JPS63266767A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPS63266767A
JPS63266767A JP62100368A JP10036887A JPS63266767A JP S63266767 A JPS63266767 A JP S63266767A JP 62100368 A JP62100368 A JP 62100368A JP 10036887 A JP10036887 A JP 10036887A JP S63266767 A JPS63266767 A JP S63266767A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
paste
storage electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62100368A
Other languages
Japanese (ja)
Other versions
JPH0763006B2 (en
Inventor
Yoshio Moriwaki
良夫 森脇
Tsutomu Iwaki
勉 岩城
Akiyoshi Shintani
新谷 明美
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62100368A priority Critical patent/JPH0763006B2/en
Publication of JPS63266767A publication Critical patent/JPS63266767A/en
Publication of JPH0763006B2 publication Critical patent/JPH0763006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the capacity and the life by forming a porous conductive layer on the surface of a paste type hydrogen storage electrode. CONSTITUTION:MmNi9.8Co0.5Mn0.4A10.5 alloy prepared with an argon arc furnace is heat-treated with a vacuum thermal treatment furnace, and crushed to 400 mesh or less. The hydrogen storage alloy powder is mixed with ethylene glycol solution containing 5 wt.% polyvinyl alcohol, 0.8 wt.% polyethylene fine powder, and 0.5 wt.% vinyl chlorideacrylonitrile copolymer short fiber to form paste. The paste is applied to a 0.15mm thick nickel plated steel punched metal having a pore diameter of 1.8mm and an opening rate of 50%. The coated punched metal is passed through a slit having a width of 0.6mm to smooth it, and dried at 120 deg.C for one hour to obtain a hydrogen storage electrode. After pressing, a porous conductive layer is formed on the electrode by various methods such as electroless copper plating, electric copper plating, neckel powder coating, palladium deposition, and nickel vapor deposition. The conductivity of the electrode is increased, and the mechanical strength, the capacity, and the life are also increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
を用いる水素吸蔵電極の製造方法に関するもので、無公
害で高エネルギー密度のアルカリ蓄電池が提供できるも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a hydrogen storage electrode using a hydrogen storage alloy that reversibly stores and releases hydrogen. This is something that can be provided.

従来の技術 各種の電源のうち二次電池としては、鉛蓄電池とアルカ
リ蓄電池とが広く使われている。
BACKGROUND OF THE INVENTION Among various power sources, lead-acid batteries and alkaline batteries are widely used as secondary batteries.

アルカリ蓄電池のうち、最も広く使われているのは、ニ
ッケルーカドミウム蓄電池である。この電池は性能的に
かなり優れているが、依然おして高エネルギー密度や無
公害への期待が高く新しい電池系が検討されている。
The most widely used alkaline storage battery is the nickel-cadmium storage battery. Although this battery has considerably superior performance, new battery systems are still being considered with high expectations for high energy density and non-pollution.

例えばこの中で負極のカドミウムに代わって亜鉛が取り
上げられてきたが、よ(知られているように寿命に問題
があるので広い実用化には至っていない。
For example, zinc has been used as a substitute for cadmium in the negative electrode, but it has not been widely put into practical use due to problems with its lifespan.

最近注目されてきたのは水素を可逆的に吸蔵・放出する
水素吸蔵合金を負極に用いるアルカリ蓄電池である。こ
の場合は、カドミウムや亜鉛などと同じ取扱いで電池を
構成でき、実際の放電可能な容量密度をカドミウムより
大きくできることや亜鉛のようなデンドライトの形成や
電極の形状変化などがないことから、高エネルギー密度
で長寿命、無公害のアルカリ蓄電池として有望である。
Alkaline storage batteries that use a hydrogen storage alloy for the negative electrode, which reversibly stores and releases hydrogen, have recently attracted attention. In this case, batteries can be constructed using the same treatment as cadmium or zinc, and the actual dischargeable capacity density can be higher than that of cadmium. Unlike zinc, there is no formation of dendrites or changes in the shape of the electrodes, so it is possible to construct a battery with high energy. It is promising as a high-density, long-life, pollution-free alkaline storage battery.

