JP3342716B2 - Hydrogen storage alloy electrode and alkaline secondary battery using the same - Google Patents

Hydrogen storage alloy electrode and alkaline secondary battery using the same

Info

Publication number
JP3342716B2
JP3342716B2 JP33509992A JP33509992A JP3342716B2 JP 3342716 B2 JP3342716 B2 JP 3342716B2 JP 33509992 A JP33509992 A JP 33509992A JP 33509992 A JP33509992 A JP 33509992A JP 3342716 B2 JP3342716 B2 JP 3342716B2
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
hydrogen
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33509992A
Other languages
Japanese (ja)
Other versions
JPH05242884A (en
Inventor
苗 圭 一 郎 植
山 茂 夫 青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP33509992A priority Critical patent/JP3342716B2/en
Publication of JPH05242884A publication Critical patent/JPH05242884A/en
Application granted granted Critical
Publication of JP3342716B2 publication Critical patent/JP3342716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金電極およ
びそれを用いたアルカリ二次電池に関する。
The present invention relates to a hydrogen storage alloy electrode and an alkaline secondary battery using the same.

【0002】[0002]

【従来の技術】ニッケル−水素電池や二酸化マンガン−
水素電池などのアルカリ二次電池の負極としては、水素
吸蔵合金を活物質とする水素吸蔵合金電極が用いられて
いる(たとえば、特開昭60−250558号公報)。
2. Description of the Related Art Nickel-hydrogen batteries and manganese dioxide
As a negative electrode of an alkaline secondary battery such as a hydrogen battery, a hydrogen storage alloy electrode using a hydrogen storage alloy as an active material is used (for example, JP-A-60-250558).

【0003】この水素吸蔵合金電極を負極に用い、ニッ
ケル酸化物を活物質とするニッケル電極を正極に用いた
ニッケル−水素電池や、二酸化マンガンを活物質とする
二酸化マンガン電極を正極に用いた二酸化マンガン−水
素電池などのアルカリ二次電池においては、その充放電
における電気化学的反応により、下記の反応式に示すよ
うに、過充電時に正極で酸素ガスが発生し、それが負極
に到達する。 OH- →1/2H2 O+1/4O2 +e-
A nickel-hydrogen battery using this hydrogen storage alloy electrode as a negative electrode and a nickel electrode using nickel oxide as an active material as a positive electrode, and a carbon dioxide using a manganese dioxide electrode using manganese dioxide as an active material as a positive electrode. In an alkaline secondary battery such as a manganese-hydrogen battery, an oxygen gas is generated at the positive electrode at the time of overcharge and reaches the negative electrode due to an electrochemical reaction in charging and discharging as shown in the following reaction formula. OH - → 1 / 2H 2 O + 1 / 4O 2 + e -

【0004】この時、負極では、下記の式(式中のMは
水素吸蔵合金を示す)で示す反応 O2 +4MH→4M+2H2 O が生じるため、本来は、正極で発生した酸素が負極で消
費されるはずであるが、負極の表面が親水性であると、
負極の表面が電解液で密接に覆われるため、酸素が負極
の水素吸蔵合金電極の表面に到達できず、その結果、消
費されなかった酸素が電池内圧を上昇させたり、電解液
を電池上部に移動させて、電解液が電池外部に漏出する
原因になる。
At this time, a reaction O 2 + 4MH → 4M + 2H 2 O represented by the following formula (M in the formula represents a hydrogen storage alloy) occurs at the negative electrode, and oxygen generated at the positive electrode is originally consumed by the negative electrode. However, if the surface of the negative electrode is hydrophilic,
Since the surface of the negative electrode is closely covered with the electrolyte, oxygen cannot reach the surface of the hydrogen-absorbing alloy electrode of the negative electrode.As a result, unconsumed oxygen increases the internal pressure of the battery or causes the electrolyte to reach the top of the battery. Movement may cause the electrolyte to leak out of the battery.

