JPH0763004B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH0763004B2
JPH0763004B2 JP62027709A JP2770987A JPH0763004B2 JP H0763004 B2 JPH0763004 B2 JP H0763004B2 JP 62027709 A JP62027709 A JP 62027709A JP 2770987 A JP2770987 A JP 2770987A JP H0763004 B2 JPH0763004 B2 JP H0763004B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
electrode
hydrogen storage
oxygen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62027709A
Other languages
Japanese (ja)
Other versions
JPS63195960A (en
Inventor
伸行 柳原
宗久 生駒
博志 川野
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62027709A priority Critical patent/JPH0763004B2/en
Publication of JPS63195960A publication Critical patent/JPS63195960A/en
Publication of JPH0763004B2 publication Critical patent/JPH0763004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素を可逆的に吸蔵・放出する合金又は水素化
物からなる電極、すなわち水素吸蔵電極を負極とし、金
属酸化物電極を正極とする密閉型アルカリ蓄電池に係わ
るもので、特に負極の改良に関するものである。
TECHNICAL FIELD The present invention relates to an electrode of an alloy or hydride that reversibly stores and releases hydrogen, that is, a hydrogen storage electrode as a negative electrode and a metal oxide electrode as a positive electrode. The present invention relates to an alkaline storage battery, and particularly to improvement of a negative electrode.

従来の技術 従来、この種の水素吸蔵電極を負極とするアルカリ蓄電
池では充・放電サイクルの繰り返しによって、負極を構
成する水素吸蔵合金又は水素化物の粒子表面が酸化され
性能が劣化する。通常、正極利用率の関係から正極の理
論容量に対して約50%程の過充電を行なっているので正
極からの過剰の酸素ガスが発生し、その酸素ガスによる
水素吸蔵合金の酸化速度を早める。この酸化反応を抑制
するために、この粒子表面を炭素質によって被覆した水
素吸蔵合金粉末のみを用いて電極を構成する負極が提案
されている(特開昭61−185863号公報)。
2. Description of the Related Art Conventionally, in an alkaline storage battery using a hydrogen storage electrode of this type as a negative electrode, the surface of particles of a hydrogen storage alloy or hydride constituting the negative electrode is oxidized by repeated charging / discharging cycles to deteriorate the performance. Normally, about 50% of the theoretical capacity of the positive electrode is overcharged due to the positive electrode utilization rate, so excess oxygen gas is generated from the positive electrode, which accelerates the rate of oxidation of the hydrogen storage alloy by the oxygen gas. . In order to suppress this oxidation reaction, a negative electrode has been proposed in which an electrode is formed using only hydrogen-absorbing alloy powder whose surface is covered with carbonaceous material (JP-A-61-185863).

発明が解決しようとする問題点 前記の炭素質を被覆した水素吸蔵合金粉末からなる負極
を用いると電極自体の耐酸化性は向上し、水素吸蔵合金
の酸化を抑制し電極寿命の向上に役立つが、その反面、
炭素質は金属などと比べて比較的抵抗が大きく水素吸蔵
合金からなる電極自体の導電性を大きく減少させる。よ
って、電池を構成した場合、高電流放電において電極の
抵抗分極のために電圧の低下が大きくなる。また、炭素
質の部分が多いとその分量だけ、単位重量,単位容積当
りの容量が小さくなる。
Problems to be solved by the invention When the negative electrode made of the hydrogen storage alloy powder coated with the carbonaceous material described above is used, the oxidation resistance of the electrode itself is improved, and it is useful for suppressing the oxidation of the hydrogen storage alloy and improving the electrode life. ,On the other hand,
Carbonaceous materials have a relatively high resistance as compared with metals and the like, and greatly reduce the conductivity of the electrode itself made of a hydrogen storage alloy. Therefore, when a battery is constructed, the voltage drop becomes large due to the resistance polarization of the electrodes at high current discharge. Further, when the carbonaceous portion is large, the capacity per unit weight and unit volume is reduced by the amount.

そこで、本発明はこのような問題点を解決するもので、
比較的充電電流の大きい場合でも酸素ガスによる水素吸
蔵合金の酸化防止と負極表面での酸素吸収又は酸素のイ
オン化をバランス良く進行させて、電池内圧上昇の抑制
と高率放電特性の向上および充・放電サイクル寿命の伸
長を図ることを目的とするものである。
Therefore, the present invention solves such problems,
Even when the charging current is relatively large, the oxidation of the hydrogen storage alloy by oxygen gas and the oxygen absorption on the negative electrode surface or the ionization of oxygen are promoted in a well-balanced manner to suppress the increase in the internal pressure of the battery and to improve the high-rate discharge characteristics and charge / discharge. The purpose is to extend the discharge cycle life.

問題点を解決するための手段 この問題点を解決するために本発明は金属酸化物正極
と、水素吸蔵合金又は水素化物からなる負極と、セパレ
ータおよびアルカリ電解液を備え、前記負極の表面に膨
脹黒鉛と非晶質カーボンのいずれか一方又は両者と結合
剤とからなる酸素ガス吸収層を設けることにある。さら
に好ましくは、膨脹黒鉛粉末および非晶質カーボン粉末
の平均粒径が水素吸蔵合金又は水素化物粉末の平均粒径
より小さく、しかもその粒径が主に0.01〜50μmの範囲
内にあるようにしたものである。
Means for Solving the Problems In order to solve this problem, the present invention comprises a metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, and the surface of the negative electrode is expanded. The purpose is to provide an oxygen gas absorption layer composed of one or both of graphite and amorphous carbon and a binder. More preferably, the expanded graphite powder and the amorphous carbon powder have an average particle size smaller than that of the hydrogen storage alloy or hydride powder, and the particle size is mainly in the range of 0.01 to 50 μm. It is a thing.

作用 このように水素吸蔵合金又は水素化物からなる負極の表
面に導電性,触媒作用および耐酸化性のある膨脹黒鉛と
非晶質カーボンのいずれか一方又は両者とフッ素樹脂な
どの結着材との混合物からなる酸素ガス吸収層を形成す
ることにより、主に膨脹黒鉛粉末による導電性向上、お
よび比表面積の大きい非晶質カーボン粉末による負極表
面での酸素ガス吸収作用とこれら耐食性の強い両者によ
る酸化抑制作用を有する。この酸素ガス吸収層は多孔性
でしかも比表面積が大きく、導電性,耐酸化性にも優れ
ていることから、電池内圧の上昇抑制による安全性、お
よび高率放電特性,充・放電サイクル寿命特性の向上を
図ることができる。
As described above, one or both of expanded graphite and amorphous carbon, which have conductivity, catalytic action and oxidation resistance, on the surface of the negative electrode made of a hydrogen storage alloy or hydride and a binder such as a fluororesin. By forming an oxygen gas absorption layer composed of a mixture, the conductivity is mainly improved by the expanded graphite powder, and the oxygen gas absorption effect on the negative electrode surface by the amorphous carbon powder having a large specific surface area and the oxidation by both of these are highly corrosion resistant. Has a suppressive effect. Since this oxygen gas absorption layer is porous, has a large specific surface area, and is excellent in conductivity and oxidation resistance, it is safe by suppressing an increase in battery internal pressure, and has high rate discharge characteristics, charge / discharge cycle life characteristics. Can be improved.

以下その詳細は実施例で説明する。The details will be described in the following examples.

実施例 市販のMm(ミッシュメタル),La,Ni,Coから構成される
試料を一定の組成比に秤量,混合し、アーク溶解法によ
り加熱溶解させた。一例として合金組成であるMm0.5La
0.5Ni3.5Co1.5を負極用の水素吸蔵合金とした。この合
金を粉砕機で50μm以下まで粉砕して発泡状金属内に結
着材と共に充填し、その後加圧,乾燥して出来た電極試
料をaとした。つぎに粉砕機で粉砕した合金粒子の表面
を炭素質で被覆した粉末を同様に発泡状金属内に結着材
と共に充填し、その後加圧,乾燥して出来た電極試料を
bとした。これら従来型の電極試料に対して、本発明の
電極試料はつぎの様にして製造した。即ち第1図A,Bに
示すように水素吸蔵合金10からなる一定の大きさの電極
試料aの極板表面に、結着材としてフッ素樹脂を含む膨
脹黒鉛からなるペースト状微粉末を塗着し、乾焼,熱処
理を行なって酸素ガス吸収層11を形成した電極試料をc
とした。また、先の膨脹黒鉛の代わりに非晶質カーボン
を用いた電極試料をdとした。さらに、水素吸蔵合金10
からなる一定の大きさの電極試料aの極板表面に、結着
材としてフッ素樹脂を含む膨脹黒鉛と非晶質カーボンの
混合物からなるペースト状微粉末を塗着し、乾燥,熱処
理を行なって酸素ガス吸収層11を形成した電極試料をe
とした。ここで用いた膨脹黒鉛の粒径は1〜50μm程度
であり、非晶質カーボンの粒径は0.01〜10μm程度であ
る。
Example A sample composed of commercially available Mm (Misch metal), La, Ni, and Co was weighed and mixed at a constant composition ratio, and heated and melted by an arc melting method. As an example, the alloy composition is Mm 0.5 La.
0.5 Ni 3.5 Co 1.5 was used as the hydrogen storage alloy for the negative electrode. This alloy was crushed to 50 μm or less by a crusher, filled into a foam metal together with a binder, and then pressed and dried to obtain an electrode sample a. Next, a powder in which the surface of the alloy particles crushed by a crusher was coated with carbonaceous material was similarly filled in a foam metal together with a binder, and then pressed and dried to obtain an electrode sample b. In contrast to these conventional electrode samples, the electrode sample of the present invention was manufactured as follows. That is, as shown in FIGS. 1A and 1B, a paste-like fine powder made of expanded graphite containing a fluororesin as a binder is applied to the surface of an electrode plate of an electrode sample a of a certain size made of the hydrogen storage alloy 10. Then, the electrode sample on which the oxygen gas absorption layer 11 is formed by performing dry baking and heat treatment is c
And Further, an electrode sample using amorphous carbon instead of the expanded graphite was designated as d. Furthermore, hydrogen storage alloy 10
A paste-like fine powder made of a mixture of expanded graphite containing fluororesin as a binder and amorphous carbon was applied to the surface of the electrode plate of the electrode sample a of a certain size made of, and dried and heat-treated. The electrode sample on which the oxygen gas absorption layer 11 is formed is
And The expanded graphite used here has a particle size of about 1 to 50 μm, and the amorphous carbon has a particle size of about 0.01 to 10 μm.

この各種電極試料a,b,c,d,eにリードを取り付け負極板
1とした。負極板1に用いた水素吸蔵合金の量は正極容
量より過剰になるように15gを用いた。公知の発泡状ニ
ッケル正極と、各種負極をセパレータを介して渦巻状に
巻回し、第2図に示す公称2000mAhの密閉型アルカリ蓄
電池を構成し、各種負極a,b,c,d,eに相当する電池をA,
B,C,D,Eとした。
Leads were attached to the various electrode samples a, b, c, d, and e to obtain the negative electrode plate 1. The amount of the hydrogen storage alloy used in the negative electrode plate 1 was 15 g so that it would be in excess of the positive electrode capacity. A known foamed nickel positive electrode and various negative electrodes are spirally wound through a separator to form a sealed alkaline storage battery of nominal 2000 mAh shown in Fig. 2, corresponding to various negative electrodes a, b, c, d, e. A battery to
It was designated as B, C, D, and E.

第2図において、水素吸蔵合金からなる負極板1と、ニ
ッケル正極2はセパレータ3を介して渦巻状に巻回され
てケース4内に配置され、その上下に絶縁板5,6を入れ
て安全弁7のある封口板8で密閉化されている。9は正
極リードと接続している正極端子である。充電時に負極
からの水素発生を抑制するために正極容量より負極容量
を大きくし正極律速とした。電子の充放電条件として0.
2C(400mA)で75時間充電(150%充電)し、0.2C(400m
A)で放電した。充放電サイクル試験の温度はすべて室
温とし、各種電池の150%充電時における電池内圧を測
定した。電池内圧の測定は充・放電50サイクル目で比較
した。この測定結果を従来型電池と比較して表1に示
す。また、従来型電池と本発明電池の電圧−電流特性を
第3図に示す。
In FIG. 2, a negative electrode plate 1 made of a hydrogen storage alloy and a nickel positive electrode 2 are spirally wound via a separator 3 and arranged in a case 4, and insulating plates 5 and 6 are inserted above and below the safety valve to form a safety valve. It is hermetically sealed by a sealing plate 8 provided with 7. Reference numeral 9 is a positive electrode terminal connected to the positive electrode lead. In order to suppress the generation of hydrogen from the negative electrode during charging, the negative electrode capacity was made larger than the positive electrode capacity to control the positive electrode. 0 as an electron charge / discharge condition.
Charged at 2C (400mA) for 75 hours (charged 150%), 0.2C (400m
A) was discharged. The temperature of the charge / discharge cycle test was set to room temperature, and the internal pressure of each battery was measured at 150% charge. The battery internal pressure was compared at the 50th charge / discharge cycle. The measurement results are shown in Table 1 in comparison with the conventional battery. The voltage-current characteristics of the conventional battery and the battery of the present invention are shown in FIG.

但し、表1の放電容量比は、初期容量に対する200サイ
クル後の0.2Cにおける容量比較を百分率で表わしたもの
である。
However, the discharge capacity ratio in Table 1 is a percentage comparison of the capacity at 0.2 C after 200 cycles with respect to the initial capacity.

表1と第3図から明らかな様に、従来型電池Aの電池内
圧は10kg/cm2まで達し、一部漏液現象が観察され、電解
液の減少からおこる内部抵抗の増大による放電容量の減
少も大きい。200サイクル後における放電容量は1.2Ahを
示し、初期容量の40%程減少している。これは、過充電
時にニッケル正極から発生する酸素ガスによって水素吸
蔵合金が酸化され、水素を吸蔵する能力が低下している
事にも起因している。従来型電池Bは電池内圧の上昇は
減少し、負極表面での酸素ガス吸収は比較的円滑に進行
しているが、200サイクル後における放電容量は1.5Ahを
示し、初期容量の25%程減少している。この電池の容量
低下は電極自体の内部抵抗が充・放電サイクルと共に増
大するものと考えられる。即ち、電極内の炭素質の被覆
合金粒子間の結合力が弱まって、接触抵抗が増大し、放
電容量が低下している。第3図に示す様に電池Aの初期
における電流−電圧特性は優れているが、これに対して
電池Bの特性は悪い。とくに高電流における程端子電圧
の降下が大きい。この事からも電池Bは初期においても
電池の内部抵抗が高い事がわかる。この様に従来型電池
Aはとくに電池内圧と充・放電サイクル寿命において、
また電池Bは高率放電特性において問題がある。
As is clear from Table 1 and FIG. 3, the internal pressure of the conventional type battery A reached 10 kg / cm 2 , and some leakage phenomenon was observed, and the discharge capacity of the internal battery increased due to the decrease of the electrolyte. The decrease is also large. The discharge capacity after 200 cycles is 1.2 Ah, which is about 40% of the initial capacity. This is also due to the fact that the hydrogen storage alloy is oxidized by the oxygen gas generated from the nickel positive electrode during overcharge, and the ability to store hydrogen is reduced. In the conventional battery B, the increase in the internal pressure of the battery is reduced and the absorption of oxygen gas on the surface of the negative electrode proceeds relatively smoothly, but the discharge capacity after 200 cycles shows 1.5 Ah, which is about 25% of the initial capacity. is doing. It is considered that this decrease in battery capacity is caused by the internal resistance of the electrode itself increasing with charge / discharge cycles. That is, the bonding force between the carbonaceous coating alloy particles in the electrode is weakened, the contact resistance is increased, and the discharge capacity is reduced. As shown in FIG. 3, the current-voltage characteristics of the battery A in the initial stage are excellent, whereas the characteristics of the battery B are poor. Especially, the higher the current, the larger the drop in terminal voltage. This also shows that the battery B has a high internal resistance even in the initial stage. In this way, the conventional battery A, especially in terms of battery internal pressure and charge / discharge cycle life,
Battery B also has a problem in high rate discharge characteristics.

これに対して本発明部電池C,D,Eは電池内圧も2.5〜4.0k
g/cm2の値を示し、放電容量も92〜95%を維持し、しか
も電流−電圧特性も優れている事がわかる。本発明電池
Cは負極表面を導電性の高い膨脹黒鉛の微粉末で包囲し
ているために、酸素ガス吸収機能は少し低いが高率放電
性能が優れている。電池Dは負極表面を比表面積の大き
い非晶質カーボンの微粉末で包囲しているために、高率
放電性能は少し劣るが酸素ガス吸収機能が優れ、電池内
圧の上昇を抑制する。さらに、電池Eは負極表面を導電
性の高い膨脹黒鉛の微粉末と比表面積の大きい非晶質カ
ーボンの微粉末の混合物で包囲しているために、膨脹黒
鉛と非晶質カーボン両者の相剰効果によって、負極表面
における酸素ガスの吸収能力、酸素ガスによる耐酸化
性、電極の抵抗などに優れた性質を合わせ持って、過充
電時の電池内圧力上昇が少なく、充・放電サイクル寿命
が長く、しかも高率放電特性などに優れた特徴を示す。
On the other hand, the batteries C, D, E of the present invention also have a battery internal pressure of 2.5 to 4.0 k.
It shows a value of g / cm 2 , discharge capacity is maintained at 92 to 95%, and the current-voltage characteristics are excellent. In the battery C of the present invention, since the surface of the negative electrode is surrounded by the fine powder of expanded graphite having high conductivity, the oxygen gas absorption function is slightly low, but the high rate discharge performance is excellent. In Battery D, since the surface of the negative electrode is surrounded by fine powder of amorphous carbon having a large specific surface area, the high-rate discharge performance is slightly inferior, but the oxygen gas absorption function is excellent, and the increase in battery internal pressure is suppressed. Further, since the battery E surrounds the surface of the negative electrode with a mixture of fine powder of expanded graphite having high conductivity and fine powder of amorphous carbon having a large specific surface area, the residual amount of both expanded graphite and amorphous carbon is retained. Depending on the effect, it has excellent properties such as oxygen gas absorption capacity on the negative electrode surface, oxidation resistance by oxygen gas, electrode resistance, etc., so that the pressure rise in the battery during overcharge is small and the charge / discharge cycle life is long. Moreover, it exhibits excellent characteristics such as high rate discharge characteristics.

好ましくは負極表面の酸素ガス吸収層を構成する膨脹黒
鉛粉末および非晶質カーボン粉末の平均粒径が水素吸蔵
合金又は水素化物粉末の平均粒径より小さい方がよい。
酸素ガス吸収層を構成する粒子が細かい程、電極表面で
の密着性がよく、充・放電中脱落現象をおこしにくい。
水素吸蔵合金又は水素化物粉末の平均粒径は約50μm以
下が特性上優れているので、少なくとも酸素ガス吸収層
を構成する粒子も0.01〜50μmの範囲内が最適である。
逆に細か過ぎると製造上の問題からコストアップとなり
経済性の上から好ましくない。
Preferably, the average particle size of the expanded graphite powder and the amorphous carbon powder forming the oxygen gas absorption layer on the surface of the negative electrode is smaller than the average particle size of the hydrogen storage alloy or hydride powder.
The finer the particles that make up the oxygen gas absorption layer, the better the adhesion on the electrode surface, and the less likely it is to drop out during charging and discharging.
Since the average particle size of the hydrogen storage alloy or hydride powder is excellent at about 50 μm or less in terms of characteristics, at least the particles forming the oxygen gas absorption layer are optimally in the range of 0.01 to 50 μm.
On the other hand, if it is too fine, the cost will increase due to manufacturing problems, which is not preferable from the economical viewpoint.

本実施例では水素吸蔵合金を機械的に粉砕した粉末を用
いたが、水素吸蔵合金を水素化させて細分化した水素化
物を用いることも出来る。水素化した粉末を必要に応じ
て脱水素化した状態で負極を作り、密閉型アルカリ蓄電
池を構成し、特性を測定したが同様な値が得られた。ま
た、膨脹黒鉛粉末や非晶質カーボン粉末に触媒金属を担
持させると酸素ガス吸収能力は向上するが価格の点で問
題となるので、簡易な方法で少量添加する事が望まし
い。
In this embodiment, a powder obtained by mechanically crushing a hydrogen storage alloy was used, but a hydride obtained by hydrogenating the hydrogen storage alloy and subdividing the hydrogen storage alloy may also be used. The hydrogenated powder was dehydrogenated as needed to form a negative electrode, and a sealed alkaline storage battery was constructed. The characteristics were measured, and similar values were obtained. Further, when a catalyst metal is supported on the expanded graphite powder or the amorphous carbon powder, the oxygen gas absorption capacity is improved, but this poses a problem in terms of cost, so it is desirable to add a small amount by a simple method.

発明の効果 以上の様に、本発明によれば過充電時における安全性が
高く、高率放電特性が優れ、充・放電サイクル寿命の長
い高容量の密閉型アルカリ蓄電池を提供できるという効
果が得られる。
Effects of the Invention As described above, according to the present invention, it is possible to provide a high-capacity sealed alkaline storage battery having high safety during overcharge, excellent high rate discharge characteristics, and long charge / discharge cycle life. To be

【図面の簡単な説明】[Brief description of drawings]

第1図A,Bは本発明における負極板の構造を示した側面
図及び正面図、第2図は本発明の実施例における密閉型
アルカリ蓄電池の構成を示す図、第3図は本発明電池と
従来型電池における電流−電圧特性の比較を示した図で
ある。 1……負極板、10……水素吸蔵合金、11……酸素ガス吸
収層。
1A and 1B are a side view and a front view showing the structure of a negative electrode plate in the present invention, FIG. 2 is a view showing the constitution of a sealed alkaline storage battery in an embodiment of the present invention, and FIG. 3 is a battery of the present invention. FIG. 6 is a diagram showing a comparison of current-voltage characteristics in a conventional battery and a conventional battery. 1 ... Anode plate, 10 ... Hydrogen storage alloy, 11 ... Oxygen gas absorption layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物正極と、水素吸蔵合金又は水素
化物からなる負極と、セパレータおよびアルカリ電解液
を備え、前記負極の表面に膨脹黒鉛と非晶質カーボンの
いずれか一方又は両者と結合剤とからなる酸素ガス吸収
層を設けた密閉型アルカリ蓄電池。
1. A metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, and the surface of the negative electrode is bonded to either or both of expanded graphite and amorphous carbon. A sealed alkaline storage battery provided with an oxygen gas absorption layer composed of an agent.
【請求項2】負極表面の酸素ガス吸収層を構成する膨脹
黒鉛粉末および非晶質カーボン粉末の平均粒径が水素吸
蔵合金又は水素化物粉末の平均粒径より小さく、しかも
その粒径が主に0.01〜50μmの範囲内にある特許請求の
範囲第1項記載の密閉型アルカリ蓄電池。
2. The average particle size of the expanded graphite powder and the amorphous carbon powder forming the oxygen gas absorption layer on the surface of the negative electrode is smaller than the average particle size of the hydrogen storage alloy or hydride powder, and the particle size is mainly The sealed alkaline storage battery according to claim 1, which is within a range of 0.01 to 50 μm.
JP62027709A 1987-02-09 1987-02-09 Sealed alkaline storage battery Expired - Lifetime JPH0763004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62027709A JPH0763004B2 (en) 1987-02-09 1987-02-09 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027709A JPH0763004B2 (en) 1987-02-09 1987-02-09 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63195960A JPS63195960A (en) 1988-08-15
JPH0763004B2 true JPH0763004B2 (en) 1995-07-05

Family

ID=12228525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027709A Expired - Lifetime JPH0763004B2 (en) 1987-02-09 1987-02-09 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0763004B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250369A (en) * 1989-02-23 1993-10-05 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
US5034289A (en) * 1989-02-23 1991-07-23 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method of producing negative electrode thereof
US5346781A (en) * 1989-02-23 1994-09-13 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
JP4179648B2 (en) * 1997-07-08 2008-11-12 三洋電機株式会社 Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion

Also Published As

Publication number Publication date
JPS63195960A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
EP0386305B1 (en) Alkaline storage battery and method of producing negative electrode thereof
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3387381B2 (en) Alkaline storage battery
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
JPH0763004B2 (en) Sealed alkaline storage battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0815077B2 (en) Sealed alkaline storage battery
JP2692936B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3071026B2 (en) Metal hydride storage battery
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH0810596B2 (en) Metal oxide / hydrogen battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH0690922B2 (en) Sealed alkaline storage battery
JPH0763005B2 (en) Sealed alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH0234433B2 (en)
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH0562674A (en) Alkaline storage battery
JPH05335015A (en) Hydrogen storage electrode
JPH0831314B2 (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term