The volume fraction after heat treatment is as follows:
2-84 vol. %, Binder 3 to 13 vol. %, Conductive material 3 to 15 vol. %, Residual pores 10 to 30 vol. %
Become pressurized, et al., The binder material is a polyvinylidene fluoride,
The average particle diameter of the conductor material is characterized by the following Der Rukoto 1.3μm
Hydrogen absorbing electrode to be.
【請求項2】 請求項1に記載の水素吸蔵電極の製造に
おいて、結着材としてポリフッ化ビニリデンを用い電極
成形体を作製し、これを真空中または不活性ガス雰囲気
中で約 160〜約 200℃の範囲で熱処理することを特徴と
する水素吸蔵電極の製造法。
2. The method for producing a hydrogen storage electrode according to claim 1, wherein an electrode molded body is produced by using polyvinylidene fluoride as a binder, and the molded electrode is formed in a vacuum or in an inert gas atmosphere for about 160 to about 200 hours. A method for producing a hydrogen storage electrode, comprising heat-treating in the range of ° C.
JP4179462A 1992-06-12 1992-06-12 Hydrogen storage electrode and method for producing the same Expired - Lifetime JP2623409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95118249A EP0714145A1 (en) 1992-06-12 1993-06-11 A hydrogen-occlusion electrode and a method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17946292 1992-12-06

Publications (2)

Publication Number Publication Date
JPH0644964A JPH0644964A (en) 1994-02-18
JP2623409B2 true JP2623409B2 (en) 1997-06-25

Family

ID=16066278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4179462A Expired - Lifetime JP2623409B2 (en) 1992-06-12 1992-06-12 Hydrogen storage electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP2623409B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061022B2 (en) * 1987-05-20 1994-01-05 株式会社大井製作所 Poles in door locks for automobiles
CN1076889C (en) 1994-08-09 2001-12-26 日本电池株式会社 Method for manufacturing nickel-metal-hydride battery
JP4233276B2 (en) 2002-06-27 2009-03-04 三井・デュポンフロロケミカル株式会社 Binder for electrode material

Also Published As

Publication number Publication date
JPH0644964A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
US5360687A (en) Hydrogen-occulusion electrode
US20110052983A1 (en) Negative electrode for alkaline storage battery and alkaline storage battery
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JP2004269929A (en) Hydrogen storage alloy, and electrode using the same
JPS63266767A (en) Manufacture of hydrogen storage electrode
US6455195B1 (en) Hydrogen absorbing alloy electrodes and nickel-metal hydride batteries using the same
CN110649213A (en) Coating diaphragm material for lithium-sulfur secondary battery and application thereof
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2631324B2 (en) Hydrogen storage alloy electrode and its manufacturing method
US6924062B2 (en) Nickel-metal hydride storage battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP2011018493A (en) Nickel hydrogen secondary battery
JP3501378B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JP3374995B2 (en) Manufacturing method of nickel electrode
JP4626130B2 (en) Nickel-hydrogen storage battery
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2631191B2 (en) Method for producing active material slurry for hydrogen storage alloy electrode
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery