JP3183414B2 - Hydrogen storage alloy electrode and alkaline secondary battery using the same - Google Patents

Hydrogen storage alloy electrode and alkaline secondary battery using the same

Info

Publication number
JP3183414B2
JP3183414B2 JP34824391A JP34824391A JP3183414B2 JP 3183414 B2 JP3183414 B2 JP 3183414B2 JP 34824391 A JP34824391 A JP 34824391A JP 34824391 A JP34824391 A JP 34824391A JP 3183414 B2 JP3183414 B2 JP 3183414B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
battery
hydrogen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34824391A
Other languages
Japanese (ja)
Other versions
JPH05159798A (en
Inventor
苗 圭 一 郎 植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP34824391A priority Critical patent/JP3183414B2/en
Publication of JPH05159798A publication Critical patent/JPH05159798A/en
Application granted granted Critical
Publication of JP3183414B2 publication Critical patent/JP3183414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金電極およ
びそれを用いたアルカリ二次電池に関する。
The present invention relates to a hydrogen storage alloy electrode and an alkaline secondary battery using the same.

【0002】[0002]

【従来の技術】ニッケル−水素電池や二酸化マンガン−
水素電池などのアルカリ二次電池の負極としては、水素
吸蔵合金を活物質とする水素吸蔵合金電極が用いられる
が、この水素吸蔵合金電極は充放電の繰り返し、すなわ
ち水素の吸脱蔵の繰り返しによって水素吸蔵合金が微粉
化するという性質がある。
2. Description of the Related Art Nickel-hydrogen batteries and manganese dioxide
As a negative electrode of an alkaline secondary battery such as a hydrogen battery, a hydrogen storage alloy electrode using a hydrogen storage alloy as an active material is used. There is a property that the hydrogen storage alloy is pulverized.

【0003】そのため、水素吸蔵合金間の電気的接触が
不充分になり、抵抗が増加して放電容量が減少し、サイ
クル特性が低下する。
As a result, the electrical contact between the hydrogen storage alloys becomes insufficient, the resistance increases, the discharge capacity decreases, and the cycle characteristics deteriorate.

【0004】そこで、水素吸蔵合金の表面にニッケルメ
ッキまたはニッケル合金メッキを施すことによって、導
電性や機械的強度を向上させることが提案されている
(たとえば、特開昭63−22370号公報)。
[0004] Therefore, it has been proposed to improve conductivity and mechanical strength by applying nickel plating or nickel alloy plating to the surface of the hydrogen storage alloy (for example, Japanese Patent Application Laid-Open No. 63-22370).

【0005】また、水素吸蔵合金電極を作製する際、水
素吸蔵合金粉末をポリテトラフルオロエチレン粉末と混
合することにより水素吸蔵合金を空間的に固定化して、
水素吸蔵合金の微粉化による電気的接触の低下を防ぐこ
とも考えられている。
In producing a hydrogen storage alloy electrode, the hydrogen storage alloy powder is mixed with polytetrafluoroethylene powder to spatially fix the hydrogen storage alloy,
It has also been considered to prevent a decrease in electrical contact due to pulverization of the hydrogen storage alloy.

【0006】しかし、前者のメッキによる場合、導電性
の低下防止には効果が認められるものの、機械的強度の
向上が充分といえず、後者のポリテトラフルオロエチレ
ンにより固定化する場合は水素吸蔵合金の隙間にポリテ
トラフルオロエチレンが入り込むため、導電性が低下す
る。また、両者を組み合わせても、充分な導電性が得ら
れない。
[0006] However, although the former plating is effective in preventing the decrease in conductivity, it cannot be said that the mechanical strength is sufficiently improved, and when the latter is fixed with polytetrafluoroethylene, the hydrogen storage alloy is not used. Since the polytetrafluoroethylene enters the gaps, the conductivity decreases. Moreover, even if both are combined, sufficient conductivity cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
に従来の水素吸蔵合金電極の改善方法では、水素吸蔵合
金電極の導電性および機械的強度の両者を充分に向上さ
せることができなかったという問題点を解決し、水素吸
蔵合金電極の導電性および機械的強度の両者を向上さ
せ、それによって電池の放電特性やサイクル特性を向上
させ、かつ電池の内圧上昇を抑制することを目的とす
る。
SUMMARY OF THE INVENTION As described above, according to the present invention, the conventional method for improving a hydrogen storage alloy electrode cannot sufficiently improve both the conductivity and the mechanical strength of the hydrogen storage alloy electrode. To improve both the electrical conductivity and mechanical strength of the hydrogen storage alloy electrode, thereby improving the battery's discharge characteristics and cycle characteristics, and suppressing the internal pressure rise of the battery. I do.

【0008】[0008]

【課題を解決するための手段】本発明は、粒子表面にポ
リテトラフルオロエチレンなどの撥水性を有する樹脂を
分散させた金属メッキを施した水素吸蔵合金を用いて水
素吸蔵合金電極を作製するか、または水素吸蔵合金電極
の表面に上記撥水性を有する樹脂を分散させた金属メッ
キを施すことによって、上記目的を達成したものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a hydrogen storage alloy electrode using a metal-plated hydrogen storage alloy in which a resin having water repellency such as polytetrafluoroethylene is dispersed on the particle surface. Alternatively, the above object has been achieved by applying metal plating in which the above water-repellent resin is dispersed on the surface of the hydrogen storage alloy electrode.

【0009】すなわち、水素吸蔵合金の粒子表面にポリ
テトラフルオロエチレンなどの撥水性を有する樹脂を分
散させた金属メッキを施すと、図1に示すような粒子が
得られる。
That is, when metal particles in which a water-repellent resin such as polytetrafluoroethylene is dispersed are applied to the surfaces of the particles of the hydrogen storage alloy, the particles shown in FIG. 1 are obtained.

【0010】この粒子では、水素吸蔵合金1の粒子表面
を金属メッキ2が被覆しており、その金属メッキ2中に
撥水性を有する樹脂3が分散していて、金属メッキ2の
マトリックスを構成する金属によって導電性が向上し、
金属メッキ2の表面に露出した撥水性を有する樹脂3が
他の粒子の表面に露出した撥水性を有する樹脂と結着す
ることによって、水素吸蔵合金電極の機械的強度が向上
する。
[0010] In these particles, the surface of the particles of the hydrogen storage alloy 1 is coated with a metal plating 2, and a resin 3 having water repellency is dispersed in the metal plating 2 to form a matrix of the metal plating 2. Metal improves conductivity,
By bonding the water-repellent resin 3 exposed on the surface of the metal plating 2 to the water-repellent resin exposed on the surfaces of other particles, the mechanical strength of the hydrogen storage alloy electrode is improved.

【0011】また、水素吸蔵合金電極の表面にポリテト
ラフルオロエチレンなどの撥水性を有する樹脂を分散さ
せた金属メッキを施した場合は、金属メッキのマトリッ
クスを構成する金属によって水素吸蔵合金電極の導電性
が向上し、金属メッキ中に分散した撥水性を有する樹脂
によって水素吸蔵合金電極の機械的強度が向上する。
When the surface of the hydrogen storage alloy electrode is subjected to metal plating in which a resin having water repellency such as polytetrafluoroethylene is dispersed, the conductivity of the hydrogen storage alloy electrode is increased by the metal constituting the metal plating matrix. And the mechanical strength of the hydrogen storage alloy electrode is improved by the water-repellent resin dispersed in the metal plating.

【0012】本発明において、金属メッキ中に分散させ
る撥水性を有する樹脂としては、上記例示のポリテトラ
フルオロエチレン以外にも、たとえばポリクロロトリフ
ルオロエチレン、テトラフルオロエチレン・ヘキサフル
オロプロピレン共重合体、ポリビニリデンフルオライ
ド、テトラフルオロエチレン・エチレン共重合体、クロ
ロトリフルオロエチレン・エチレン共重合体、テトラフ
ルオロエチレン・パーフルオロアルキルビニルエーテル
共重合体、ポリビニルフルオライドなどのフッ素系樹
脂、さらには、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリスチレンなどのポリオレフィン系樹脂な
どの相対的に金属よりも高い撥水性を有する樹脂を用い
ることができる。特にフッ素系樹脂は撥水性が高く、本
発明において好適に用いられる。
In the present invention, as the water-repellent resin dispersed in the metal plating, in addition to the above-mentioned polytetrafluoroethylene, for example, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, Polyvinylidene fluoride, tetrafluoroethylene / ethylene copolymer, chlorotrifluoroethylene / ethylene copolymer, tetrafluoroethylene / perfluoroalkylvinyl ether copolymer, fluorine-based resin such as polyvinyl fluoride, further, polyethylene, Resins having relatively higher water repellency than metals, such as polyolefin resins such as polypropylene, polyvinyl chloride, and polystyrene, can be used. In particular, fluororesins have high water repellency and are preferably used in the present invention.

【0013】金属メッキに使用される金属としては、た
とえば銅、ニッケル、マンガン、コバルト、鉄、モリブ
デンなどがあげられ、これらの金属は、メッキに際し
て、それぞれ単独でまたは2種以上の合金として使用さ
れる。これら例示の金属は電気伝導度が高いので、水素
吸蔵合金電極の導電性を向上させるにあたって特に適し
ている。
The metal used for metal plating includes, for example, copper, nickel, manganese, cobalt, iron, molybdenum, etc. These metals are used alone or as an alloy of two or more at the time of plating. You. These exemplified metals have high electric conductivity and are particularly suitable for improving the conductivity of the hydrogen storage alloy electrode.

【0014】また、本発明の水素吸蔵合金電極によれ
ば、ニッケル−水素電池や二酸化マンガン−水素電池な
どのアルカリ二次電池において必要とされる水素吸蔵合
金電極の撥水処理を不要にすることができる。
Further, according to the hydrogen storage alloy electrode of the present invention, the water repellent treatment of the hydrogen storage alloy electrode required in an alkaline secondary battery such as a nickel-hydrogen battery or a manganese dioxide-hydrogen battery is unnecessary. Can be.

【0015】すなわち、水素吸蔵合金を負極に用い、ニ
ッケル酸化物を活物質とするニッケル電極を正極に用い
たニッケル−水素電池や、二酸化マンガンを活物質とす
る二酸化マンガン電極を正極に用いた二酸化マンガン−
水素電池などのアルカリ二次電池においては、その充放
電における電気化学的反応により、下記の反応式に示す
ように過充電時に正極で酸素ガスが発生し、それが負極
に到達する。 OH- →1/2H2 O+1/4O2 +e-
[0015] That is, a nickel-hydrogen battery using a hydrogen storage alloy as a negative electrode and a nickel electrode using nickel oxide as an active material as a positive electrode, or a carbon dioxide using a manganese dioxide electrode using manganese dioxide as an active material as a positive electrode. Manganese-
In an alkaline secondary battery such as a hydrogen battery, an oxygen gas is generated at the positive electrode during overcharge and reaches the negative electrode during overcharge as shown in the following reaction equation due to an electrochemical reaction in charging and discharging. OH - → 1 / 2H 2 O + 1 / 4O 2 + e -

【0016】この時、負極では、下記の式(式中のMは
水素吸蔵合金を示す)で示す反応 O2 +4MH→4M+2H2 O が生じるため、本来は、正極で発生した酸素は負極で消
費されるはずであるが、負極表面が親水性であると、負
極の表面が電解液で密接に覆われるため、酸素が負極の
水素吸蔵合金電極の表面に到達できず、その結果、消費
されなかった酸素が電池内圧を上昇させたり、電解液を
電池上部に移動させ、電解液が電池外部に漏出する原因
になる。
At this time, at the negative electrode, a reaction O 2 + 4MH → 4M + 2H 2 O represented by the following formula (M in the formula represents a hydrogen storage alloy) occurs, so that oxygen generated at the positive electrode is originally consumed by the negative electrode. However, if the surface of the negative electrode is hydrophilic, the surface of the negative electrode is closely covered with the electrolytic solution, so that oxygen cannot reach the surface of the hydrogen storage alloy electrode of the negative electrode, and as a result, is not consumed. Oxygen that has been raised increases the internal pressure of the battery or moves the electrolyte to the top of the battery, causing the electrolyte to leak out of the battery.

【0017】そのため、水素吸蔵合金電極の表面をビニ
ル系ポリマーやポリテトラフルオロエチレンなどで撥水
処理することによって親水性の水素吸蔵合金電極の表面
を疎水性に変え、酸素が負極の水素吸蔵合金電極の表面
に到達できるようにしているが、本発明の水素吸蔵合金
電極によれば、金属メッキ中に分散しているポリテトラ
フルオロエチレンなどの撥水性を有する樹脂によって撥
水性が付与されるので、上記のような撥水処理が不要に
なる。
Therefore, the surface of the hydrogen-absorbing alloy electrode is subjected to a water-repellent treatment with a vinyl-based polymer or polytetrafluoroethylene to change the surface of the hydrophilic hydrogen-absorbing alloy electrode to hydrophobic, so that oxygen is absorbed by the negative-electrode hydrogen-absorbing alloy. Although it is possible to reach the surface of the electrode, according to the hydrogen storage alloy electrode of the present invention, water repellency is imparted by a resin having water repellency such as polytetrafluoroethylene dispersed in metal plating. This eliminates the need for the above-described water-repellent treatment.

【0018】金属メッキは通常の無電解メッキによれば
よく、撥水性を有する樹脂は金属メッキ中に2〜30容
量%程度分散させることが好ましい。
The metal plating may be performed by ordinary electroless plating, and the resin having water repellency is preferably dispersed in the metal plating by about 2 to 30% by volume.

【0019】上記金属メッキは、その厚みなどに関して
特に限定されるものではないが、通常、水素吸蔵合金の
重量に対して2〜20重量%程度にされる。
The thickness of the metal plating is not particularly limited with respect to the thickness and the like, but is usually about 2 to 20% by weight based on the weight of the hydrogen storage alloy.

【0020】そして、上記のような表面または水素吸蔵
合金の粒子表面にポリテトラフルオロエチレンなどの撥
水性を有する樹脂を分散させた金属メッキを施した水素
吸蔵合金電極は、ニッケル−水素電池や二酸化マンガン
−水素電池などのアルカリ二次電池の負極として使用さ
れる。
A hydrogen-absorbing alloy electrode in which a metal having a water-repellent resin such as polytetrafluoroethylene dispersed on the surface or the particle surface of the hydrogen-absorbing alloy as described above is applied to a nickel-hydrogen battery or a carbon dioxide It is used as a negative electrode for alkaline secondary batteries such as manganese-hydrogen batteries.

【0021】[0021]

【実施例】つぎに実施例をあげて本発明をより具体的に
説明する。
Next, the present invention will be described more specifically with reference to examples.

【0022】実施例1 水素吸蔵合金としてMmNi3.85Co0.65Mn0.3 Al
0.2 を用い、これに水素の吸脱蔵を1回行って微粉化さ
せ、100μm以下の微粉末にした。上記水素吸蔵合金
の組成を示すMmNi3.85Co0.65Mn0.3 Al0.2
おいて、Mmはミッシュメタルであり、その組成はLa
23Ce46Pr19Nd11Sm1 である。
Example 1 As a hydrogen storage alloy, MmNi 3.85 Co 0.65 Mn 0.3 Al
0.2 was used, and hydrogen was absorbed and desorbed once to make the powder fine, thereby obtaining a fine powder of 100 μm or less. In MmNi 3.85 Co 0.65 Mn 0.3 Al 0.2 showing the composition of the hydrogen storage alloy, Mm is a misch metal and the composition is La
23 Ce 46 Pr 19 Nd 11 Sm 1 .

【0023】メッキ液としては、塩化ニッケル30g/
l、次亜リン酸ナトリウム24g/l、酢酸ナトリウム
16g/lおよびポリテトラフルオロエチレン5g/l
を含むニッケルメッキ液を用意した。
As a plating solution, nickel chloride 30 g /
l, sodium hypophosphite 24 g / l, sodium acetate 16 g / l and polytetrafluoroethylene 5 g / l
Was prepared.

【0024】このメッキ液を90℃に加温し、その中に
前記水素吸蔵合金を投入し、20分間攪拌を続けて、水
素吸蔵合金の粒子表面にポリテトラフルオロエチレンを
分散させたニッケルメッキを施した。メッキ重量は水素
吸蔵合金の重量に対して5重量%であった。
This plating solution was heated to 90 ° C., and the above-mentioned hydrogen-absorbing alloy was put into the plating solution, and stirring was continued for 20 minutes. gave. The plating weight was 5% by weight based on the weight of the hydrogen storage alloy.

【0025】上記メッキ後の水素吸蔵合金を集電体であ
るニッケル網と共にプレスし、Ar−H2 混合ガス雰囲
気で300℃で熱処理して水素吸蔵合金電極を作製し
た。
The plated hydrogen storage alloy was pressed together with a nickel net as a current collector, and heat-treated at 300 ° C. in an Ar—H 2 mixed gas atmosphere to produce a hydrogen storage alloy electrode.

【0026】この水素吸蔵合金電極を負極として用い、
ニッケル酸化物を活物質とする公知の焼結式ニッケル電
極を正極として用い、電解液には30重量%水酸化カリ
ウム水溶液(ただし、水酸化リチウムを17g/l溶解
させている)を用いて、単3形のニッケル−水素電池を
製造した。
Using this hydrogen storage alloy electrode as a negative electrode,
A known sintered nickel electrode using nickel oxide as an active material is used as a positive electrode, and a 30% by weight aqueous solution of potassium hydroxide (17 g / l of lithium hydroxide is dissolved) is used as an electrolytic solution. AA nickel-metal hydride batteries were manufactured.

【0027】比較例1 実施例1において使用したメッキ液にポリテトラフルオ
ロエチレンを含ませなかったほかは、実施例1と同様に
水素吸蔵合金電極を作製し、単3形のニッケル−水素電
池を製造した。
Comparative Example 1 A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that polytetrafluoroethylene was not included in the plating solution used in Example 1, and an AA nickel-hydrogen battery was manufactured. Manufactured.

【0028】上記実施例1の電池および比較例1の電池
を充電条件0.1C、130%充電で、放電条件0.2
Cで充放電させ、サイクル特性を調べた。その結果を図
2に示す。なお、図2の縦軸の放電容量(%)は、初期
容量を100%としたときの比率で示している。
The battery of Example 1 and the battery of Comparative Example 1 were charged at a charging condition of 0.1 C and 130%, and discharged under a discharging condition of 0.2.
C was charged and discharged, and the cycle characteristics were examined. The result is shown in FIG. Note that the discharge capacity (%) on the vertical axis in FIG. 2 is shown as a ratio when the initial capacity is 100%.

【0029】図2に示すように、実施例1の電池は比較
例1の電池に比べてサイクル寿命が長く、ポリテトラフ
ルオロエチレンを分散させたニッケルメッキを施した効
果が明らかにされていた。
As shown in FIG. 2, the battery of Example 1 had a longer cycle life than the battery of Comparative Example 1, and the effect of nickel plating in which polytetrafluoroethylene was dispersed was clarified.

【0030】また、上記実施例1の電池および比較例1
の電池に対して充電電流を変化させて充電したときの飽
和後(100%充電後)の電池の内圧を測定した。その
結果を図3に示す。
Further, the battery of Example 1 and Comparative Example 1
The internal pressure of the battery after saturation (after 100% charge) when the battery was charged while changing the charging current was measured. The result is shown in FIG.

【0031】図3に示すように、実施例1の電池は比較
例1の電池に比べて内圧が低かった。これは、実施例1
の電池ではニッケルメッキ中のポリテトラフルオロエチ
レンによる撥水作用によって負極の水素吸蔵合金電極で
の酸素ガスの消費能力が向上したためであると考えられ
る。
As shown in FIG. 3, the battery of Example 1 had a lower internal pressure than the battery of Comparative Example 1. This is the first embodiment
This is considered to be due to the fact that the water repellency of polytetrafluoroethylene during nickel plating improved the ability of the negative electrode hydrogen storage alloy electrode to consume oxygen gas in the battery.

【0032】実施例2 水素吸蔵合金としてV33Ti17Zr17Ni33を用い、こ
れに水素の吸脱蔵を1回行って微粉化させ、100μm
以下の微粉末にした。
Example 2 V 33 Ti 17 Zr 17 Ni 33 was used as a hydrogen storage alloy, and hydrogen absorption and desorption was carried out once to make the powder fine, and 100 μm
The following fine powder was obtained.

【0033】メッキ液としては、塩化ニッケル10g/
l、硫酸コバルト34g/l、次亜リン酸ナトリウム2
4g/l、酢酸ナトリウム16g/lおよびポリテトラ
フルオロエチレン5g/lを含むコバルト−ニッケル合
金メッキ液を用意した。
As a plating solution, nickel chloride 10 g /
l, cobalt sulfate 34 g / l, sodium hypophosphite 2
A cobalt-nickel alloy plating solution containing 4 g / l, sodium acetate 16 g / l, and polytetrafluoroethylene 5 g / l was prepared.

【0034】このメッキ液を90℃に加温し、その中に
前記水素吸蔵合金を投入し、35分間攪拌を続けて、水
素吸蔵合金の粒子表面にポリテトラフルオロエチレンを
分散させたコバルト−ニッケル合金を施した。
The plating solution was heated to 90 ° C., and the above-mentioned hydrogen-absorbing alloy was put into the plating solution. Stirring was continued for 35 minutes to obtain cobalt-nickel in which polytetrafluoroethylene was dispersed on the surface of the particles of the hydrogen-absorbing alloy. The alloy was applied.

【0035】上記メッキ後の水素吸蔵合金を用い、それ
以外は実施例1と同様に水素吸蔵合金電極を作製し、単
3形のニッケル−水素電池を製造した。
A hydrogen-absorbing alloy electrode was prepared in the same manner as in Example 1 except that the above-mentioned plated hydrogen-absorbing alloy was used, and an AA nickel-hydrogen battery was manufactured.

【0036】比較例2 実施例2と同様にV33Ti17Zr17Ni33の組成の水素
吸蔵合金を用い、この水素吸蔵合金と、該水素吸蔵合金
に対して2重量%のポリテトラフルオロエチレンとの混
合物をシート状にし、このシートを集電体であるニッケ
ル網と共にプレスし、以後、実施例2と同様に水素吸蔵
合金電極を作製し、単3形のニッケル−水素電池を製造
した。
Comparative Example 2 A hydrogen storage alloy having a composition of V 33 Ti 17 Zr 17 Ni 33 was used in the same manner as in Example 2, and this hydrogen storage alloy and 2% by weight of polytetrafluoroethylene with respect to the hydrogen storage alloy were used. This mixture was pressed into a sheet together with a nickel net as a current collector. Thereafter, a hydrogen storage alloy electrode was prepared in the same manner as in Example 2, and an AA nickel-hydrogen battery was manufactured.

【0037】上記実施例2の電池および比較例2の電池
を放電電流3Aで放電した時の放電容量を測定した。そ
の結果を図4に示す。
The discharge capacity of the battery of Example 2 and the battery of Comparative Example 2 when discharged at a discharge current of 3 A was measured. FIG. 4 shows the results.

【0038】図4に示すように、実施例2の電池は比較
例2の電池に比べて放電容量が大きかった。これは実施
例2の電池の方が比較例2の電池より水素吸蔵合金粒子
間の導電性が高かったことによるものと考えられる。
As shown in FIG. 4, the battery of Example 2 had a larger discharge capacity than the battery of Comparative Example 2. This is considered to be because the battery of Example 2 had higher conductivity between the hydrogen storage alloy particles than the battery of Comparative Example 2.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
水素吸蔵合金電極の導電性および機械的強度を向上させ
ることができる。
As described above, according to the present invention,
The conductivity and mechanical strength of the hydrogen storage alloy electrode can be improved.

【0040】その結果、ニッケル−水素電池などのアル
カリ二次電池における放電特性やサイクル特性を向上さ
せることができ、かつ電池の内圧上昇を抑制することが
できた。
As a result, the discharge characteristics and cycle characteristics of an alkaline secondary battery such as a nickel-hydrogen battery could be improved, and the internal pressure of the battery could be suppressed from rising.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において、撥水性を有する樹脂を分散さ
せた金属メッキを粒子表面に施した水素吸蔵合金を模式
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically illustrating a hydrogen storage alloy in which metal plating in which a resin having water repellency is dispersed is applied to the particle surface in the present invention.

【図2】実施例1の電池および比較例1の電池のサイク
ル特性を示す図である。
FIG. 2 is a view showing cycle characteristics of a battery of Example 1 and a battery of Comparative Example 1.

【図3】実施例1の電池および比較例1の電池の充電電
流と電池内圧との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the charging current of the battery of Example 1 and the battery of Comparative Example 1 and the internal pressure of the battery.

【図4】実施例2の電池および比較例2の電池の放電特
性を示す図である。
FIG. 4 is a view showing the discharge characteristics of the battery of Example 2 and the battery of Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金 2 金属メッキ 3 撥水性を有する樹脂 DESCRIPTION OF SYMBOLS 1 Hydrogen storage alloy 2 Metal plating 3 Water-repellent resin

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 10/24 - 10/34 H01M 4/36 - 4/62 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/24-4/26 H01M 10/24-10/34 H01M 4/36-4/62

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を活物質とする水素吸蔵合
金電極であって、上記水素吸蔵合金電極が、その表面ま
たは水素吸蔵合金の粒子表面に、撥水性を有する樹脂を
分散させた金属メッキを施したものであることを特徴と
する水素吸蔵合金電極。
1. A hydrogen storage alloy electrode using a hydrogen storage alloy as an active material, wherein the hydrogen storage alloy electrode is formed by dispersing a resin having water repellency on its surface or on a particle surface of the hydrogen storage alloy. A hydrogen-absorbing alloy electrode characterized by being subjected to the following.
【請求項2】 撥水性を有する樹脂が、ポリテトラフル
オロエチレンである請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the resin having water repellency is polytetrafluoroethylene.
【請求項3】 金属メッキの金属が、銅、ニッケル、コ
バルト、マンガン、鉄およびモリブデンよりなる群から
選ばれた少なくとも1種であることを特徴とする請求項
1記載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the metal for metal plating is at least one selected from the group consisting of copper, nickel, cobalt, manganese, iron and molybdenum.
【請求項4】 請求項1記載の水素吸蔵合金電極を負極
に用いたことを特徴とするアルカリ二次電池。
4. An alkaline secondary battery using the hydrogen storage alloy electrode according to claim 1 as a negative electrode.
【請求項5】 アルカリ二次電池が、ニッケル−水素電
池である請求項4記載のアルカリ二次電池。
5. The alkaline secondary battery according to claim 4, wherein the alkaline secondary battery is a nickel-metal hydride battery.
JP34824391A 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same Expired - Fee Related JP3183414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34824391A JP3183414B2 (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34824391A JP3183414B2 (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH05159798A JPH05159798A (en) 1993-06-25
JP3183414B2 true JP3183414B2 (en) 2001-07-09

Family

ID=18395713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34824391A Expired - Fee Related JP3183414B2 (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3183414B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579645B2 (en) 2000-03-28 2003-06-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for electrode, hydrogen absorbing alloy electrode and alkaline storage battery
US8372184B2 (en) 2005-04-22 2013-02-12 Societe Bic Composite hydrogen storage material and methods related thereto
US7563305B2 (en) 2006-06-23 2009-07-21 Angstrom Power Incorporated Fluid enclosure and methods related thereto
US8372561B2 (en) 2007-03-21 2013-02-12 Societe Bic Composite fluid storage unit with internal fluid distribution feature
JP5482024B2 (en) * 2009-08-28 2014-04-23 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery
CN112002906B (en) * 2020-07-16 2023-07-25 瑞海泊有限公司 Hydrophobic electrode, preparation method thereof and battery

Also Published As

Publication number Publication date
JPH05159798A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP5119577B2 (en) Nickel metal hydride battery
US20020172758A1 (en) Alkaline storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP3573925B2 (en) Metal-hydride alkaline storage battery and method of manufacturing the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3429684B2 (en) Hydrogen storage electrode
JP4128635B2 (en) Manufacturing method of nickel metal hydride storage battery
JP3748122B2 (en) Method for producing alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3342716B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2000200612A (en) Rectangular alkaline secondary battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05159800A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPH0837022A (en) Alkaline storage battery
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP3151379B2 (en) Manufacturing method of alkaline secondary battery
JP3229636B2 (en) Metal-hydrogen alkaline storage battery
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JP2022115451A (en) Iron-carbon composite material, manufacturing method of the same, negative electrode, and nickel-hydrogen battery
JPH1040950A (en) Alkaline secondary battery
JPH05159799A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees