JP2000090918A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP2000090918A
JP2000090918A JP10257220A JP25722098A JP2000090918A JP 2000090918 A JP2000090918 A JP 2000090918A JP 10257220 A JP10257220 A JP 10257220A JP 25722098 A JP25722098 A JP 25722098A JP 2000090918 A JP2000090918 A JP 2000090918A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
plating
resin
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10257220A
Other languages
Japanese (ja)
Other versions
JP3429684B2 (en
Inventor
Tadashi Kiyokawa
忠 清川
Hajime Kiyokawa
肇 清川
Masayuki Takashima
正之 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiyokawa Plating Industries Co Ltd
Original Assignee
Kiyokawa Plating Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiyokawa Plating Industries Co Ltd filed Critical Kiyokawa Plating Industries Co Ltd
Priority to JP25722098A priority Critical patent/JP3429684B2/en
Publication of JP2000090918A publication Critical patent/JP2000090918A/en
Application granted granted Critical
Publication of JP3429684B2 publication Critical patent/JP3429684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the corrosion resistance while providing the water repellency in a surface of an electrode, and accelerate the initial activation by forming a metal plating coat including the fine grains of the thermoplastic resin in a surface of the electrode. SOLUTION: A pressurized compact of the hydrogen storage alloy grains 2 is integrally connected onto a collector metal 1, and this electrode is plated in the plating liquid so as to form a plating coat 3. Quantity of the plating coat 3 is set at 20 wt.% or less in relation to the quantity of the hydrogen storage alloy, and the plating coat is selected from among Ni, Cu, Co, Ni-P, Ni-B, Co-P, Co-B, and the thermoplastic resin fine grains selected from among polytetrafluoroethylene, polyethylene, an ABS resin, polyamide and polysulfone is contained. Depth (a) of the plating between the alloy grains of the electrode is set at 100 μm or less, and plating thickness (b) coating each alloy grains of an electrode surface layer is set at 1-10 μm. Rise of the internal pressure is thereby restricted, and a battery having a long lifetime is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を用
いた水素吸蔵電極に関するものである。
The present invention relates to a hydrogen storage electrode using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、水素吸蔵合金を負極材料として用
いるニッケル−水素化物電池は、携帯電話やノートパソ
コンなど小型ポータブル機器用から電気自動車用まで多
機種の電源として使用されている。従来、ニッケル−水
素化物電池をはじめアルカリ蓄電池の寿命は、正極の電
極膨潤によるセパレータドライアウトが原因であった
が、正極活物質の改良により電極膨潤は抑制されてきて
いる。一方、負極では、水素吸蔵合金は希土類金属やA
l、Mnなどの溶出による腐食や正極から発生する酸素
による酸化を受け、劣化するという問題がある。その結
果、放電容量が減少して水素ガスが発生しやすくなると
ともに、正極から発生する酸素ガスを効率よく吸収でき
ないので電池内圧が上昇し、安全弁作動によりセパレー
タドライアウトが起こってサイクル寿命に至る。すなわ
ち、正極活物質の改良が進むにつれて寿命劣化の原因は
正極から負極に移ってきているのである。
2. Description of the Related Art In recent years, nickel-hydride batteries using a hydrogen storage alloy as a negative electrode material have been used as various types of power sources from small portable devices such as mobile phones and notebook computers to electric vehicles. Conventionally, the life of alkaline storage batteries such as nickel-hydride batteries has been caused by separator dryout due to electrode swelling of the positive electrode. However, electrode swelling has been suppressed by improving the positive electrode active material. On the other hand, in the negative electrode, the hydrogen storage alloy is a rare earth metal or A
There is a problem in that it is deteriorated by corrosion due to elution of l, Mn and the like and oxidation by oxygen generated from the positive electrode. As a result, the discharge capacity is reduced and hydrogen gas is easily generated, and the oxygen gas generated from the positive electrode cannot be absorbed efficiently, so that the internal pressure of the battery increases, and the safety valve operates to cause separator dryout, leading to cycle life. That is, as the improvement of the positive electrode active material progresses, the cause of the life degradation shifts from the positive electrode to the negative electrode.