【0005】そこで、水素吸蔵合金電極の表面を撥水処
理して、親水性の水素吸蔵合金電極の表面を疎水性に変
えることにより、酸素が水素吸蔵合金電極の表面に到達
できるようにすることが提案されている。
Therefore, the surface of the hydrogen storage alloy electrode is subjected to a water-repellent treatment to change the surface of the hydrophilic hydrogen storage alloy electrode to hydrophobic so that oxygen can reach the surface of the hydrogen storage alloy electrode. Has been proposed.

【0006】たとえば、特開昭61−66372号公報
に記載のように、ビニル系ポリマーやポリテトラフルオ
ロエチレンなどの有機高分子化合物で水素吸蔵合金電極
の表面を撥水処理することや、特開昭62−13925
5号公報に記載のように、水素吸蔵合金電極をフッ素樹
脂のディスパージョンに浸漬することによって、水素吸
蔵合金電極の表面を撥水処理することが提案されてい
る。
For example, as described in JP-A-61-66372, the surface of a hydrogen-absorbing alloy electrode is treated for water repellency with an organic polymer compound such as a vinyl polymer or polytetrafluoroethylene. 62-13925
As described in Japanese Patent Publication No. 5 (1999) -2005, it has been proposed that the surface of the hydrogen storage alloy electrode is subjected to water repellency treatment by immersing the hydrogen storage alloy electrode in a fluororesin dispersion.

【0007】しかし、これらの有機高分子化合物による
場合、それらの有機高分子化合物が水素吸蔵合金電極の
表面に結合する以前に高分子になっているため、ミクロ
的に高密度に結合しておらず、そのため充分な撥水性が
得られない。特に水素吸蔵合金の粒子表面を撥水処理す
る場合には適用しがたい。
However, in the case of using these organic high molecular compounds, the organic high molecular compounds are polymerized before being bonded to the surface of the hydrogen storage alloy electrode, so that they are bonded at a high density microscopically. Therefore, sufficient water repellency cannot be obtained. In particular, it is not applicable to the case where the particle surface of the hydrogen storage alloy is subjected to water repellent treatment.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
に従来の水素吸蔵合金電極の撥水処理方法では充分な撥
水性が得られなかったという問題点を解決し、水素吸蔵
合金電極に高密度で結合力の強い撥水処理を施して、充
分な撥水性が得られるようにし、それによって電池の内
圧上昇を抑制することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problem that the conventional water repellent treatment of a hydrogen storage alloy electrode did not provide sufficient water repellency as described above. It is an object of the present invention to perform high-density and strong-coupling water-repellent treatment to obtain sufficient water-repellency, thereby suppressing an increase in the internal pressure of the battery.

【0009】[0009]

【課題を解決するための手段】本発明は、水素吸蔵合金
電極の表面または水素吸蔵合金の粒子表面を炭素数1〜
30のアルキル基を有するアルキルシラザンで撥水処理
することによって、上記目的を達成したものである。
According to the present invention, the surface of a hydrogen storage alloy electrode or the surface of a particle of a hydrogen storage alloy has 1 to 1 carbon atoms.
The above object has been achieved by performing a water-repellent treatment with an alkylsilazane having 30 alkyl groups.

【0010】すなわち、上記炭素数1〜30のアルキル
基を有するアルキルシラザンで撥水処理したものにおい
ては、上記アルキルシラザンが水素吸蔵合金の表面の活
性水素と結合していて、水素吸蔵合金電極の表面または
水素吸蔵合金の粒子表面に高密度でかつ結合力の高い撥
水性被膜が形成されているので、充分な撥水性が得られ
る。
That is, in the water-repellent treatment with the alkylsilazane having an alkyl group having 1 to 30 carbon atoms, the alkylsilazane is bonded to active hydrogen on the surface of the hydrogen storage alloy, and the hydrogen storage alloy electrode Since a water-repellent film having a high density and a high bonding force is formed on the surface or the particle surface of the hydrogen storage alloy, sufficient water repellency can be obtained.

【0011】その結果、水素吸蔵合金電極の表面が電解
液で密接に覆われることが解消され、正極で発生した酸
素ガスは負極の水素吸蔵合金電極の表面に到達できるよ
うになり、そこで消費されて、電池の内圧上昇や電解液
の漏出が防止されるようになる。
As a result, the surface of the hydrogen-absorbing alloy electrode is no longer covered with the electrolyte, and oxygen gas generated at the positive electrode can reach the surface of the hydrogen-absorbing alloy electrode of the negative electrode, and is consumed there. This prevents the internal pressure of the battery from rising and the electrolyte from leaking.

【0012】本発明において、水素吸蔵合金電極の表面
または水素吸蔵合金の粒子表面を撥水処理するアルキル
シラザンは、そのアルキル基の炭素数の上限を30に特
定しているが、これはアルキル基の炭素数が30より大
きくなると立体障害が生じ、アルキルシラザンが水素吸
蔵合金表面の活性水素と結合できなくなるとともに、溶
剤に溶けなくなって、撥水処理が困難になるからであ
り、特に炭素数1〜18のアルキル基を有するものが好
ましい。
In the present invention, the alkylsilazane for water-repelling the surface of the hydrogen storage alloy electrode or the particle surface of the hydrogen storage alloy specifies the upper limit of the number of carbon atoms of the alkyl group to 30. If the number of carbon atoms is more than 30, steric hindrance will occur, and the alkylsilazane will not be able to bind to active hydrogen on the surface of the hydrogen storage alloy, and will not be soluble in the solvent, making water-repellent treatment difficult. Those having from 18 to 18 alkyl groups are preferred.

【0013】本発明において、撥水処理に用いる炭素数
1〜30のアルキル基を有するアルキルシラザンの好適
な具体例としては、たとえば、(CH32 Si(N
H)2/2 、C511Si(NH)3/2 、C1021Si
(NH)3/2 、C1837Si(NH)3/2 、(CH3
3 Si(NH)1/2 、C1021Si(CH3 )(NH)
2/2 、C1837Si(CH3 2 (NH)1/2 などがあ
げられる。これらの具体例にも示しているように、アル
キルシラザンのアルキル基はモノアルキルだけではな
く、ジアルキル、トリアルキルであってもよい。
In the present invention, preferred examples of the alkylsilazane having an alkyl group having 1 to 30 carbon atoms used in the water-repellent treatment include, for example, (CH 3 ) 2 Si (N
H) 2/2, C 5 H 11 Si (NH) 3/2, C 10 H 21 Si
(NH) 3/2 , C 18 H 37 Si (NH) 3/2 , (CH 3 )
3 Si (NH) 1/2, C 10 H 21 Si (CH 3) (NH)
2/2 , C 18 H 37 Si (CH 3 ) 2 (NH) 1/2 and the like. As shown in these specific examples, the alkyl group of the alkylsilazane is not limited to monoalkyl, but may be dialkyl or trialkyl.

【0014】炭素数1〜30のアルキル基を有するアル
キルシラザンによる撥水処理は、たとえば、上記アルキ
ルシラザンをトルエン、キシレンなどの有機溶剤に溶解
または分散させ、その液中に水素吸蔵合金電極または水
素吸蔵合金粉末を一定時間浸漬することによって行うこ
とができる。
In the water-repellent treatment with an alkylsilazane having an alkyl group having 1 to 30 carbon atoms, for example, the above-mentioned alkylsilazane is dissolved or dispersed in an organic solvent such as toluene or xylene, and a hydrogen storage alloy electrode or hydrogen is added to the solution. It can be performed by immersing the storage alloy powder for a certain period of time.

【0015】そして、上記のように表面または水素吸蔵
合金の粒子表面を炭素数1〜30のアルキル基を有する
アルキルシラザンで撥水処理した水素吸蔵合金電極は、
たとえばニッケル−水素電池、二酸化マンガン−水素電
池などのアルカリ二次電池の負極として使用される。
The hydrogen-absorbing alloy electrode whose surface or the particle surface of the hydrogen-absorbing alloy has been subjected to water-repellent treatment with an alkylsilazane having an alkyl group having 1 to 30 carbon atoms as described above,
For example, it is used as a negative electrode of an alkaline secondary battery such as a nickel-hydrogen battery and a manganese dioxide-hydrogen battery.

【0016】[0016]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下において濃度を示す
%は重量基準によるものである。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following,% indicating the concentration is on a weight basis.

【0017】実施例1 水素吸蔵合金としてMmNi3.85Co0.65Mn0.3 Al
0.2 を用い、これに水素の吸脱蔵を1回行って微粉化さ
せ、100μm以下の微粉末にした。上記水素吸蔵合金
の組成を示すMmNi3.85Co0.65Mn0.3 Al0.2
おいて、Mmはミッシュメタルであり、その組成はLa
23Ce46Pr19Nd11Sm1 である。
Example 1 As a hydrogen storage alloy, MmNi 3.85 Co 0.65 Mn 0.3 Al
0.2 was used, and hydrogen was absorbed and desorbed once to make the powder fine, thereby obtaining a fine powder of 100 μm or less. In MmNi 3.85 Co 0.65 Mn 0.3 Al 0.2 showing the composition of the hydrogen storage alloy, Mm is a misch metal and the composition is La
23 Ce 46 Pr 19 Nd 11 Sm 1 .

【0018】この水素吸蔵合金粉末を該水素吸蔵合金に
対して2%のポリテトラフルオロエチレン粉末と混合
し、ペースト状になったものを集電体であるニッケル網
と共にプレスし、Ar−H2 混合ガス雰囲気で300℃
で熱処理して水素吸蔵合金電極を作製した。
This hydrogen storage alloy powder is mixed with 2% polytetrafluoroethylene powder with respect to the hydrogen storage alloy, and the paste is pressed together with a nickel net as a current collector to form Ar-H 2. 300 ° C in mixed gas atmosphere
To produce a hydrogen storage alloy electrode.

【0019】アルキルシラザンとしては(CH32
i(NH)2/2 を用い、この(CH32 Si(NH)
2/2 の濃度2%のトルエン溶液を調製し、この液中に上
記の水素吸蔵合金電極を25℃で20時間浸漬して、撥
水処理を行った。
As the alkylsilazane, (CH 3 ) 2 S
Using i (NH) 2/2 , this (CH 3 ) 2 Si (NH)
A 2/2 concentration of a 2% toluene solution was prepared, and the above-mentioned hydrogen-absorbing alloy electrode was immersed in this solution at 25 ° C. for 20 hours to perform a water-repellent treatment.

【0020】上記撥水処理後の水素吸蔵合金電極を負極
として用い、ニッケル酸化物を活物質とする公知の焼結
式ニッケル電極を正極として用い、電解液には30%水
酸化カリウム水溶液(ただし、水酸化リチウムを17g
/l溶解させている)を用いて、単3形のニッケル−水
素電池を製造した。
The hydrogen-absorbing alloy electrode after the water-repellent treatment is used as a negative electrode, a known sintered nickel electrode using nickel oxide as an active material is used as a positive electrode, and a 30% aqueous solution of potassium hydroxide (provided that an electrolyte is used). , 17g of lithium hydroxide
/ L dissolved) to produce an AA nickel-hydrogen battery.

【0021】比較例1 (CH32 Si(NH)2/2 による撥水処理をしなか
ったほかは、実施例1と同様に水素吸蔵合金電極を作製
し、単3形のニッケル−水素電池を製造した。
Comparative Example 1 A hydrogen-absorbing alloy electrode was prepared in the same manner as in Example 1 except that the water-repellent treatment with (CH 3 ) 2 Si (NH) 2/2 was not carried out. A battery was manufactured.

【0022】上記実施例1の電池および比較例1の電池
に対して充電電流を変化させて充電したときの飽和後の
電池内圧を測定した。その結果を図1に示す。
The battery internal pressure after saturation was measured when charging the battery of Example 1 and the battery of Comparative Example 1 while changing the charging current. The result is shown in FIG.

【0023】図1に示すように、同じ充電電流値で比較
した場合、実施例1は比較例1より電池内圧が低く、
(CH32 Si(NH)2/2 による撥水処理によって
負極の水素吸蔵合金電極での酸素ガスの消費能力が向上
することが明らかにされていた。
As shown in FIG. 1, when compared at the same charging current value, Example 1 has a lower battery internal pressure than Comparative Example 1, and
It has been clarified that the water-repellent treatment with (CH 3 ) 2 Si (NH) 2/2 improves the oxygen gas consumption capacity of the hydrogen storage alloy electrode of the negative electrode.

【0024】実施例2 水素吸蔵合金としてV33Ti17Zr17Ni33を用い、こ
れに水素の吸脱蔵を1回行って微粉化させ、100μm
以下の微粉末にした。
Example 2 V 33 Ti 17 Zr 17 Ni 33 was used as a hydrogen storage alloy, and hydrogen absorption and desorption was performed once to make the powder fine, and the hydrogen storage alloy was 100 μm
The following fine powder was obtained.

【0025】アルキルシラザンとしてはC1837Si
(NH)3/2 を用い、このC1837Si(NH)3/2
濃度2%のトルエン溶液を調製し、この液中に上記の水
素吸蔵合金粉末を25℃で24時間浸漬して、撥水処理
を行った。
As the alkylsilazane, C 18 H 37 Si
Using (NH) 3/2 , a 2% concentration solution of this C 18 H 37 Si (NH) 3/2 in toluene was prepared, and the hydrogen absorbing alloy powder was immersed in this solution at 25 ° C. for 24 hours. Then, a water repellent treatment was performed.

【0026】このようにして粒子表面にC1837Si
(NH)3/2 による撥水処理を行った水素吸蔵合金粉末
と、該水素吸蔵合金に対して2%のポリテトラフルオロ
エチレン粉末とを混合し、ペースト状になったものを集
電体であるニッケル網と共にプレスし、Ar−H2 混合
ガス雰囲気で300℃で熱処理して水素吸蔵合金電極を
作製した。
In this manner, C 18 H 37 Si
(NH) A hydrogen-absorbing alloy powder subjected to a water-repellent treatment with 3/2 and a 2% polytetrafluoroethylene powder with respect to the hydrogen-absorbing alloy are mixed together, and the paste is mixed with a current collector. It was pressed together with a nickel mesh and heat-treated at 300 ° C. in an Ar—H 2 mixed gas atmosphere to produce a hydrogen storage alloy electrode.

【0027】この水素吸蔵合金電極を負極として用いた
ほかは、実施例1と同様にして単3形のニッケル−水素
電池を製造した。
An AA nickel-hydrogen battery was manufactured in the same manner as in Example 1 except that this hydrogen storage alloy electrode was used as a negative electrode.

【0028】比較例2 C1837Si(NH)3/2 による水素吸蔵合金の粒子表
面への撥水処理を行わなかったほかは、実施例2と同様
に水素吸蔵合金電極を作製し、単3形のニッケル−水素
電池を製造した。
Comparative Example 2 A hydrogen storage alloy electrode was prepared in the same manner as in Example 2 except that the water repellent treatment was not performed on the particle surface of the hydrogen storage alloy with C 18 H 37 Si (NH) 3/2 . AA nickel-metal hydride batteries were manufactured.

【0029】上記実施例2の電池および比較例2の電池
に対して充電電流を変化させて充電を行い、充電電流の
変化に対する飽和後の電池内圧を測定した。その結果を
図2に示す。
The battery of Example 2 and the battery of Comparative Example 2 were charged while changing the charging current, and the internal pressure of the battery after saturation with respect to the change in charging current was measured. The result is shown in FIG.

【0030】図2に示すように、同じ充電電流値で比較
した場合、実施例2は比較例2より電池内圧が低く、C
1837Si(NH)3/2 による撥水処理によって負極の
水素吸蔵合金電極での酸素ガスの消費能力が向上するこ
とが明らかにされていた。
As shown in FIG. 2, when compared at the same charging current value, Example 2 has a lower battery internal pressure than Comparative Example 2, and
It has been clarified that the water-repellent treatment with 18 H 37 Si (NH) 3/2 improves the oxygen gas consumption ability at the hydrogen storage alloy electrode of the negative electrode.

【0031】[0031]

【発明の効果】以上説明したように、本発明では、水素
吸蔵合金電極の表面または水素吸蔵合金の粒子表面を特
定炭素数のアルキル基を有するアルキルシラザンで撥水
処理することによって、水素吸蔵合金電極に撥水性の高
い撥水処理を施すことができるようになった。
As described above, in the present invention, the surface of the hydrogen storage alloy electrode or the particle surface of the hydrogen storage alloy is subjected to a water repellent treatment with an alkylsilazane having an alkyl group having a specific number of carbon atoms. The electrode can be subjected to a high water-repellent water-repellent treatment.

【0032】その結果、その水素吸蔵合金電極を負極と
して用いたニッケル−水素電池などのアルカリ二次電池
において、過充電時に正極で発生する酸素ガスの負極で
の消費能力を向上させることができるようになり、それ
によって電池の内圧上昇を抑制することができるように
なった。
As a result, in an alkaline secondary battery such as a nickel-hydrogen battery using the hydrogen storage alloy electrode as a negative electrode, the ability of the negative electrode to consume oxygen gas generated at the positive electrode during overcharge can be improved. , Thereby making it possible to suppress an increase in the internal pressure of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の電池および比較例1の電池の充電電
流と電池内圧との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the charging current and the battery internal pressure of the battery of Example 1 and the battery of Comparative Example 1.

【図2】実施例2の電池および比較例2の電池の充電電
流と電池内圧との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the charging current and the battery internal pressure of the battery of Example 2 and the battery of Comparative Example 2.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/62 H01M 10/00 - 10/34 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/24-4/62 H01M 10/00-10/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を活物質とする水素吸蔵合
金電極であって、上記水素吸蔵合金電極が、その表面ま
たは水素吸蔵合金の粒子表面を炭素数1〜30のアルキ
ル基を有するアルキルシラザンで撥水処理したものであ
ることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode comprising a hydrogen storage alloy as an active material, wherein the hydrogen storage alloy electrode has an alkylsilazane having an alkyl group having 1 to 30 carbon atoms on a surface thereof or a particle surface of the hydrogen storage alloy. A hydrogen-absorbing alloy electrode characterized by being subjected to a water-repellent treatment with a hydrogen absorbing alloy.
【請求項2】 請求項1記載の水素吸蔵合金電極を負極
に用いたことを特徴とするアルカリ二次電池。
2. An alkaline secondary battery using the hydrogen storage alloy electrode according to claim 1 as a negative electrode.
【請求項3】 アルカリ二次電池が、ニッケル−水素電
池である請求項2記載のアルカリ二次電池。
3. The alkaline secondary battery according to claim 2, wherein the alkaline secondary battery is a nickel-metal hydride battery.
JP33509992A 1991-11-20 1992-11-19 Hydrogen storage alloy electrode and alkaline secondary battery using the same Expired - Fee Related JP3342716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33509992A JP3342716B2 (en) 1991-11-20 1992-11-19 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-332643 1991-11-20
JP33264391 1991-11-20
JP33509992A JP3342716B2 (en) 1991-11-20 1992-11-19 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH05242884A JPH05242884A (en) 1993-09-21
JP3342716B2 true JP3342716B2 (en) 2002-11-11

Family

ID=26574249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33509992A Expired - Fee Related JP3342716B2 (en) 1991-11-20 1992-11-19 Hydrogen storage alloy electrode and alkaline secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3342716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235431B1 (en) * 1997-06-24 2001-05-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolytic solution for battery and nonaqueous electrolytic solution battery using the same

Also Published As

Publication number Publication date
JPH05242884A (en) 1993-09-21

Similar Documents

Publication Publication Date Title
EP0723305B1 (en) Nickel positive electrode for use in alkaline storage battery.
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH11162505A (en) Nickel-hydrogen battery
US5480741A (en) Cell provided with gaseous diffusion electrode, and method of charging and discharging the same
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP3342716B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
Willems Investigation of a new type of rechargeable battery, the nickel-hydride cell
JP3314611B2 (en) Nickel electrode for alkaline storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP2680623B2 (en) Hydrogen storage alloy electrode
JP2603188B2 (en) Hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH10284071A (en) Sintered hydrogen storage alloy electrode
JPH05159799A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3895984B2 (en) Nickel / hydrogen storage battery
US6924062B2 (en) Nickel-metal hydride storage battery
JP3429684B2 (en) Hydrogen storage electrode
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020813

LAPS Cancellation because of no payment of annual fees