この水素吸蔵合金を用いた水素吸蔵電極の製造方法とし
ては、従来から水素吸蔵合金を焼結して電極を得る焼結
式や発泡金属、金属繊維などの金属三次元多孔体に水素
吸蔵合金を結着剤などと共に充填した方式がよく用いら
れていた。
Conventional methods for manufacturing hydrogen storage electrodes using this hydrogen storage alloy include a sintering method in which the electrode is obtained by sintering the hydrogen storage alloy, and a method in which the hydrogen storage alloy is made into a three-dimensional porous metal body such as foamed metal or metal fiber. A method in which it was filled with a binder and the like was often used.

しかし、これらの方式による水素吸蔵電極の製造方法は
、材料コストが高くなることや製造工程が複雑であるこ
となどの問題があった。
However, these methods of manufacturing hydrogen storage electrodes have problems such as high material costs and complicated manufacturing processes.

一方、水゛素吸蔵合金粉末と結着剤などを予め混練しペ
ーストとし、これをパンチングメタルやエキスパンドメ
タル、金属ネットなどの金属二次元多孔体に塗着しその
後乾燥して得るいわゆるペースト式水素吸蔵電極の製造
方法は、製造方法が簡単であり、金属三次元多孔体のよ
うな高価な材料を使用しないことから安価な電極が得ら
れるという特徴があった。
On the other hand, hydrogen storage alloy powder and a binder are kneaded in advance to form a paste, which is applied to a two-dimensional porous metal body such as punched metal, expanded metal, or metal net, and then dried. The method for manufacturing an occlusion electrode has the characteristics that the manufacturing method is simple and that an inexpensive electrode can be obtained because an expensive material such as a metal three-dimensional porous body is not used.

発明が解決しようとする問題点 この水素吸蔵合金粉末と結着剤などを予め混練しペース
トとし、これをパンチングメタルやエキスパンドメタル
、金属ネットなどの金属二次元多孔体に塗着しその後乾
燥して得るペースト式水素吸蔵電極の製造方法は、本来
製造方法が簡単で安価な電極が得られるという特徴があ
るが、この方法で得た電極を用いてアルカリ蓄電池を構
成すると次のような問題がありこれまであまり用いられ
ていなかった。
Problem to be solved by the invention This hydrogen-absorbing alloy powder and a binder are kneaded in advance to form a paste, which is applied to a two-dimensional porous metal body such as punched metal, expanded metal, or metal net, and then dried. The method of manufacturing the paste-type hydrogen storage electrode that is obtained has the characteristics of being easy to manufacture and producing an inexpensive electrode, but when an alkaline storage battery is constructed using the electrode obtained using this method, there are the following problems. It has not been used much so far.

すなわち、その主たる問題は、従来の水素吸蔵合金を焼
結して電極を得る焼結式や発泡金属、金属繊維などの金
属三次元多孔体に水素吸蔵合金を結着剤などと共に充填
した方式の電極と比較して電極の導電性が悪(、とくに
大電流充放電特性に難点があった。放電電圧の低下が大
きく実用上大きな問題点であった。
In other words, the main problem lies in the conventional sintering method in which electrodes are obtained by sintering a hydrogen storage alloy, and the method in which a three-dimensional porous metal body such as foamed metal or metal fiber is filled with a hydrogen storage alloy together with a binder. Compared to the electrode, the conductivity of the electrode was poor (particularly the large current charging and discharging characteristics were difficult. The drop in discharge voltage was large, which was a major problem in practical use.

本発明は、製造が簡単で低価格化が図れるパンチングメ
タルやエキスパンドメタル、金属ネットなどの金属二次
元多孔体を用いたペースト式水素吸蔵電極の導電性を改
善し、急速な充放電特性に優れた水素吸蔵合金電極の製
造方法を提供することを目的とする。
The present invention improves the conductivity of a paste-type hydrogen storage electrode using a two-dimensional porous metal material such as punched metal, expanded metal, or metal net, which is easy to manufacture and can be manufactured at a low cost, and has excellent rapid charging and discharging characteristics. The purpose of the present invention is to provide a method for manufacturing a hydrogen storage alloy electrode.

問題点を解決するための手段 本発明は、水素吸蔵合金粉末と結着剤、ペースト粘度調
整剤などを予め混練しペーストとし、これをパンチング
メタルやエキスパンドメタル、金属ネットなどの金属二
次元多孔体に塗着しその後乾燥して得た極板の表面に、
さらに多孔性の導電性層を形成したことを特徴とする水
素吸蔵電極の製造方法である。
Means for Solving the Problems The present invention involves pre-kneading hydrogen-absorbing alloy powder, a binder, a paste viscosity modifier, etc. to form a paste, and applying the paste to two-dimensional metal porous bodies such as punched metal, expanded metal, and metal net. On the surface of the electrode plate obtained by applying it to and then drying it,
This method of manufacturing a hydrogen storage electrode is further characterized in that a porous conductive layer is formed.

作用 通常パンチングメタルやエキスパンドメタル、金属ネッ
トなどの金属二次元多孔体を芯材として用いたペースト
式水素吸蔵電極は、焼結式や発泡金属、金属繊維などの
金属三次元多孔体に水素吸蔵合金を結着剤などと共に充
填した方式の電極と比較して明らかに電極の導電性が悪
い。しかし、本発明はこの極板の表面に、さらに多孔性
の導電性層を形成することにより金属二次元多孔体を芯
材として用いたペースト式水素吸蔵電極でも電極の導電
性を向上することが可能になり、急速な充放電を行なっ
ても特性に優れたアルカリ蓄電池用の水素吸蔵合金電極
が得られる。またこれらの導電性層は多孔性であること
から、水素吸蔵合金粉末相互の電子伝導を向上させつつ
、イオン伝導への悪影響は少ない。さらに水素吸蔵電極
で重要な特性である密閉形アルカリ蓄電池の過充電時に
発生す、る酸素ガスを吸収する能力が一段と向上し、充
放電サイクル寿命の向上が図られる。
Paste-type hydrogen storage electrodes that use a two-dimensional porous metal material such as punched metal, expanded metal, or metal net as the core material are usually made using a hydrogen-absorbing alloy that uses a three-dimensional porous metal material such as sintered metal, foamed metal, or metal fiber as the core material. The conductivity of the electrode is clearly poorer than that of an electrode filled with a binder or the like. However, in the present invention, by further forming a porous conductive layer on the surface of this electrode plate, it is possible to improve the conductivity of the electrode even in a paste-type hydrogen storage electrode using a two-dimensional porous metal material as the core material. This makes it possible to obtain hydrogen storage alloy electrodes for alkaline storage batteries that have excellent characteristics even when rapidly charged and discharged. Moreover, since these conductive layers are porous, they improve the electron conduction between the hydrogen storage alloy powders and have little adverse effect on the ion conduction. Furthermore, the ability to absorb oxygen gas generated during overcharging of sealed alkaline storage batteries, which is an important characteristic of hydrogen storage electrodes, is further improved, and the charge/discharge cycle life is improved.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

水素吸蔵合金として市販のMm(ミツシュメタル)、N
i、Co、Mn、AIの各原材料を一定の組成比に秤量
してアルゴンアーク溶解炉によってMmN is、5C
Oo、aMno、4A+o、s合金を製造した。ついで
この合金を公知の方法に従って真空熱処理炉で熱処理し
その後、この合金試料を400メツシユ以下の粒径にな
るように粉砕した。
Commercially available hydrogen storage alloys Mm (Mitshu Metal), N
The raw materials of I, Co, Mn, and AI were weighed to a certain composition ratio and melted into MmN is, 5C using an argon arc melting furnace.
Oo, aMno, 4A+o,s alloys were manufactured. This alloy was then heat treated in a vacuum heat treatment furnace according to a known method, and then the alloy sample was ground to a particle size of 400 mesh or less.

このようにして得られた水素吸蔵合金にポリビニルアル
コールの5%(重量)のエチレングリコール溶液、重量
比で0.8%のポリエチレン微粉末、同じ(0,5%の
塩化ビニル−アクリロニトリル短繊維を加えて混練しペ
ーストとした。このペーストを厚さ0.15m、孔径1
.8mm、開孔度50%の鉄製でニッケルメッキを施し
たパンチングメタル板に塗着し、0.6m幅のスリット
を通して平滑化し、その後120℃で1時間乾燥して水
素吸蔵電極を得た。
To the hydrogen storage alloy thus obtained, a 5% (by weight) ethylene glycol solution of polyvinyl alcohol, 0.8% (by weight) polyethylene fine powder, and the same (0.5% (by weight) vinyl chloride-acrylonitrile short fibers) were added. and kneaded to make a paste.This paste was made into a paste with a thickness of 0.15m and a pore diameter of 1.
.. It was applied to a nickel-plated punched metal plate made of iron with a diameter of 8 mm and a porosity of 50%, smoothed through a 0.6 m wide slit, and then dried at 120° C. for 1 hour to obtain a hydrogen storage electrode.

このようにして作った水素吸蔵電極を、さらに加圧プレ
ス処理を行なった後、水素吸蔵電極の表面に以下の様に
水素吸蔵電極A−Lとして各種の多孔性の導電性層を形
成した。また比較のために多孔性の導電性層を形成しな
い水素吸蔵電極Mを加えた。
The thus produced hydrogen storage electrode was further subjected to pressure pressing treatment, and then various porous conductive layers were formed on the surface of the hydrogen storage electrode as hydrogen storage electrodes A-L as described below. Further, for comparison, a hydrogen storage electrode M without forming a porous conductive layer was added.

水素吸蔵電極A−無無電銅鋼メッ キ素吸蔵電極B−−電解ニッケルメッキ水素吸蔵電極C
−電気銅メッキ 水素吸蔵電極り一電気ニッケルメッキ 水素吸蔵電極E−電気(鋼+ニッケル)メッキ水素吸蔵
電極F−ニッケル粉末塗布 水素吸蔵電極G−炭素粉末塗布 水素吸蔵電極H−(炭素子パラジウム)粉末塗布 水素吸蔵電極■−パラジウム析出 水素吸蔵電極J−−金析出 水素吸蔵電極に一ニッケル蒸着 水素吸蔵電極り一銅蒸着 水素吸蔵電極M−一孔性の導電性層なしこのようにして
得た水素吸蔵電極A−Mは、その後密閉形ニッケルー水
素二次電池として単2形で評価を行なった。
Hydrogen storage electrode A--electroless copper steel plating element storage electrode B--electrolytic nickel plating hydrogen storage electrode C
- Electrolytic copper plated hydrogen storage electrode - Electrolytic nickel plated hydrogen storage electrode E - Electric (steel + nickel) plated hydrogen storage electrode F - Nickel powder coated hydrogen storage electrode G - Carbon powder coated hydrogen storage electrode H - (carbon palladium) Powder-coated hydrogen storage electrode■ - Palladium-deposited hydrogen storage electrode J--Gold-precipitated hydrogen storage electrode, one nickel vapor-deposited hydrogen storage electrode, copper vapor-deposited hydrogen storage electrode M-no porous conductive layer thus obtained The hydrogen storage electrodes A-M were then evaluated as AA sealed nickel-metal hydride secondary batteries.

すなわち、先の水素吸蔵電極を各々幅3.9cm長さ2
6CIlに裁断し、リード板を所定の2カ所にスポット
溶接により取り付けた。相手径としては、公知の発泡式
ニッケル極を選び、幅3.9cm+長さ22cnとして
用いた。この場合もリード板を2カ所取り付けた。
In other words, the hydrogen storage electrodes are each 3.9 cm wide and 2 cm long.
It was cut into 6CIl pieces, and lead plates were attached to two predetermined locations by spot welding. As the mating diameter, a known foamed nickel electrode was selected and used with a width of 3.9 cm and a length of 22 cm. In this case as well, lead plates were attached at two locations.

セパレータとしては、ボリアミド不織布、電解液として
は、比重1.20の苛性カリ水溶液に水酸化リチウムを
20 g/e溶解して用いた。公称容量は3.OAhで
ある。
A polyamide nonwoven fabric was used as the separator, and 20 g/e of lithium hydroxide was dissolved in a caustic potassium aqueous solution having a specific gravity of 1.20 as the electrolyte. The nominal capacity is 3. It is OAh.

これらの電池を通常の充放電サイクル試験によって20
℃で評価した結果を説明する。
These batteries were subjected to a normal charge/discharge cycle test for 20
The results of evaluation at °C will be explained.

充電は、0.2C(5時間率)で130%まで、放電は
0.5C(2時間率)で終止電圧0゜8Vとし充放電サ
イクルを10サイクルまで繰り返し、その後は、充電を
、C)、5C(2時間率)で150%まで、放電は1.
0C(1時間率)で同様の試験を行なった。
Charge at 0.2C (5 hour rate) to 130%, discharge at 0.5C (2 hour rate) with a final voltage of 0°8V, repeat the charge/discharge cycle up to 10 cycles, then continue charging.C) , 5C (2 hour rate) to 150%, discharge 1.
A similar test was conducted at 0C (1 hour rate).

その結果の中から、単2形密閉形ニッケルー水素二次電
池を構成するのに使用した水素吸蔵電極A−Mと20サ
イクル、200サイクルでの充放電サイクル試験での電
池放電容量と中間放電電位の関係をまとめて表に示す。
Among the results, the hydrogen storage electrode A-M used to construct the AA sealed type nickel-metal hydride secondary battery, the battery discharge capacity and intermediate discharge potential in the charge/discharge cycle test at 20 cycles and 200 cycles. The relationship is summarized in the table.

表から明らかな様に、多孔性の導電性層を形成しない水
素吸蔵電極Mは、200サイクルで電池の放電容量は公
称容量の3.OAhを大幅に下回り、また中間放電電位
の低下も大きかった。さらにこの電池の充電時の電池内
圧を調べたところ、最高内圧は10kg/c−以上を示
し、ガス吸収能力も不足していることが認められた。
As is clear from the table, the hydrogen storage electrode M that does not form a porous conductive layer has a battery discharge capacity of 3.0% of the nominal capacity after 200 cycles. It was significantly lower than OAh, and the intermediate discharge potential also decreased significantly. Furthermore, when the internal pressure of this battery during charging was examined, the maximum internal pressure was 10 kg/c- or more, and it was recognized that the gas absorption capacity was insufficient.

表 これに対して水素吸蔵電極A−Lで構成した電池は、放
電容量、中間放電電位とも非常に優れており、従来の発
泡金属、金属繊維などの金属三次元多孔体に水素吸蔵合
金を結着剤などと共に充填した方式で得た電極と比較し
ても全く遜色のない性能を有していた。またこれらの電
池の充電時の電池内圧は、最高時でもいずれも3.2〜
8.7kg/−であり高いガス吸収能力を有していたが
、その中でも多孔性の導電性層を銅もしくはニッケルの
電気メッキまたは無電解メッキにより形成したものが特
に優れていた。
In contrast, a battery constructed with hydrogen storage electrodes A-L has excellent discharge capacity and intermediate discharge potential, and has a hydrogen storage alloy bonded to a conventional three-dimensional porous metal body such as metal foam or metal fiber. Even when compared with electrodes obtained by filling with adhesive etc., the performance was comparable. In addition, the internal pressure of these batteries during charging is 3.2~3.2 at the maximum.
It had a high gas absorption capacity of 8.7 kg/-, and among them, those in which the porous conductive layer was formed by copper or nickel electroplating or electroless plating were particularly excellent.

そして多孔性の導電性層としては銅、ニッケル、炭素、
パラジウム、白金などが適当であり、多孔性の導電性層
の形成には、メッキ法、塗布法、吹き付は法、蒸着法、
スパッター法などが適応できる。この中で最も有効な方
法としては、多孔性の導電性層を特に鋼もしくはニッケ
ルの電−気メッキまたは無電解メッキにより形成する。
The porous conductive layer includes copper, nickel, carbon,
Palladium, platinum, etc. are suitable, and plating methods, coating methods, spraying methods, vapor deposition methods, etc. are suitable for forming the porous conductive layer.
Sputtering method etc. can be applied. The most effective method is to form the porous conductive layer by electroplating or electroless plating, especially of steel or nickel.

発明の効果 以上のように本発明の水素吸蔵電極の製造方法では、密
閉電池を構成した場合、本来の特徴である製造が簡単で
低価格化が図れることとともに、導電性やガス吸収能の
向上が図られ合わせて電極強度も向上することから、高
容量で長寿命、かつ急速充放電特性に優れた電池を提供
できる。
Effects of the Invention As described above, in the method for manufacturing a hydrogen storage electrode of the present invention, when a sealed battery is configured, the original feature of manufacturing is simple and low cost can be achieved, and the conductivity and gas absorption capacity are improved. Since the electrode strength is also improved, it is possible to provide a battery with high capacity, long life, and excellent rapid charging and discharging characteristics.

Claims (3)

【特許請求の範囲】[Claims] (1)水素吸蔵合金粉末結着剤およびペースト粘度調整
剤を予め混練してペーストとし、前記ペーストをパンチ
ングメタル、エキスパンドメタルや金属ネットなどの金
属二次元多孔体に塗着し、乾燥して得た極板の表面に、
さらに多孔性の導電性層を形成したことを特徴とする水
素吸蔵電極の製造方法。
(1) A hydrogen-absorbing alloy powder binder and a paste viscosity modifier are kneaded in advance to form a paste, and the paste is applied to a two-dimensional porous metal body such as punched metal, expanded metal, or metal net, and dried to obtain a paste. on the surface of the electrode plate,
A method for producing a hydrogen storage electrode, further comprising forming a porous conductive layer.
(2)多孔性の導電性層を銅、ニッケル、炭素、パラジ
ウム、白金の少なくとも1種により形成したことを特徴
とする特許請求の範囲第1項記載の水素吸蔵電極の製造
方法。
(2) The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the porous conductive layer is made of at least one of copper, nickel, carbon, palladium, and platinum.
(3)多孔性の導電性層を銅もしくはニッケルの電気メ
ッキまたは無電解メッキにより形成したことを特徴とす
る特許請求の範囲第1項記載の水素吸蔵電極の製造方法
(3) The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the porous conductive layer is formed by electroplating or electroless plating of copper or nickel.
JP62100368A 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0763006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100368A JPH0763006B2 (en) 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100368A JPH0763006B2 (en) 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63266767A true JPS63266767A (en) 1988-11-02
JPH0763006B2 JPH0763006B2 (en) 1995-07-05

Family

ID=14272112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100368A Expired - Lifetime JPH0763006B2 (en) 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0763006B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234200A (en) * 1994-02-24 1995-09-05 Nec Corp Flat metal electrode for qualification electrode and its manufacturing method
WO1995027315A1 (en) * 1994-03-31 1995-10-12 Motorola, Inc. Improved metal hydride hydrogen storage electrodes
EP0975034A1 (en) * 1997-05-19 2000-01-26 Sociedad Espanola Del Acumulador Tudor, S.A. Procedure for the manufacture of negative electrodes for alkaline storage batteries and electrode so obtained
US6579645B2 (en) 2000-03-28 2003-06-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for electrode, hydrogen absorbing alloy electrode and alkaline storage battery
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method
JP4552238B2 (en) * 1999-05-11 2010-09-29 株式会社Gsユアサ Method for producing hydrogen storage alloy electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234200A (en) * 1994-02-24 1995-09-05 Nec Corp Flat metal electrode for qualification electrode and its manufacturing method
WO1995027315A1 (en) * 1994-03-31 1995-10-12 Motorola, Inc. Improved metal hydride hydrogen storage electrodes
EP0975034A1 (en) * 1997-05-19 2000-01-26 Sociedad Espanola Del Acumulador Tudor, S.A. Procedure for the manufacture of negative electrodes for alkaline storage batteries and electrode so obtained
JP4552238B2 (en) * 1999-05-11 2010-09-29 株式会社Gsユアサ Method for producing hydrogen storage alloy electrode
US6579645B2 (en) 2000-03-28 2003-06-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for electrode, hydrogen absorbing alloy electrode and alkaline storage battery
JP2006196280A (en) * 2005-01-13 2006-07-27 Univ Of Fukui Composite sheet body and its manufacturing method
JP4644801B2 (en) * 2005-01-13 2011-03-09 国立大学法人福井大学 Composite sheet body and method for producing the same

Also Published As

Publication number Publication date
JPH0763006B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JPS63266767A (en) Manufacture of hydrogen storage electrode
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JPS63266768A (en) Manufacture of hydrogen storage electrode
JPH0756799B2 (en) Method for producing hydrogen storage alloy negative electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH02236955A (en) Nickel oxide-hydrogen alkaline storage battery
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2002075343A (en) Hydrogen storage alloy electrode and secondary battery using the electrode
JPH04264362A (en) Hydrogen storage alloy electrode
JPH06215764A (en) Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode
JPH07130369A (en) Battery electrode
JPH0690923B2 (en) Manufacturing method of hydrogen storage electrode
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JPH0448551A (en) Manufacture of hydrogen storage alloy electrode for battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term