【0003】電池の寿命特性を改良するには、電池の内
圧上昇を抑制することが必要であり、そのためにはガス
吸収性がよく、耐食性が優れる負極用水素吸蔵合金が望
まれている。内圧上昇を抑制するには、電極表面に撥水
剤を塗布し、三相界面を形成してガス吸収を促進する方
法が、また耐食性向上には、合金の組成や組織の制御な
どがそれぞれ行われていた。一方、負極の初期活性化
は、精密に設計された正・負極の容量バランスを維持す
るために重要である。通常、負極容量は正極容量の1.
4〜1.8倍程度大きく見積もってあり、さらに充電リ
ザーブ、放電リザーブとしてバランスを保っている。こ
れは過充電、過放電に耐えるための設計であるが、これ
が崩れると充電末期あるいは放電末期に酸素ガスまたは
水素ガスが発生し、電池内圧上昇の原因になる。すなわ
ち、負極の早期活性化特性も内圧上昇抑制に重要な特性
の一つといえる。従来は、早期活性化のために、酸処
理、アルカリ処理などの表面処理を行ったり、導電剤を
混合したりするなどの方法が行われていた。
[0003] In order to improve the life characteristics of a battery, it is necessary to suppress an increase in the internal pressure of the battery. For that purpose, a hydrogen storage alloy for a negative electrode having good gas absorption and excellent corrosion resistance has been desired. To suppress the rise in internal pressure, a method of applying a water repellent to the electrode surface to form a three-phase interface to promote gas absorption, and to improve corrosion resistance, control of the composition and structure of the alloy, etc. are carried out. Had been On the other hand, the initial activation of the negative electrode is important to maintain the capacity balance between the precisely designed positive and negative electrodes. Normally, the negative electrode capacity is 1.
It is estimated to be approximately 4 to 1.8 times larger, and the balance is maintained as a charge reserve and a discharge reserve. This is designed to withstand overcharging and overdischarging, but if it breaks down, oxygen gas or hydrogen gas is generated at the end of charging or at the end of discharging, causing an increase in battery internal pressure. That is, it can be said that the early activation characteristic of the negative electrode is also one of the important characteristics for suppressing the internal pressure rise. Conventionally, for early activation, methods such as surface treatment such as acid treatment and alkali treatment, and mixing of a conductive agent have been performed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みてなされたものであり、表面に撥水性を兼ね備
え、耐食性に優れ、初期活性化が早い水素吸蔵電極を提
供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a hydrogen storage electrode having a water repellent surface, excellent corrosion resistance, and quick initial activation. It is.

【0005】[0005]

【課題を解決するための手段】本発明の水素吸蔵電極
は、水素を可逆的に吸蔵放出しうる水素吸蔵合金を用い
る電極であって、電極表面に熱可塑性樹脂の微粒子を包
含した金属メッキ被膜を有することを特徴とする。ここ
において、前記金属メッキ被膜は、水素の拡散を許容す
る多孔質被膜であることが好ましい。また、前記金属メ
ッキ被膜の量は、水素吸蔵合金量に対し20重量%以下
であることが好ましい。
The hydrogen storage electrode of the present invention is an electrode using a hydrogen storage alloy capable of storing and releasing hydrogen reversibly, and is a metal plating film containing fine particles of a thermoplastic resin on the surface of the electrode. It is characterized by having. Here, the metal plating film is preferably a porous film that allows diffusion of hydrogen. Further, the amount of the metal plating film is preferably 20% by weight or less based on the amount of the hydrogen storage alloy.

【0006】[0006]

【発明の実施の形態】本発明の水素吸蔵電極は、水素吸
蔵合金粉末を集電体に加圧成形した電極や、多孔性の支
持体に水素吸蔵合金粉末を充填した電極などの水素吸蔵
電極本体の表面に、熱可塑性樹脂の微粒子を包含した金
属メッキ被膜を形成することによって作製することがで
きる。本発明による水素吸蔵電極は、電極表面が金属メ
ッキ被膜で被覆され、そのメッキ被膜により導電性ネッ
トワークが形成されているので、水素吸蔵合金粒子間の
接触抵抗が低減される。従って、反応効率が向上し、早
期活性化が可能となる。また、メッキ被膜により、水素
吸蔵合金粒子が直接電解液に接触する面積が少なくな
り、さらに、メッキ被膜に包含される熱可塑性樹脂粒子
による撥水性のため、固−液界面がさらに少なくなる。
これらによって、電極の耐食性が向上する。このように
本発明の水素吸蔵電極は、初期活性化が早くできるとと
もに耐食性に優れ、メッキ被膜に包含する樹脂に撥水性
のものを用いることにより撥水性を兼ね備えるから、内
圧上昇が抑制され、長寿命の電池を提供することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The hydrogen storage electrode of the present invention is a hydrogen storage electrode such as an electrode obtained by pressing a hydrogen storage alloy powder into a current collector or an electrode having a porous support filled with the hydrogen storage alloy powder. It can be produced by forming a metal plating film containing fine particles of a thermoplastic resin on the surface of the main body. In the hydrogen storage electrode according to the present invention, the electrode surface is coated with a metal plating film, and a conductive network is formed by the plating film, so that the contact resistance between the hydrogen storage alloy particles is reduced. Therefore, the reaction efficiency is improved, and early activation is possible. In addition, the plating film reduces the area where the hydrogen storage alloy particles are in direct contact with the electrolytic solution, and further reduces the solid-liquid interface due to the water repellency of the thermoplastic resin particles included in the plating film.
These improve the corrosion resistance of the electrode. As described above, the hydrogen storage electrode of the present invention has a quick initial activation, is excellent in corrosion resistance, and has water repellency by using a water repellent resin included in the plating film. Lifetime batteries can be provided.

【0007】電極表面に形成するメッキ被膜の金属とし
ては、Ni、Cu、Co、Ni−P、Ni−B、Co−
P、及びCo−Bからなる群より選ばれる素材が好まし
い。メッキ量が多量になると、電極の単位重量当たりの
エネルギー密度が低下するから、できる限りメッキ量を
低減し、しかも良好な導電性ネットワークを形成するの
が好ましい。図1に本発明による水素吸蔵電極の構成を
模式的に表す。1は集電体金属を表している。この集電
体上に、水素吸蔵合金粒子2の加圧成形体が一体に結合
している。この電極をメッキ液中でメッキすることによ
り被膜3が形成される。ここで、aは電極の合金粒子間
に入り込むようにして合金にメッキされた、電極におけ
るメッキ深さを表し、bは電極表面層の個々の合金粒子
に被覆されたメッキ厚さを表す。メッキ被膜の量は、水
素吸蔵合金の20重量%が上限であり、aで表されるメ
ッキ深さは100μm以下、bで表されるメッキ厚みが
1〜10μmが好ましく、メッキ量は水素吸蔵合金の
0.1〜4重量%相当、メッキ深さは10μm以下がよ
り好ましい。金属メッキ被膜に包含させる可塑性樹脂
は、ポリテトラフルオロエチレン、ポリエチレン、AB
S樹脂、ポリアミド、ポリスルフォン、AS樹脂、ポリ
スチレン、塩化ビニルデン樹脂、ポリフェニレンエーテ
ル、メチルペンテン樹脂、及びメタクリル酸樹脂からな
る群より選ばれるものが好ましい。なかでも撥水性の点
から、ポリテトラフルオロエチレンが最も好ましい。
[0007] The metals of the plating film formed on the electrode surface include Ni, Cu, Co, Ni-P, Ni-B and Co-.
A material selected from the group consisting of P and Co-B is preferable. When the plating amount is large, the energy density per unit weight of the electrode is reduced. Therefore, it is preferable to reduce the plating amount as much as possible and to form a good conductive network. FIG. 1 schematically shows the configuration of a hydrogen storage electrode according to the present invention. 1 represents a collector metal. A pressure-formed body of the hydrogen storage alloy particles 2 is integrally bonded to the current collector. The coating 3 is formed by plating this electrode in a plating solution. Here, a represents the plating depth of the electrode plated on the alloy so as to penetrate between the alloy particles of the electrode, and b represents the plating thickness of the individual alloy particles on the electrode surface layer. The upper limit of the amount of the plating film is 20% by weight of the hydrogen storage alloy, the plating depth represented by a is preferably 100 μm or less, the plating thickness represented by b is preferably 1 to 10 μm, and the plating amount is 0.1 to 4% by weight, and the plating depth is more preferably 10 μm or less. The plastic resin to be included in the metal plating film is polytetrafluoroethylene, polyethylene, AB
Those selected from the group consisting of S resin, polyamide, polysulfone, AS resin, polystyrene, vinyldene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic acid resin are preferable. Among them, polytetrafluoroethylene is most preferable from the viewpoint of water repellency.

【0008】[0008]

【実施例】以下、実施例により本発明を詳細に説明す
る。 実施例1 まず、MmNi3.6Co0.75Mn0.35Al0.3(Mmは希
土類元素の混合物であるミッシュメタルを意味する)の
組成になるように各金属を所定量秤量し、不活性雰囲気
下、高周波誘導溶解炉で合金インゴットを作製し、10
00℃で熱処理して合金試料を得た。この合金インゴッ
トを粒径75μm以下に機械的に粉砕して水素吸蔵合金
粉末試料とした。合金粉末試料は、このほかに単ロール
法やガスアトマイズ法など急冷法により作製したもので
もよい。この合金粉末試料に増粘剤を加えてペースト状
にし、3次元発泡ニッケル基盤に充填し、乾燥、プレス
した。この電極をポリテトラフルオロエチレン(PTF
Eで表す)(分子量約7500〜10500)の平均粒
径約5μmの粒子を含む以下のニッケルメッキ液中で複
合メッキした。
The present invention will be described below in detail with reference to examples. Example 1 First, a predetermined amount of each metal was weighed so as to have a composition of MmNi 3.6 Co 0.75 Mn 0.35 Al 0.3 (Mm means a misch metal which is a mixture of rare earth elements), and high frequency induction melting was performed under an inert atmosphere. Make alloy ingot in furnace
Heat treatment was performed at 00 ° C. to obtain an alloy sample. This alloy ingot was mechanically pulverized to a particle size of 75 μm or less to obtain a hydrogen storage alloy powder sample. The alloy powder sample may be one prepared by a quenching method such as a single roll method or a gas atomizing method. A thickener was added to the alloy powder sample to form a paste, which was filled in a three-dimensional nickel foam substrate, dried and pressed. This electrode is made of polytetrafluoroethylene (PTF
Composite plating was performed in the following nickel plating solution containing particles having an average particle size of about 5 μm (represented by E) (molecular weight: about 7,500 to 10,500).

【0009】 Ni(NH2SO32・4H2O 350(g/l) NiCl2・6H2O 45(g/l) H3BO3 40(g/l) 界面活性剤 1.0(g/l) PTFE 100(g/l) pH 4.0 陰極電流密度 10A/dm2 温度 50℃ 陽極 Ni板 撹拌 循環 メッキ量 水素吸蔵合金の2wt%相当Ni (NH 2 SO 3 ) 2 .4H 2 O 350 (g / l) NiCl 2 .6H 2 O 45 (g / l) H 3 BO 3 40 (g / l) Surfactant 1.0 (g / l) g / l) PTFE 100 (g / l) pH 4.0 Cathode current density 10 A / dm 2 Temperature 50 ° C. Anode Ni plate Stirring Circulation Plating amount Equivalent to 2 wt% of hydrogen storage alloy

【0010】目的量のNiを電極表面にメッキし、水
洗、乾燥して電極試料を得た。この電極を電極Aとす
る。本発明の電極は、上記のような電解メッキの他に無
電解メッキによっても作製することが可能である。ま
た、前記合金粉末試料に増粘剤を加えてペースト状に
し、SBR結着剤を混合してパンチングメタル基盤に塗
着し、乾燥、プレスした。この電極を電極Aと同じメッ
キ条件で複合メッキして電極試料を得た。この電極を電
極Bとする。次に、電極A及び電極Bと同じ手法でそれ
ぞれペースト式電極を作製し、これらの電極をPTFE
を含まないメッキ液を用いること以外は電極Aと同じ条
件でニッケルメッキを行った。このようにして得た電極
をそれぞれ比較電極C及び比較電極Dとする。さらに、
電極A及び電極Bと同じ手法でそれぞれペースト式電極
を作製し、これらの電極をメッキをしないでそれぞれ比
較電極E及び比較電極Fとする。
[0010] A desired amount of Ni was plated on the electrode surface, washed with water and dried to obtain an electrode sample. This electrode is referred to as electrode A. The electrode of the present invention can be produced by electroless plating in addition to the electrolytic plating as described above. Further, a thickener was added to the alloy powder sample to form a paste, and an SBR binder was mixed, applied to a punched metal substrate, dried and pressed. This electrode was composite-plated under the same plating conditions as electrode A to obtain an electrode sample. This electrode is referred to as electrode B. Next, paste-type electrodes were prepared in the same manner as the electrodes A and B, and these electrodes were made of PTFE.
Nickel plating was performed under the same conditions as for the electrode A except that a plating solution containing no Ni was used. The electrodes thus obtained are referred to as a comparative electrode C and a comparative electrode D, respectively. further,
Paste electrodes are prepared in the same manner as the electrodes A and B, and these electrodes are used as comparative electrodes E and F, respectively, without plating.

【0011】以上のようにして作製した電極を相手極の
水酸化ニッケル電極とともに6モル/lの水酸化カリウ
ム水溶液中に浸漬して開放型電池を作製した。そして、
周囲温度20℃において、0.1Cで150%充電し、
0.2Cで酸化水銀電極基準で−0.6Vまで放電する
充放電試験を行った。図2に充放電初期の試験結果を示
す。図2から明らかなとおり、メッキ処理をしていない
比較電極E及び比較電極Fは、初期活性化が遅く、最大
容量に到達するまで10サイクル以上を要し、最大容量
も小さい。これに対して、メッキ処理をした本発明の電
極A、電極B、比較電極C及び比較電極Dは、初期活性
化が早く2サイクル目で最大容量に達し、最大容量も大
きい。メッキ処理電極が早期活性化できるのは、電極表
面がメッキ層で被覆されて導電性ネットワークを形成
し、その結果、合金粒子間の接触抵抗が低減され、反応
効率が増大したためである。
The thus prepared electrode was immersed in a 6 mol / l aqueous solution of potassium hydroxide together with a nickel hydroxide electrode of a counter electrode to prepare an open-type battery. And
At an ambient temperature of 20 ° C., the battery is charged 150% at 0.1 C.
A charge / discharge test was performed at 0.2 C to discharge to -0.6 V based on a mercury oxide electrode. FIG. 2 shows the test results at the beginning of charging and discharging. As is clear from FIG. 2, the comparative electrode E and the comparative electrode F, which have not been plated, have a slow initial activation, require 10 cycles or more to reach the maximum capacity, and have a small maximum capacity. On the other hand, the electrode A, the electrode B, the comparative electrode C, and the comparative electrode D of the present invention, which have been subjected to the plating process, have a high initial capacity and reach the maximum capacity in the second cycle, and have a large maximum capacity. The reason why the plating electrode can be activated early is that the electrode surface is covered with a plating layer to form a conductive network, and as a result, the contact resistance between the alloy particles is reduced and the reaction efficiency is increased.

【0012】次に、1.0Cで150%充電し、1.0
Cで酸化水銀電極基準で−0.6Vまで放電する充放電
を繰り返し、放電容量の変化を調べる寿命試験をした。
その結果を図3に示す。図3から明らかなとおり、本発
明の電極A及び電極Bは、比較電極C及び比較電極Dに
比べ、サイクル寿命が約30%増大した。サイクル寿命
と耐食性の関係を調べるために、それぞれの電極を80
℃の6モル/l水酸化カリウム水溶液100ml中に3
日間浸漬し、溶出するコバルト、アルミニウムおよびマ
ンガンの各イオン濃度を測定した。その結果を図4に示
す。図4から明らかなとおり、本発明の電極A及び電極
Bからの溶出イオンは、比較電極のそれよりも少なく、
耐食性が優れていることがわかる。ニッケルメッキによ
り水素吸蔵合金と電解液の界面が直接接触する面積が少
なくなったこと、メッキ被膜に包含されているPTFE
の撥水効果により、固−液界面がさらに少なくなったこ
とが耐食性向上に起因していると考えられる。
Next, the battery is charged 150% at 1.0 C,
A charge / discharge cycle of discharging at -C to -0.6 V with respect to a mercury oxide electrode was repeated, and a life test was conducted to examine a change in discharge capacity.
The result is shown in FIG. As is apparent from FIG. 3, the cycle life of the electrodes A and B of the present invention was increased by about 30% as compared with the comparative electrodes C and D. To examine the relationship between cycle life and corrosion resistance, each electrode was
In 100 ml of 6 mol / l aqueous potassium hydroxide solution at
After immersion for days, the concentrations of the leached cobalt, aluminum and manganese ions were measured. FIG. 4 shows the results. As is clear from FIG. 4, the ions eluted from the electrodes A and B of the present invention are smaller than those of the comparative electrode,
It can be seen that the corrosion resistance is excellent. Nickel plating reduces the area of direct contact between the interface between the hydrogen storage alloy and the electrolyte, and the PTFE contained in the plating film
It is considered that the fact that the solid-liquid interface was further reduced due to the water repellent effect was due to the improvement in corrosion resistance.

【0013】次に、前記電極A、電極B、電極C、電極
D、電極E及び電極Fのそれぞれとペースト式水酸化ニ
ッケル電極を用いて公称容量1300mAhのAAサイ
ズ密閉型電池を作製した。それぞれ、電池A、電池B、
電池C、電池D、電池E及び電池Fとする。これらの電
池を活性化させた後、周囲温度20℃において、1.0
Cで200%充電し、充電量にともなう電池の内圧の変
化を測定した。その結果を図5に示す。図5から明らか
なとおり、本発明の電池A及び電池Bのみが低い内圧特
性を示した。電極表面の複合メッキ中に含まれるPTF
Eの撥水効果により三相界面が形成され、過充電時に正
極から発生する酸素ガス吸収効率が上昇したためであ
る。このような三相界面の形成は、酸素ガス吸収だけで
なく、電池内部に蓄積した水素ガスの固−気反応により
吸収反応も促進するため、大幅な内圧上昇の抑制が可能
となる。次に、前記各電池A〜Fについて、周囲温度2
0℃において、1.0Cで120%充電し、1.0Cで
1.0Vまで放電するサイクル寿命試験をした。その結
果を図6に示す。寿命試験の条件は、一般にサイクル寿
命は、内圧が安全弁作動圧にまで達し、電池内部のガス
とともに気化した電解液も外部に漏出し、電解液枯渇に
よる電池内部抵抗の増大が原因で起こる。本発明の電池
においては、負極が三相界面を形成して酸素ガス吸収を
促進することができ、かつ、水素吸蔵合金の耐食性も兼
ね備えているので、内圧上昇を大きく抑制することがで
きた。
Next, an AA size sealed battery having a nominal capacity of 1300 mAh was manufactured using each of the electrodes A, B, C, D, E and F and a paste-type nickel hydroxide electrode. Battery A, Battery B, respectively
It is assumed that battery C, battery D, battery E, and battery F. After activating these batteries, at ambient temperature 20 ° C., 1.0
The battery was charged 200% with C, and the change in the internal pressure of the battery with the amount of charge was measured. The result is shown in FIG. As is clear from FIG. 5, only the battery A and the battery B of the present invention exhibited low internal pressure characteristics. PTF contained in the composite plating on the electrode surface
This is because a three-phase interface is formed due to the water-repellent effect of E, and the efficiency of absorbing oxygen gas generated from the positive electrode during overcharge is increased. The formation of such a three-phase interface not only absorbs oxygen gas but also promotes an absorption reaction by a solid-gas reaction of hydrogen gas accumulated inside the battery, so that a significant increase in internal pressure can be suppressed. Next, for each of the batteries A to F, the ambient temperature 2
At 0 ° C., a cycle life test was conducted in which the battery was charged at 1.0 C at 120% and discharged at 1.0 C to 1.0 V. FIG. 6 shows the result. The life test conditions are generally such that the cycle life is caused by the internal pressure reaching the safety valve operating pressure, the gas inside the battery and the vaporized electrolyte leaking out, and the internal resistance of the battery increases due to the exhaustion of the electrolyte. In the battery of the present invention, the negative electrode forms a three-phase interface to promote oxygen gas absorption, and also has the corrosion resistance of the hydrogen storage alloy, so that the internal pressure rise can be largely suppressed.

【0014】[0014]

【発明の効果】上記のように本発明の水素吸蔵電極は、
その表面に撥水性を兼ね備え、耐食性に優れ、初期活性
化を早くすることができるので、内圧上昇を抑制し、長
寿命の電池を提供することができる。
As described above, the hydrogen storage electrode of the present invention is
Since the surface has both water repellency, excellent corrosion resistance, and quick initial activation, a rise in internal pressure can be suppressed, and a long-life battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電極の構成例を示す断面模式図で
ある。
FIG. 1 is a schematic sectional view showing a configuration example of an electrode according to the present invention.

【図2】本発明の実施例における各種電極の充放電初期
の放電容量とサイクル数との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the discharge capacity of various electrodes at the initial stage of charge and discharge and the number of cycles in an example of the present invention.

【図3】各種電極の寿命試験の結果を示す図である。FIG. 3 is a diagram showing the results of a life test of various electrodes.

【図4】各種電極を高温のアルカリに浸漬した際の溶出
イオンの定量分析結果を比較した図である。
FIG. 4 is a diagram comparing the results of quantitative analysis of ions eluted when various electrodes are immersed in a high-temperature alkali.

【図5】各種電極を用いた電池の充電時間と内圧との関
係を示す図である。
FIG. 5 is a diagram showing a relationship between a charging time of a battery using various electrodes and an internal pressure.

【図6】同電池の寿命試験の結果を示す図である。FIG. 6 is a view showing a result of a life test of the battery.

【符号の説明】[Explanation of symbols]

1 集電体 2 水素吸蔵合金粒子 3 メッキ被膜 a メッキ深さ b メッキ厚み DESCRIPTION OF SYMBOLS 1 Current collector 2 Hydrogen storage alloy particle 3 Plating film a Plating depth b Plating thickness

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA04 BB02 BB32 BB34 BC01 BC04 BC05 BD02 BD04 5H016 AA01 BB08 CC03 CC04 EE01 EE09 HH01 HH13  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA04 BB02 BB32 BB34 BC01 BC04 BC05 BD02 BD04 5H016 AA01 BB08 CC03 CC04 EE01 EE09 HH01 HH13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素を可逆的に吸蔵放出しうる水素吸蔵
合金を用いる電極であって、電極表面に熱可塑性樹脂の
微粒子を包含した金属メッキ被膜を有する水素吸蔵電
極。
1. An electrode using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, wherein the electrode has a metal plating film containing fine particles of a thermoplastic resin on the surface of the electrode.
【請求項2】 前記金属メッキ被膜が水素の拡散を許容
する多孔質被膜である請求項1記載の水素吸蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein the metal plating film is a porous film that allows diffusion of hydrogen.
【請求項3】 前記金属メッキ被膜の量が水素吸蔵合金
量の20重量%以下で、かつ電極表面からのメッキ深さ
が100μm以下である請求項1記載の水素吸蔵電極。
3. The hydrogen storage electrode according to claim 1, wherein the amount of the metal plating film is 20% by weight or less of the amount of the hydrogen storage alloy, and the plating depth from the electrode surface is 100 μm or less.
【請求項4】 前記金属メッキ被膜がNi、Cu、C
o、Ni−P、Ni−B、Co−P、及びCo−Bから
なる群より選ばれる請求項1記載の水素吸蔵電極。
4. The method according to claim 1, wherein the metal plating film is Ni, Cu, C
The hydrogen storage electrode according to claim 1, wherein the hydrogen storage electrode is selected from the group consisting of o, Ni-P, Ni-B, Co-P, and Co-B.
【請求項5】 前記可塑性樹脂が、ポリテトラフルオロ
エチレン、ポリエチレン、ABS樹脂、ポリアミド、ポ
リスルフォン、AS樹脂、ポリスチレン、塩化ビニルデ
ン樹脂、ポリフェニレンエーテル、メチルペンテン樹
脂、及びメタクリル酸樹脂からなる群より選ばれる請求
項1記載の水素吸蔵電極。
5. The plastic resin is selected from the group consisting of polytetrafluoroethylene, polyethylene, ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinyldene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic acid resin. The hydrogen storage electrode according to claim 1, wherein
JP25722098A 1998-09-10 1998-09-10 Hydrogen storage electrode Expired - Fee Related JP3429684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25722098A JP3429684B2 (en) 1998-09-10 1998-09-10 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25722098A JP3429684B2 (en) 1998-09-10 1998-09-10 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JP2000090918A true JP2000090918A (en) 2000-03-31
JP3429684B2 JP3429684B2 (en) 2003-07-22

Family

ID=17303343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25722098A Expired - Fee Related JP3429684B2 (en) 1998-09-10 1998-09-10 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3429684B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531872A (en) * 2001-06-29 2004-10-14 オヴォニック バッテリー カンパニー インコーポレイテッド Hydrogen storage battery, nickel positive electrode, positive electrode active material, and manufacturing method
US20180123126A1 (en) * 2016-10-27 2018-05-03 Toyota Jidosha Kabushiki Kaisha Anode material and battery
CN110085808A (en) * 2019-04-24 2019-08-02 四川大学 A kind of contactless hydrogen-storage alloy cathode of electrolyte and nickel-metal hydride battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531872A (en) * 2001-06-29 2004-10-14 オヴォニック バッテリー カンパニー インコーポレイテッド Hydrogen storage battery, nickel positive electrode, positive electrode active material, and manufacturing method
US20180123126A1 (en) * 2016-10-27 2018-05-03 Toyota Jidosha Kabushiki Kaisha Anode material and battery
CN110085808A (en) * 2019-04-24 2019-08-02 四川大学 A kind of contactless hydrogen-storage alloy cathode of electrolyte and nickel-metal hydride battery

Also Published As

Publication number Publication date
JP3429684B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US20090047576A1 (en) Nickel Metal-Hydride Battery and Method of Manufacturing the Same
EP1100141A1 (en) Nickel-metal hydride storage battery
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP3429684B2 (en) Hydrogen storage electrode
JPH0855618A (en) Sealed alkaline storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP3209071B2 (en) Alkaline storage battery
JP3472489B2 (en) Hydrogen storage electrode and method for producing the same
JP2987873B2 (en) Alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP3267156B2 (en) Nickel hydride rechargeable battery
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JP3118812B2 (en) Alkaline storage battery
JP3499923B2 (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries
JP3316687B2 (en) Nickel-metal hydride storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP2589750B2 (en) Nickel cadmium storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JP3555473B2 (en) Method for producing positive electrode for alkaline secondary battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150516

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees