JPH0763006B2 - Method for manufacturing hydrogen storage electrode - Google Patents

Method for manufacturing hydrogen storage electrode

Info

Publication number
JPH0763006B2
JPH0763006B2 JP62100368A JP10036887A JPH0763006B2 JP H0763006 B2 JPH0763006 B2 JP H0763006B2 JP 62100368 A JP62100368 A JP 62100368A JP 10036887 A JP10036887 A JP 10036887A JP H0763006 B2 JPH0763006 B2 JP H0763006B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
metal
electrode
storage electrode
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62100368A
Other languages
Japanese (ja)
Other versions
JPS63266767A (en
Inventor
良夫 森脇
勉 岩城
明美 新谷
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62100368A priority Critical patent/JPH0763006B2/en
Publication of JPS63266767A publication Critical patent/JPS63266767A/en
Publication of JPH0763006B2 publication Critical patent/JPH0763006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
を用いる水素吸蔵電極の製造方法に関するもので、無公
害で高エネルギー密度のアルカリ蓄電池が提供できるも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage electrode using a hydrogen storage alloy that reversibly stores and releases hydrogen. Can be provided.

従来の技術 各種の電源のうち二次電池としては、鉛蓄電池とアルカ
リ蓄電池とが広く使われている。
2. Description of the Related Art Lead storage batteries and alkaline storage batteries are widely used as secondary batteries among various power sources.

アルカリ蓄電池のうち、最も広く使われているのは、ニ
ッケル−カドミウム蓄電池である。この電池は性能的に
かなり優れているが、依然として高エネルギー密度や無
公害への期待が高く新しい電池系が検討されている。
The most widely used alkaline storage battery is the nickel-cadmium storage battery. Although this battery is considerably superior in performance, there are still high expectations for high energy density and pollution-free, and new battery systems are being investigated.

例えばこの中で負極のカドミウムに代わって亜鉛が取り
上げられてきたが、よく知られているように寿命に問題
があるので広い実用化には至っていない。
For example, zinc has been picked up in place of cadmium in the negative electrode, but it is not widely used because it has a problem in life as well known.

最近注目されてきたのは水素を可逆的に吸蔵・放出する
水素吸蔵合金を負極に用いるアルカリ蓄電池である。こ
の場合は、カドミウムや亜鉛などと同じ取扱いで電池を
構成でき、実際の放電可能な容量密度をカドミウムより
大きくできることや亜鉛のようなデンドライトの形成や
電極の形状変化などがないことから、高エネルギー密度
で長寿命、無公害のアルカリ蓄電池として有望である。
Recently, attention has been paid to alkaline storage batteries that use a hydrogen storage alloy that reversibly stores and releases hydrogen as the negative electrode. In this case, a battery can be constructed in the same manner as cadmium and zinc, and the actual dischargeable capacity density can be made larger than that of cadmium, and there is no formation of dendrites such as zinc and electrode shape changes. It is a promising alkaline storage battery with high density, long life and no pollution.

この水素吸蔵合金を用いた水素吸蔵電極の製造方法とし
ては、従来から水素吸蔵合金を焼結して電極を得る焼結
式や発泡金属、金属繊維などの金属三次元多孔体に水素
吸蔵合金を結着剤などと共に充填した方式がよく用いら
れていた。
As a method for producing a hydrogen storage electrode using this hydrogen storage alloy, conventionally, a hydrogen storage alloy is applied to a three-dimensional metal porous body such as a sintered type or a foamed metal or metal fiber in which a hydrogen storage alloy is sintered to obtain an electrode. The method of filling with a binder and the like was often used.

しかし、これらの方式による水素吸蔵電極の製造方法
は、材料コストが高くなることや製造工程が複雑である
ことなどの問題があった。
However, the method for manufacturing a hydrogen storage electrode by these methods has problems such as high material cost and complicated manufacturing process.

一方、水素吸蔵合金粉末と結着剤などを予め混練しペー
ストとし、これをパンチングメタルやエキスパンドメタ
ル、金属ネットなどの金属二次元多孔体に塗着しその後
乾燥して得るいわゆるペースト式水素吸蔵電極の製造方
法は、製造方法が簡単であり、金属三次元多孔体のよう
な高価な材料を使用しないことから安価な電極が得られ
るという特徴があった。
On the other hand, a so-called paste-type hydrogen storage electrode obtained by previously kneading a hydrogen storage alloy powder and a binder etc. into a paste, applying this to a metal two-dimensional porous body such as punching metal, expanded metal or metal net and then drying. The manufacturing method of (3) is characterized in that the manufacturing method is simple and an inexpensive electrode can be obtained because an expensive material such as a metal three-dimensional porous body is not used.

発明が解決しようとする問題点 この水素吸蔵合金粉末と結着剤などを予め混練しペース
トとし、これをパンチングメタルやエキスパンドメタ
ル、金属ネットなどの金属二次元多孔体に塗着しその後
乾燥して得るペースト式水素吸蔵電極の製造方法は、本
来製造方法が簡単で安価な電極が得られるという特徴が
あるが、この方法で得た電極を用いてアルカリ蓄電池を
構成すると次のような問題がありこれまであまり用いら
れていなかった。
Problems to be Solved by the Invention This hydrogen storage alloy powder and a binder or the like are kneaded in advance to form a paste, which is applied to a metal two-dimensional porous body such as punching metal, expanded metal or metal net, and then dried. The method for producing the paste-type hydrogen storage electrode to be obtained is characterized in that an electrode that is originally simple and inexpensive can be obtained, but if an alkaline storage battery is constructed using the electrode obtained by this method, there are the following problems. It was not used much until now.

すなわち、その主たる問題は、従来の水素吸蔵合金を焼
結して電極を得る焼結式や発泡金属、金属繊維などの金
属三次元多孔体に水素吸蔵合金を結着剤などと共に充填
した方式の電極と比較して電極の導電性が悪く、とくに
大電流充放電特性に難点があった。放電電圧の低下が大
きく実用上大きな問題点であった。
That is, the main problem is that the conventional hydrogen storage alloy is sintered to obtain an electrode by a sintering method or a method of filling a hydrogen storage alloy with a binder or the like into a metal three-dimensional porous body such as foam metal or metal fiber. The conductivity of the electrode was poorer than that of the electrode, and there was a problem in the large-current charge / discharge characteristics. The discharge voltage was greatly reduced, which was a serious problem in practical use.

本発明は、製造が簡単で低価格化が図れるパンチングメ
タルやエキスパンドメタル、金属ネットなどの金属二次
元多孔体を用いたペースト式水素吸蔵電極の導電性を改
善し、急速な充放電特性に優れた水素吸蔵合金電極の製
造方法を提供することを目的とする。
INDUSTRIAL APPLICABILITY The present invention improves the conductivity of a paste type hydrogen storage electrode using a metal two-dimensional porous body such as punching metal, expanded metal, metal net, etc., which is easy to manufacture and can be manufactured at low cost, and is excellent in rapid charge / discharge characteristics. Another object of the present invention is to provide a method for manufacturing a hydrogen storage alloy electrode.

問題点を解決するための手段 本発明は、水素吸蔵合金粉末と結着剤、ペースト粘度調
整剤などを予め混練しペーストとし、これをパンチング
メタルやエキスパンドメタル、金属ネットなどの金属二
次元多孔体に塗着しその後乾燥して得た極板の表面に、
さらに多孔性の導電性層を形成したことを特徴とする水
素吸蔵電極の製造方法である。
Means for Solving the Problems The present invention is to prepare a paste by kneading a hydrogen storage alloy powder, a binder, a paste viscosity modifier, etc. in advance, and use this as a punching metal, expanded metal, metal net or other two-dimensional porous body. On the surface of the electrode plate obtained by applying
Further, the present invention is a method for manufacturing a hydrogen storage electrode, characterized in that a porous conductive layer is formed.

作用 通常パンチングメタルやエキスパンドメタル、金属ネッ
トなどの金属二次元多孔体を芯材として用いたペースト
式水素吸蔵電極は、焼結式や発泡金属、金属繊維などの
金属三次元多孔体に水素吸蔵合金を結着剤などと共に充
填した方式の電極と比較して明らかに電極の導電性が悪
い。しかし、本発明はこの極板の表面に、さらに多孔性
の導電性層を形成することにより金属二次元多孔体を芯
材として用いたペースト式水素吸蔵電極でも電極の導電
性を向上することが可能になり、急速な充放電を行なっ
ても特性に優れたアルカリ蓄電池用の水素吸蔵合金電極
が得られる。またこれらの導電性層は多孔性であること
から、水素吸蔵合金粉末相互の電子伝導を向上させつ
つ、イオン伝導への悪影響は少ない。さらに水素吸蔵電
極で重要な特性である密閉形アルカリ蓄電池の過充電時
に発生する酸素ガスを吸収する能力が一段と向上し、充
放電サイクル寿命の向上が図られる。
Action Paste-type hydrogen storage electrodes that use a two-dimensional metal porous body such as punching metal, expanded metal, or metal net as a core material are hydrogen storage alloys on a three-dimensional metal porous body such as a sintered type, foam metal, or metal fiber. The conductivity of the electrode is obviously poor as compared with the electrode of the type in which is filled with a binder or the like. However, the present invention can improve the conductivity of the electrode even in a paste type hydrogen storage electrode using a metal two-dimensional porous body as a core material by further forming a porous conductive layer on the surface of this electrode plate. It is possible to obtain a hydrogen storage alloy electrode for an alkaline storage battery, which has excellent characteristics even if it is charged and discharged rapidly. Further, since these conductive layers are porous, the electron conduction between the hydrogen storage alloy powders is improved and the ionic conduction is not adversely affected. Furthermore, the ability to absorb oxygen gas generated during overcharge of the sealed alkaline storage battery, which is an important characteristic of the hydrogen storage electrode, is further improved, and the charge / discharge cycle life is improved.

実施例 以下、本発明の実施例について説明する。Examples Examples of the present invention will be described below.

水素吸蔵合金として市販のMm(ミッシュメタル),Ni,C
o,Mn,Alの各原材料を一定の組成比に秤量してアルゴン
アーク溶解炉によってMmNi3.8Co0.5Mn0.410.3合金を
製造した。ついでこの合金を公知の方法に従って真空熱
処理炉で熱処理しその後、この合金試料を400メッシュ
以下の粒径になるように粉砕した。
Commercially available Mm (Misch metal), Ni, C as hydrogen storage alloy
Raw materials of o, Mn, and Al were weighed to have a constant composition ratio, and an MmNi 3.8 Co 0.5 Mn 0.4 A 10.3 alloy was manufactured by an argon arc melting furnace. Then, this alloy was heat-treated in a vacuum heat treatment furnace according to a known method, and then this alloy sample was pulverized to have a particle size of 400 mesh or less.

このようにして得られた水素吸蔵合金にポリビニルアル
コールの5%(重量)のエチレングリコール溶液、重量
比で0.8%のポリエチレン微粉末、同じく0.5%の塩化ビ
ニル−アクリロニトリル短繊維を加えて混練しペースト
とした。このペーストを厚さ0.15mm、孔径1.8mm、開孔
度50%の鉄製でニッケルメッキを施したパンチングメタ
ル板に塗着し、0.6mm幅のスリットを通して平滑化し、
その後120℃で1時間乾燥して水素吸蔵電極を得た。
A 5% (by weight) solution of polyvinyl alcohol in ethylene glycol, 0.8% by weight of polyethylene fine powder and 0.5% of vinyl chloride-acrylonitrile short fibers were added to the hydrogen storage alloy thus obtained, and the mixture was kneaded to form a paste. And This paste is applied to a nickel-plated punching metal plate made of iron with a thickness of 0.15 mm, a hole diameter of 1.8 mm, and a porosity of 50%, smoothed through a slit of 0.6 mm width,
Then, it was dried at 120 ° C. for 1 hour to obtain a hydrogen storage electrode.

このようにして作った水素吸蔵電極を、さらに加圧プレ
ス処理を行なった後、水素吸蔵電極の表面に以下の様に
水素吸蔵電極A〜Lとして各種の多孔性の導電性層を形
成した。また比較のために多孔性の導電性層を形成しな
い水素吸蔵電極Mを加えた。
The hydrogen storage electrode thus produced was further subjected to pressure pressing, and then various porous conductive layers were formed on the surface of the hydrogen storage electrode as the hydrogen storage electrodes A to L as described below. For comparison, a hydrogen storage electrode M that does not form a porous conductive layer was added.

水素吸蔵電極A−無電解銅メッキ 水素吸蔵電極B−無電解ニッケルメッキ 水素吸蔵電極C−電気銅メッキ 水素吸蔵電極D−電気ニッケルメッキ 水素吸蔵電極E−電気(銅+ニッケル)メッキ 水素吸蔵電極F−ニッケル粉末塗布 水素吸蔵電極G−炭素粉末塗布 水素吸蔵電極H−(炭素+パラジウム)粉末塗布 水素吸蔵電極I−パラジウム析出 水素吸蔵電極J−白金析出 水素吸蔵電極K−ニッケル蒸着 水素吸蔵電極L−銅蒸着 水素吸蔵電極M−多孔性の導電性層なし このようにして得た水素吸蔵電極A〜Mは、その後密閉
形ニッケル−水素二次電池として単2形で評価を行なっ
た。
Hydrogen storage electrode A-electroless copper plating Hydrogen storage electrode B-electroless nickel plating Hydrogen storage electrode C-electrolytic copper plating Hydrogen storage electrode D-electrical nickel plating Hydrogen storage electrode E-electrical (copper + nickel) plating Hydrogen storage electrode F -Nickel powder coating Hydrogen storage electrode G-Carbon powder coating Hydrogen storage electrode H- (Carbon + Palladium) powder coating Hydrogen storage electrode I-Palladium deposition Hydrogen storage electrode J-Platinum deposition Hydrogen storage electrode K-Nickel deposition Hydrogen storage electrode L- Copper Vapor Deposition Hydrogen Storage Electrode M-Without Porous Conductive Layer The hydrogen storage electrodes A-M thus obtained were subsequently evaluated as a sealed nickel-hydrogen secondary battery in the C2 form.

すなわち、先の水素吸蔵電極を各々幅3.9cm長さ26cmに
裁断し、リード板を所定の2カ所にスポット溶接により
取り付けた。相手極としては、公知の発泡式ニッケル極
を選び、幅3.9cm長さ22cmとして用いた。この場合もリ
ード板を2カ所取り付けた。
That is, each of the above-mentioned hydrogen storage electrodes was cut into a width of 3.9 cm and a length of 26 cm, and lead plates were attached to predetermined two places by spot welding. A well-known foamed nickel electrode was selected as a counter electrode and used with a width of 3.9 cm and a length of 22 cm. Also in this case, the lead plates were attached at two places.

セパレータとしては、ポリアミド不織布、電解液として
は、比重1.20の苛性カリ水溶液に水酸化リチウムを20g/
溶解して用いた。公称容量は3.0Ahである。
The separator is a polyamide nonwoven fabric, and the electrolyte is 20 g of lithium hydroxide in a caustic potash aqueous solution with a specific gravity of 1.20.
It was dissolved and used. The nominal capacity is 3.0 Ah.

これらの電池を通常の充放電サイクル試験によって20℃
で評価した結果を説明する。
These batteries are tested at 20 ° C by a normal charge / discharge cycle test.
The results evaluated in Section 2 will be explained.

充電は、0.2C(5時間率)で130%まで、放電は0.5C
(2時間率)で終止電圧0.8Vとし充放電サイクルを10サ
イクルまで繰り返し、その後は、充電を、0.5C(2時間
率)で150%まで、放電は1.0C(1時間率)で同様の試
験を行なった。
Charge up to 130% at 0.2C (5-hour rate), discharge at 0.5C
(2 hour rate) with a final voltage of 0.8 V and repeating the charge / discharge cycle up to 10 cycles, and then charging at 0.5 C (2 hour rate) up to 150% and discharging at 1.0 C (1 hour rate). The test was conducted.

その結果の中から、単2形密閉形ニッケル−水素二次電
池を構成するのに使用した水素吸蔵電極A〜Mと20サイ
クル、200サイクルでの充放電サイクル試験での電池放
電容量と中間放電電位の関係をまとめて表に示す。
From the results, the hydrogen discharge electrodes A to M used to construct the AA sealed nickel-hydrogen secondary battery and the battery discharge capacity and the intermediate discharge in the charge / discharge cycle test at 20 cycles and 200 cycles. The potential relationships are summarized in the table.

表から明らかな様に、多孔性の導電性層を形成しない水
素吸蔵電極Mは、200サイクルで電池の放電容量は公称
容量の3.0Ahを大幅に下回り、また中間放電電位の低下
も大きかった。さらにこの電池の充電時の電池内圧を調
べたところ、最高内圧は10kg/cm2以上を示し、ガス吸収
能力も不足していることが認められた。
As is clear from the table, the discharge capacity of the hydrogen storage electrode M, which does not form the porous conductive layer, was significantly lower than the nominal capacity of 3.0 Ah at 200 cycles, and the intermediate discharge potential was also greatly reduced. Furthermore, when the battery internal pressure during charging of this battery was examined, it was found that the maximum internal pressure was 10 kg / cm 2 or more, and the gas absorption capacity was insufficient.

これに対して水素吸蔵電極A〜Lで構成した電池は、放
電容量、中間放電電位とも非常に優れており、従来の発
泡金属、金属繊維などの金属三次元多孔体に水素吸蔵合
金を結着剤などと共に充填した方式で得た電極と比較し
ても全く遜色のない性能を有していた。またこれらの電
池の充電時の電池内圧は、最高時でもいずれも3.2〜8.7
kg/cm2であり高いガス吸収能力を有していたが、その中
でも多孔性の導電性層を銅もしくはニッケルの電気メッ
キまたは無電解メッキにより形成したものが特に優れて
いた。
On the other hand, the battery composed of the hydrogen storage electrodes A to L is very excellent in both the discharge capacity and the intermediate discharge potential, and the hydrogen storage alloy is bonded to the conventional metal three-dimensional porous body such as foam metal or metal fiber. It had a performance comparable to that of the electrode obtained by the method of filling with the agent. The internal pressure of these batteries when charging is 3.2 to 8.7 at the maximum.
It had a high gas absorption capacity of kg / cm 2 , and among them, the one in which the porous conductive layer was formed by electroplating or electroless plating of copper or nickel was particularly excellent.

そして多孔性の導電性層としては銅、ニッケル、炭素、
パラジウム、白金などが適当であり、多孔性の導電性層
の形成には、メッキ法、塗布法、吹き付け法、蒸着法、
スパッター法などが適応できる。この中で最も有効な方
法としては、多孔性の導電性層を特に銅もしくはニッケ
ルの電気メッキまたは無電解メッキにより形成する。
And as the porous conductive layer, copper, nickel, carbon,
Palladium, platinum, etc. are suitable, and for forming the porous conductive layer, plating method, coating method, spraying method, vapor deposition method,
The spatter method etc. can be applied. Of these, the most effective method is to form the porous conductive layer by electroplating or electroless plating of copper or nickel.

発明の効果 以上のように本発明の水素吸蔵電極の製造方法では、密
閉電池を構成した場合、本来の特徴である製造が簡単で
低価格化が図れることとともに、導電性やガス吸収能の
向上が図られ合わせて電極強度も向上することから、高
容量で長寿命、かつ急速充放電特性に優れた電池を提供
できる。
As described above, in the method for producing a hydrogen storage electrode of the present invention, when a sealed battery is configured, the original characteristic of the production is simple and the cost can be reduced, and the conductivity and the gas absorption capacity can be improved. Since the electrode strength is also improved, it is possible to provide a battery having a high capacity, a long life, and an excellent rapid charge / discharge characteristic.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金粉末結着剤およびペースト粘
度調整剤を予め混練してペーストとし、前記ペーストを
パンチングメタル、エキスパンドメタルや金属ネットな
どの金属二次元多孔体に塗着し、乾燥して得た極板の表
面に、さらに多孔性の導電性層を形成したことを特徴と
する水素吸蔵電極の製造方法。
1. A hydrogen storage alloy powder binder and a paste viscosity modifier are kneaded in advance to form a paste, and the paste is applied to a metal two-dimensional porous body such as punching metal, expanded metal or metal net, and dried. A method for producing a hydrogen storage electrode, characterized in that a porous conductive layer is further formed on the surface of the obtained electrode plate.
【請求項2】多孔性の導電性層を銅、ニッケル、炭素、
パラジウム、白金の少なくとも1種により形成したこと
を特徴とする特許請求の範囲第1項記載の水素吸蔵電極
の製造方法。
2. A porous conductive layer comprising copper, nickel, carbon,
The method for producing a hydrogen storage electrode according to claim 1, wherein the hydrogen storage electrode is formed of at least one of palladium and platinum.
【請求項3】多孔性の導電性層を銅もしくはニッケルの
電気メッキまたは無電解メッキにより形成したことを特
徴とする特許請求の範囲第1項記載の水素吸蔵電極の製
造方法。
3. The method for producing a hydrogen storage electrode according to claim 1, wherein the porous conductive layer is formed by electroplating or electroless plating of copper or nickel.
JP62100368A 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0763006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100368A JPH0763006B2 (en) 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100368A JPH0763006B2 (en) 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63266767A JPS63266767A (en) 1988-11-02
JPH0763006B2 true JPH0763006B2 (en) 1995-07-05

Family

ID=14272112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100368A Expired - Lifetime JPH0763006B2 (en) 1987-04-23 1987-04-23 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0763006B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870401B2 (en) * 1994-02-24 1999-03-17 日本電気株式会社 Plate metal electrode for modified electrode and method of manufacturing the same
WO1995027315A1 (en) * 1994-03-31 1995-10-12 Motorola, Inc. Improved metal hydride hydrogen storage electrodes
ES2130996B1 (en) * 1997-05-19 2000-03-01 Tudor Acumulador PROCEDURE FOR THE MANUFACTURE OF NEGATIVE ELECTRODES FOR ALKALINE ELECTRIC ACCUMULATORS AND ELECTRODE OBTAINED.
JP4552238B2 (en) * 1999-05-11 2010-09-29 株式会社Gsユアサ Method for producing hydrogen storage alloy electrode
US6579645B2 (en) 2000-03-28 2003-06-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for electrode, hydrogen absorbing alloy electrode and alkaline storage battery
JP4644801B2 (en) * 2005-01-13 2011-03-09 国立大学法人福井大学 Composite sheet body and method for producing the same

Also Published As

Publication number Publication date
JPS63266767A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
JP2575840B2 (en) Dry manufacturing method of hydrogen storage alloy electrode
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JPH0763006B2 (en) Method for manufacturing hydrogen storage electrode
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP3114402B2 (en) Manufacturing method of alkaline storage battery
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS63266768A (en) Manufacture of hydrogen storage electrode
JPH04301045A (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08329955A (en) Paste electrode and alkaline secondary battery
JPH04264362A (en) Hydrogen storage alloy electrode
JPH1021904A (en) Alkaline storage battery
JPH03289041A (en) Hydrogen storage alloy electrode
JPH09115512A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term