JP3499923B2 - Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries - Google Patents

Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries

Info

Publication number
JP3499923B2
JP3499923B2 JP18637594A JP18637594A JP3499923B2 JP 3499923 B2 JP3499923 B2 JP 3499923B2 JP 18637594 A JP18637594 A JP 18637594A JP 18637594 A JP18637594 A JP 18637594A JP 3499923 B2 JP3499923 B2 JP 3499923B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
metal
battery
hydride alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18637594A
Other languages
Japanese (ja)
Other versions
JPH0831416A (en
Inventor
克彦 新山
義人 近野
礼造 前田
光造 野上
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18637594A priority Critical patent/JP3499923B2/en
Publication of JPH0831416A publication Critical patent/JPH0831416A/en
Application granted granted Critical
Publication of JP3499923B2 publication Critical patent/JP3499923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属−水素化物アルカ
リ蓄電池用の水素吸蔵合金電極に関する。
FIELD OF THE INVENTION The present invention relates to a hydrogen storage alloy electrode for a metal-hydride alkaline storage battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
水素吸蔵合金電極を負極として使用した金属−水素化物
アルカリ蓄電池が、ニッケル−カドミウム蓄電池、鉛蓄
電池等の従前の蓄電池と比べて、軽量で、高容量化の可
能性があるなどの理由から、注目されている。
2. Description of the Related Art In recent years,
Metal-hydride alkaline storage batteries using a hydrogen storage alloy electrode as a negative electrode are lighter than conventional storage batteries such as nickel-cadmium storage batteries and lead storage batteries, and have the potential for higher capacity. Has been done.

【0003】而して、水素吸蔵合金電極用の水素吸蔵合
金として、LaNi5 、LaNi4Co、LaNi4
u、LaNi4.8 Fe0.2 などの他、これらの合金中の
LaをMm(ミッシュメタル)で置換したものなど、種
々の希土類系水素吸蔵合金が提案されている。
As a hydrogen storage alloy for hydrogen storage alloy electrodes, LaNi 5 , LaNi 4 Co and LaNi 4 C are used.
In addition to u, LaNi 4.8 Fe 0.2, and the like, various rare earth-based hydrogen storage alloys have been proposed, such as those in which La in these alloys is replaced with Mm (Misch metal).

【0004】しかしながら、これらの水素吸蔵合金をそ
のまま電極材料として使用した金属−水素化物アルカリ
蓄電池には、水素吸蔵合金の耐食性が良くないことに起
因して充放電サイクルを繰り返すうちに水素吸蔵合金の
表面が酸化劣化するので、電池寿命が総じて短いという
問題があった。
However, in the metal-hydride alkaline storage battery using these hydrogen storage alloys as they are as an electrode material, the hydrogen storage alloys are not easily corroded due to the poor corrosion resistance of the hydrogen storage alloys. Since the surface is oxidized and deteriorated, there is a problem that the battery life is generally short.

【0005】水素吸蔵合金の酸化劣化を防止して電池寿
命の長期化を図るべく、水素吸蔵合金の表面を無電解ニ
ッケルめっき皮膜(めっき皮膜中のリン含有率:8重量
%)で被覆することが先に提案されている(特開昭61
−163569号公報)。
In order to prevent oxidative deterioration of the hydrogen storage alloy and prolong battery life, the surface of the hydrogen storage alloy is coated with an electroless nickel plating film (phosphorus content in the plating film: 8% by weight). Has been previously proposed (Japanese Patent Laid-Open No. Sho 61-61).
No. 163569).

【0006】しかしながら、このようなリン含有率の低
い無電解ニッケルめっき皮膜で水素吸蔵合金の粒子表面
を被覆すると、このめっき皮膜が結晶性が高いアンポー
ラスな緻密な皮膜であることから、活性化処理の際に割
れが生じにくくなり活性化処理に長時間を要するように
なる。また、このように水素吸蔵合金の粒子表面を緻密
なニッケル皮膜で被覆すると、過充電時に発生する酸素
ガスの吸収が遅くなるため、電池内圧が上昇する。さら
に、発生した酸素ガスにより水素吸蔵合金が酸化される
ので、電池寿命もさほど長くならない。
However, when the surface of the particles of the hydrogen storage alloy is coated with such an electroless nickel plating film having a low phosphorus content, the plating film is an unporous and dense film having high crystallinity, so that activation is activated. Cracks are less likely to occur during the treatment, and the activation treatment requires a long time. Further, when the surface of the particles of the hydrogen storage alloy is covered with the dense nickel film in this manner, the absorption of oxygen gas generated during overcharge is delayed, and the internal pressure of the battery rises. Furthermore, the hydrogen storage alloy is oxidized by the generated oxygen gas, so that the battery life is not significantly extended.

【0007】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、電池寿命が長く、
電池内圧が上昇しにくく、しかも活性化処理を短時間で
終えることが可能なアルカリ蓄電池を得るための水素吸
蔵合金電極を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a long battery life,
Another object of the present invention is to provide a hydrogen storage alloy electrode for obtaining an alkaline storage battery in which the internal pressure of the battery is unlikely to rise and the activation treatment can be completed in a short time.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る金属−水素化物アルカリ蓄電池用の水素
吸蔵合金電極(以下、「本発明電極」と称する。)は、
無電解ニッケルめっき層を粒子表面に形成した水素吸蔵
合金を電極材料として使用した水素吸蔵合金電極であっ
て、前記無電解ニッケルめっき層がリンを11〜14重
量%含有するポーラスな被膜である。また、本発明に係
る金属−水素化物アルカリ蓄電池用の水素吸蔵合金粒子
は、リンを11〜14重量%含有したポーラスな被膜で
ある無電解ニッケルめっき層が粒子表面に形成されたも
のである。
A hydrogen storage alloy electrode for a metal-hydride alkaline storage battery according to the present invention (hereinafter, referred to as "the electrode of the present invention") for achieving the above object is provided.
A hydrogen storage alloy electrode using a hydrogen storage alloy having an electroless nickel plating layer formed on a particle surface as an electrode material, wherein the electroless nickel plating layer is a porous coating film containing 11 to 14% by weight of phosphorus. The hydrogen storage alloy particles for a metal-hydride alkaline storage battery according to the present invention are porous films containing 11 to 14% by weight of phosphorus.
A certain electroless nickel plating layer is formed on the particle surface.

【0009】本発明における無電解ニッケルめっき層の
リン含有率が11〜14重量%に規制されるのは、次の
理由によるものである。すなわち、リン含有率が11重
量%未満の場合は、めっき皮膜の結晶性が高過ぎて、ア
ンポーラスな緻密な皮膜となるため、初期の活性化に長
時間を要する。したがって、装飾めっきとしては一般的
であるリン含有率8〜10重量%程度の無電解ニッケル
めっき層を形成したものは、本発明から除外される。一
方、リン含有率が14重量%を越えた場合は、めっき皮
膜が脆くなり水素吸蔵合金から剥離し易くなるため、無
電解ニッケルめっきしたことによる水素吸蔵合金の酸化
劣化防止の効果が低下する。
The phosphorus content of the electroless nickel plating layer in the present invention is regulated to 11 to 14% by weight for the following reason. That is, when the phosphorus content is less than 11% by weight, the crystallinity of the plating film is too high and the film becomes an unporous and dense film, which requires a long time for initial activation. Therefore, those having an electroless nickel plating layer having a phosphorus content of about 8 to 10% by weight, which is a general decorative plating, are excluded from the present invention. On the other hand, when the phosphorus content exceeds 14% by weight, the plating film becomes brittle and easily peels off from the hydrogen storage alloy, so that the effect of preventing oxidative deterioration of the hydrogen storage alloy due to electroless nickel plating decreases.

【0010】無電解ニッケルめっきは、例えば次亜リン
酸ナトリウムを還元剤として使用する従来公知の無電解
ニッケルめっき浴を用いて行うことができるが、本発明
における如くリン含有率のかなり高い無電解ニッケルめ
っき層を水素吸蔵合金の粒子表面に形成するためには、
通常の無電解ニッケルめっきに比べて、めっき浴に添加
する次亜リン酸ナトリウムの量を多くする必要がある。
The electroless nickel plating can be carried out, for example, using a conventionally known electroless nickel plating bath using sodium hypophosphite as a reducing agent. However, as in the present invention, the electroless nickel plating having a considerably high phosphorus content is used. In order to form a nickel plating layer on the surface of particles of a hydrogen storage alloy,
It is necessary to increase the amount of sodium hypophosphite added to the plating bath, as compared with ordinary electroless nickel plating.

【0011】[0011]

【作用】特定量のリンを含有したニッケルめっき層が水
素吸蔵合金の粒子表面に形成されているので、充放電サ
イクルを繰り返しても水素吸蔵合金が酸化劣化しにく
い。また、上記ニッケルめっき層は、通常の無電解ニッ
ケルめっきに比べてリン含有率が11〜14重量%と高
い、すなわち結晶性の低いポーラスな皮膜であるので、
ガス吸収特性に優れるとともに、電解液と水素吸蔵合金
との反応(充放電反応)が阻害されにくい。このため、
活性化処理を短時間で終えることが可能になるととも
に、過充電時に電池内圧が上昇しにくくなる。
Since the nickel plating layer containing a specific amount of phosphorus is formed on the surface of the particles of the hydrogen storage alloy, the hydrogen storage alloy is less likely to be oxidized and deteriorated even if the charge / discharge cycle is repeated. In addition, the nickel plating layer is a porous film having a high phosphorus content of 11 to 14% by weight as compared with ordinary electroless nickel plating, that is, a low crystallinity,
The gas absorption characteristics are excellent, and the reaction (charge / discharge reaction) between the electrolytic solution and the hydrogen storage alloy is not easily hindered. For this reason,
The activation process can be completed in a short time, and the internal pressure of the battery is less likely to rise during overcharge.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0013】〔水素吸蔵合金電極の作製〕水素吸蔵合金
(MmNi3.2 Co1.0 Al0.6 Mn0.2 )に表1に示
すめっき浴を用いて無電解ニッケルめっきし、粒子表面
にリン含有率の異なる無電解ニッケルめっき層を形成し
た15種の水素吸蔵合金を作製した。表2に、各水素吸
蔵合金の無電解ニッケルめっき層のリン含有率を示す。
リン含有率はICP(Inductively Coupled Plasma Ato
mic Emission Spectrometry ;誘導結合プラズマ発光分
光分析法)により定量したものである。
[Preparation of Hydrogen Storage Alloy Electrode] A hydrogen storage alloy (MmNi 3.2 Co 1.0 Al 0.6 Mn 0.2 ) was electrolessly nickel-plated using the plating bath shown in Table 1 and electroless with different phosphorus contents on the particle surface. Fifteen types of hydrogen storage alloys having nickel plated layers were prepared. Table 2 shows the phosphorus content of the electroless nickel plating layer of each hydrogen storage alloy.
The phosphorus content is ICP (Inductively Coupled Plasma Ato)
mic Emission Spectrometry).

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】次いで、上記の各水素吸蔵合金100重量
部に、結着剤としてのPEO(ポリエチレンオキシド)
1.0重量部と少量の水を加え、均一に混合してペース
トを調製し、このペーストをニッケルめっきしたパンチ
ングメタル(集電体)の両面に均一に塗布し、乾燥し、
圧延して、水素吸蔵合金電極を作製した。
Next, PEO (polyethylene oxide) as a binder was added to 100 parts by weight of each of the above hydrogen storage alloys.
1.0 part by weight and a small amount of water were added and mixed uniformly to prepare a paste. The paste was evenly applied to both sides of a nickel-plated punching metal (current collector) and dried,
It rolled and produced the hydrogen storage alloy electrode.

【0017】〔ニッケル−水素化物アルカリ蓄電池の組
立〕負極としての上記水素吸蔵合金電極と、正極として
の公知の焼結式ニッケル極とを、耐アルカリ性のセパレ
ータを介して巻回して渦巻電極体を作製し、この渦巻電
極体を電池缶内に挿入し、30重量%水酸化カリウム水
溶液を電池缶内に注液し、封口して、容量1000mA
hの円筒密閉型のニッケル−水素化物アルカリ蓄電池A
〜Oを組み立てた。また、比較のために、別途、無電解
ニッケルめっきしなかった水素吸蔵合金を用いて同様に
ニッケル−水素化物アルカリ蓄電池Xを組み立てた。
[Assembly of Nickel-Hydride Alkaline Storage Battery] The hydrogen storage alloy electrode as a negative electrode and a known sintered nickel electrode as a positive electrode are wound around an alkali-resistant separator to form a spiral electrode body. This swirl electrode body was inserted into a battery can, and a 30 wt% potassium hydroxide aqueous solution was poured into the battery can and sealed to obtain a capacity of 1000 mA.
h Cylindrical sealed nickel-hydride alkaline storage battery A
Assembled O. For comparison, a nickel-hydride alkaline storage battery X was similarly assembled separately using a hydrogen storage alloy that was not electrolessly nickel-plated.

【0018】〔充放電サイクル試験〕各ニッケル−水素
化物アルカリ蓄電池を0.1Cで15時間充電した後、
0.1Cで電池電圧が1Vになるまで放電して、それぞ
れの放電容量を測定した。結果を先の表2及び図1に示
す。図1は、各蓄電池の電池組立直後の充放電サイク
ル、すなわち1サイクル目の放電容量を、縦軸に1サイ
クル目の放電容量(mAh)をとり、また横軸に各蓄電
池に使用した水素吸蔵合金の無電解ニッケルめっき層の
リン含有率(%)をとって示したグラフである。
[Charge / Discharge Cycle Test] After charging each nickel-hydride alkaline storage battery at 0.1 C for 15 hours,
The battery was discharged at 0.1 C until the battery voltage became 1 V, and the discharge capacity of each was measured. The results are shown in Table 2 and FIG. 1 above. FIG. 1 shows the charge / discharge cycle immediately after battery assembly of each storage battery, that is, the discharge capacity of the first cycle, the vertical axis shows the discharge capacity (mAh) of the first cycle, and the horizontal axis shows the hydrogen absorption used for each storage battery. It is the graph which took and showed the phosphorus content rate (%) of the electroless nickel plating layer of an alloy.

【0019】表2及び図1に示すように、無電解ニッケ
ルめっき層のリン含有率が11〜14重量%の場合は、
電池組立直後の放電容量が630〜660mAhと大き
いが、リン含有率がこの範囲を外れると、同放電容量が
小さくなっている。リン含有率が11重量%未満と低い
場合に放電容量が小さくなっているのは、結晶性の高い
緻密な無電解ニッケル皮膜が水素吸蔵合金の粒子表面を
被覆するように形成されたため、水素吸蔵合金と電解液
との接触が不十分となり円滑な充放電反応が行われなか
ったからである。
As shown in Table 2 and FIG. 1, when the phosphorus content of the electroless nickel plating layer is 11 to 14% by weight,
The discharge capacity immediately after the battery was assembled was large at 630 to 660 mAh, but when the phosphorus content ratio was outside this range, the discharge capacity was small. When the phosphorus content is as low as less than 11% by weight, the discharge capacity becomes small because the dense electroless nickel film with high crystallinity was formed so as to cover the particle surface of the hydrogen storage alloy. This is because the contact between the alloy and the electrolytic solution was insufficient and a smooth charge / discharge reaction was not performed.

【0020】次いで、各ニッケル−水素化物アルカリ蓄
電池を、上記と同じ条件でさらに10回充放電して、負
極の活性化を行った。
Next, each nickel-hydride alkaline storage battery was further charged and discharged 10 times under the same conditions as above to activate the negative electrode.

【0021】活性化処理後のこれらの各ニッケル−水素
化物アルカリ蓄電池について、1Cで1.2時間充電し
た後、1Cで1Vまで放電する工程を1サイクルとする
充放電サイクル試験を行い、各蓄電池の電池寿命を調べ
た。電池寿命は、1C充放電での1サイクル目の容量の
60%以下に容量が低下した時点をその蓄電池の寿命と
判断して、それまでのサイクル数(回)で評価した。結
果を先の表2及び図2に示す。図2は、各蓄電池の電池
寿命を、縦軸に電池寿命(回)をとり、また横軸に各蓄
電池に使用した水素吸蔵合金の無電解ニッケルめっき層
のリン含有率(%)をとって示したグラフである。
After the activation treatment, each of these nickel-hydride alkaline storage batteries was subjected to a charge / discharge cycle test in which one cycle includes a process of charging at 1C for 1.2 hours and then discharging at 1C to 1V, and each storage battery was tested. I checked the battery life. The battery life was evaluated by the number of cycles (cycles) up to that point, when the time at which the capacity decreased to 60% or less of the capacity at the first cycle at 1 C charge / discharge was determined to be the life of the storage battery. The results are shown in Table 2 above and FIG. FIG. 2 shows the battery life of each storage battery, the battery life (times) on the vertical axis, and the phosphorus content (%) of the electroless nickel plating layer of the hydrogen storage alloy used on each storage battery on the horizontal axis. It is the graph shown.

【0022】表2及び図2に示すように、無電解ニッケ
ルめっき層のリン含有率が11〜14重量%の場合は、
電池寿命が800〜860回と長いが、リン含有率がこ
の範囲を外れると、電池寿命が短くなっている。リン含
有率が11重量%未満と低い場合に電池寿命が短くなっ
ているのは、水素吸蔵合金と電解液との接触が不十分と
なり円滑な充放電反応が行われなかったために、正極か
ら多量の酸素ガスが発生し、水素吸蔵合金がこの酸素ガ
スと反応して酸化劣化したからである。また、リン含有
率が14重量%を越えて高い場合に電池寿命が短くなっ
ているのは、無電解ニッケルめっき皮膜の一部が水素吸
蔵合金から剥離し、水素吸蔵合金の耐食性が低下したか
らである。
As shown in Table 2 and FIG. 2, when the phosphorus content of the electroless nickel plating layer is 11 to 14% by weight,
The battery life is as long as 800 to 860 times, but when the phosphorus content rate is out of this range, the battery life is shortened. When the phosphorus content is as low as less than 11% by weight, the battery life is shortened because the contact between the hydrogen storage alloy and the electrolyte was insufficient and a smooth charge / discharge reaction was not performed. Is generated, and the hydrogen storage alloy reacts with this oxygen gas and is oxidized and deteriorated. Further, when the phosphorus content is higher than 14% by weight, the battery life is shortened because a part of the electroless nickel plating film is peeled off from the hydrogen storage alloy and the corrosion resistance of the hydrogen storage alloy is lowered. Is.

【0023】〔過充電時の電池内圧試験〕各ニッケル−
水素化物アルカリ蓄電池を1Cで120%充電して、各
蓄電池の電池内圧を測定した。結果を先の表2及び図3
に示す。図3は、1Cで120%充電した後の各蓄電池
の電池内圧を、縦軸に電池内圧(気圧)をとり、また横
軸に各蓄電池に使用した水素吸蔵合金の無電解ニッケル
めっき層のリン含有率(重量%)をとって示したグラフ
である。
[Battery internal pressure test during overcharge] Nickel
A hydride alkaline storage battery was charged at 1 C for 120%, and the battery internal pressure of each storage battery was measured. The results are shown in Table 2 and FIG.
Shown in. Fig. 3 shows the battery internal pressure of each storage battery after 120% charging at 1C, the vertical axis shows the battery internal pressure (atmospheric pressure), and the horizontal axis shows the phosphorus of the electroless nickel plating layer of the hydrogen storage alloy used for each storage battery. It is the graph which took and showed the content rate (weight%).

【0024】表2及び図3に示すように、リン含有率が
11〜14重量%の場合は、過充電後の電池内圧が4.
0〜6.5気圧と低い。これは、リン含有率の高い、す
なわち結晶性の低いポーラスなめっき皮膜ほどガス吸収
の触媒として有効に働くためと考えられる。リン含有率
が14重量%を越えた場合に逆に電池内圧が高くなって
いるのは、リン含有率が高すぎたためにめっき皮膜が脆
くなり、無電解ニッケルめっき皮膜の一部が水素吸蔵合
金から剥離し、その結果酸素ガス吸収に対するめっき皮
膜の触媒作用が低下したためと考えられる。
As shown in Table 2 and FIG. 3, when the phosphorus content is 11 to 14% by weight, the battery internal pressure after overcharge is 4.
It is as low as 0 to 6.5 atm. It is considered that this is because a porous plating film having a higher phosphorus content, that is, a lower crystallinity, works more effectively as a gas absorption catalyst. On the contrary, when the phosphorus content exceeds 14% by weight, the internal pressure of the battery becomes high because the plating coating becomes brittle because the phosphorus content is too high and a part of the electroless nickel plating coating is a hydrogen storage alloy. It is considered that the catalytic action of the plating film on the absorption of oxygen gas was reduced as a result.

【0025】上記実施例では、本発明電極をニッケル−
水素化物アルカリ蓄電池の負極として使用する場合を例
に挙げて説明したが、本発明電極は、広く金属−水素化
物アルカリ蓄電池の負極として好適に使用し得るもので
ある。
In the above-mentioned embodiment, the electrode of the present invention is nickel-plated.
Although the case where it is used as the negative electrode of a hydride alkaline storage battery has been described as an example, the electrode of the present invention can be widely used as a negative electrode of a metal-hydride alkaline storage battery.

【0026】[0026]

【発明の効果】特定量のリンを含有したニッケルめっき
層が水素吸蔵合金の粒子表面に形成されているので、充
放電サイクルを繰り返しても水素吸蔵合金が酸化劣化し
にくく、またこのニッケルめっき層はリン含有率の高い
結晶性の低いポーラスな皮膜であるので、充放電反応が
阻害されにくいとともに、過充電しても電池内圧が上昇
しにくい。したがって、本発明電極を金属−水素化物ア
ルカリ蓄電池の負極として使用することにより、電池寿
命が長く、電池内圧が上昇しにくく、しかも活性化処理
を短時間で終えることができる金属−水素化物アルカリ
蓄電池を得ることが可能になる。
EFFECTS OF THE INVENTION Since the nickel plating layer containing a specific amount of phosphorus is formed on the surface of the particles of the hydrogen storage alloy, the hydrogen storage alloy is less likely to undergo oxidative deterioration even after repeated charge / discharge cycles, and this nickel plating layer Is a porous film having a high phosphorus content and low crystallinity, so that the charge / discharge reaction is not easily hindered and the internal pressure of the battery is unlikely to rise even when overcharged. Therefore, by using the electrode of the present invention as the negative electrode of a metal-hydride alkaline storage battery, the battery life is long, the internal pressure of the battery is unlikely to rise, and the activation treatment can be completed in a short time. It will be possible to obtain.

【図面の簡単な説明】[Brief description of drawings]

【図1】無電解ニッケルめっき層のリン含有率と電池組
立直後の放電容量の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the phosphorus content of an electroless nickel plating layer and the discharge capacity immediately after battery assembly.

【図2】無電解ニッケルめっき層のリン含有率と電池寿
命の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the phosphorus content of the electroless nickel plating layer and the battery life.

【図3】無電解ニッケルめっき層のリン含有率と過充電
後の電池内圧の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the phosphorus content of the electroless nickel plating layer and the battery internal pressure after overcharging.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭61−163569(JP,A) 特開 昭61−64069(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 H01M 4/38 H01M 10/30 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kozo Nogami 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 within Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-61-163569 (JP, A) JP 61-64069 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/24 H01M 4/38 H01M 10/30

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無電解ニッケルめっき層を粒子表面に形成
した水素吸蔵合金を電極材料として使用した水素吸蔵合
金電極であって、前記無電解ニッケルめっき層がリンを
11〜14重量%含有するポーラスな被膜であることを
特徴とする金属−水素化物アルカリ蓄電池用の水素吸蔵
合金電極。
1. A hydrogen storage alloy electrode using a hydrogen storage alloy having an electroless nickel plating layer formed on the particle surface as an electrode material, wherein the electroless nickel plating layer contains 11 to 14% by weight of phosphorus. Hydrogen storage alloy electrode for a metal-hydride alkaline storage battery, which is characterized by a different coating .
【請求項2】リンを11〜14重量%含有したポーラス
な被膜である無電解ニッケルめっき層が粒子表面に形成
された金属−水素化物アルカリ蓄電池用の水素吸蔵合金
粒子。
2. A porous material containing 11 to 14% by weight of phosphorus.
Hydrogen storage alloy particles for a metal-hydride alkaline storage battery , in which an electroless nickel plating layer that is a simple coating is formed on the particle surface.
JP18637594A 1994-07-15 1994-07-15 Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries Expired - Fee Related JP3499923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18637594A JP3499923B2 (en) 1994-07-15 1994-07-15 Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18637594A JP3499923B2 (en) 1994-07-15 1994-07-15 Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH0831416A JPH0831416A (en) 1996-02-02
JP3499923B2 true JP3499923B2 (en) 2004-02-23

Family

ID=16187292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18637594A Expired - Fee Related JP3499923B2 (en) 1994-07-15 1994-07-15 Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3499923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233106A (en) 1998-02-16 1999-08-27 Canon Inc Alkaline secondary battery and its manufacture

Also Published As

Publication number Publication date
JPH0831416A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
EP0557522B1 (en) Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
US5935732A (en) Hydrogen absorbing electrode and its manufacturing method
CA2321293C (en) Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JP3499923B2 (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries
JP4497828B2 (en) Nickel-hydrogen storage battery and battery pack
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JP3326197B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3825619B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, nickel-hydrogen storage battery, and method of manufacturing hydrogen storage alloy
JP3895985B2 (en) Nickel / hydrogen storage battery
JP4030381B2 (en) Nickel metal hydride storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP4215407B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP3490799B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH05283071A (en) Activation of metal hydride storage battery
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP3407989B2 (en) Metal hydride electrode
JP2000090918A (en) Hydrogen storage electrode
JPH06163072A (en) Metal-hydride secondary battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP4530555B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPH03201364A (en) Hydrogen storage electrode and nickel-hydrogen battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees