JPH0763005B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH0763005B2
JPH0763005B2 JP62028816A JP2881687A JPH0763005B2 JP H0763005 B2 JPH0763005 B2 JP H0763005B2 JP 62028816 A JP62028816 A JP 62028816A JP 2881687 A JP2881687 A JP 2881687A JP H0763005 B2 JPH0763005 B2 JP H0763005B2
Authority
JP
Japan
Prior art keywords
particles
hydrogen storage
storage alloy
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62028816A
Other languages
Japanese (ja)
Other versions
JPS63195961A (en
Inventor
伸行 柳原
宗久 生駒
博志 川野
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62028816A priority Critical patent/JPH0763005B2/en
Publication of JPS63195961A publication Critical patent/JPS63195961A/en
Publication of JPH0763005B2 publication Critical patent/JPH0763005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素を可逆的に吸蔵・放出する合金又は水素化
物からなる電極・すなわち水素吸蔵電極を負極とし、金
属酸化物電極を正極とする密閉型アルカリ蓄電池に係わ
るもので特に負極の改良に関するものである。
TECHNICAL FIELD The present invention relates to an electrode of an alloy or hydride that reversibly stores and releases hydrogen, that is, a hydrogen storage electrode as a negative electrode and a metal oxide electrode as a positive electrode. The present invention relates to alkaline storage batteries, and more particularly to improvements in negative electrodes.

従来の技術 従来、この種の水素吸蔵電極を負極とするアルカリ蓄電
池では、充・放電サイクルの繰り返しによって負極を構
成する水素吸蔵合金又は水素化物が細分子し、あるいは
膨張による亀裂が発生し、電極支持体から脱落するなど
の理由により電池性能の低下がおこる。この現象はとく
に開放型アルカリ蓄電池に顕著に現われる。そこで、水
素吸蔵合金粒子の表面を銅で被覆する事によって上記の
問題点を解決しようとする試みが提案されている(特開
昭50−111546号公報)。すなわち、水素吸蔵合金又は水
素化粒子の表面に銅・ニッケルを無電解メッキによっ
て、被覆膜を施す事により、電極自体の機械的強度と電
気導伝性の向上を図っている負極が提案されている。
2. Description of the Related Art Conventionally, in an alkaline storage battery using this type of hydrogen storage electrode as a negative electrode, the hydrogen storage alloy or hydride constituting the negative electrode becomes fine molecules due to repeated charge / discharge cycles, or cracks due to expansion occur, and the electrode The performance of the battery deteriorates because it falls off the support. This phenomenon is particularly noticeable in open-type alkaline storage batteries. Therefore, an attempt has been proposed to solve the above problems by coating the surface of the hydrogen storage alloy particles with copper (Japanese Patent Laid-Open No. 50-111546). That is, a negative electrode is proposed in which the surface of a hydrogen storage alloy or hydrogenated particles is coated with copper / nickel by electroless plating to provide a coating film to improve the mechanical strength and electrical conductivity of the electrode itself. ing.

この負極を用いると電極自体の機械的強度と導電性は良
くなり、電池性能は向上する。その反面水素吸蔵合金粒
子の表面を被覆する金属は水素に対して不活性であるた
めに、水素貯蔵量によって規制を受けるエネルギー貯蔵
容量には無関係である。従って、この被覆金属部分が多
いとその分量だけ単位重量当たりの容量は減少すること
になる。また、この構成では正極で発生する酸素ガスを
負極表面で還元反応により水にする必要があるが、酸素
ガスの発生より消費する反応がおくれ、電池内に酸素ガ
スが蓄積して電池内圧を上昇させる。とくに、急速充電
時においてこの現象が顕蓄に現われ、安全性の点でも問
題となる。
The use of this negative electrode improves the mechanical strength and conductivity of the electrode itself and improves the battery performance. On the other hand, since the metal coating the surface of the hydrogen storage alloy particles is inert to hydrogen, it is irrelevant to the energy storage capacity regulated by the hydrogen storage amount. Therefore, if the coated metal portion is large, the capacity per unit weight is reduced by that amount. Also, in this configuration, oxygen gas generated at the positive electrode needs to be converted to water by a reduction reaction on the surface of the negative electrode, but the reaction that consumes the oxygen gas generation is delayed, and oxygen gas accumulates in the battery, increasing the battery internal pressure. Let In particular, this phenomenon is manifested during rapid charging, which poses a problem in terms of safety.

そこで、これらの問題点を改善するために、表面を炭素
質によって被覆した水素吸蔵合金粉末を用いた水素吸蔵
合金電極が提案されている(特開昭61−185863号公
報)。
Therefore, in order to solve these problems, a hydrogen storage alloy electrode using a hydrogen storage alloy powder whose surface is coated with a carbonaceous material has been proposed (JP-A-61-185863).

発明が解決しようとする問題点 前記の炭素質を被覆した水素吸蔵合金粉末からなる負極
を用いると電極自体の耐酸化性は向上し、水素吸蔵合金
の酸化を抑制し電極寿命の向上に役立つが、その反面、
炭素質は金属などと比べて比較的抵抗が大きく水素吸蔵
合金電極の導電性を大きく減少させる。よって、電池を
構成した場合、高電流放電において電極の抵抗分極のた
めに電圧の低下が大きくなる。また、炭素質の部分が多
いとその分量だけ、単位重量,単位容積当りの容量が小
さくなる。
Problems to be solved by the invention When the negative electrode made of the hydrogen storage alloy powder coated with the carbonaceous material described above is used, the oxidation resistance of the electrode itself is improved, and it is useful for suppressing the oxidation of the hydrogen storage alloy and improving the electrode life. ,On the other hand,
Carbonaceous materials have a relatively high resistance as compared with metals and the like, and greatly reduce the conductivity of the hydrogen storage alloy electrode. Therefore, when a battery is constructed, the voltage drop becomes large due to the resistance polarization of the electrodes at high current discharge. Further, when the carbonaceous portion is large, the capacity per unit weight and unit volume is reduced by the amount.

そこで、本発明は、このような問題点を解決するもの
で、比較的充電電流の大きい場合でも酸素ガスによる水
素吸蔵合金の酸化防止と負極表面での酸素吸収又は酸素
のイオン化をバランス良く進行させて、電池内圧上昇の
抑制と充・放電サイクル寿命の伸長を図り、高率放電も
優れた特性を得ることを目的とするものである。
Therefore, the present invention is to solve such a problem, to prevent the oxidation of the hydrogen storage alloy by oxygen gas and oxygen absorption or oxygen ionization on the negative electrode surface to proceed in a well-balanced manner even when the charging current is relatively large. The purpose of the present invention is to suppress the rise in internal pressure of the battery, to extend the charge / discharge cycle life, and to obtain excellent characteristics for high rate discharge.

問題点を解決するための手段 この問題点を解決するために本発明は金属酸化物正極
と、水素吸蔵合金または水素化物からなる負極と、セパ
レータ及びアルカリ電解液を備え、前記負極の表面に炭
素粒子(子粒子)で被覆した水素吸蔵合金又は水素化物
粉末(母粒子)と結着剤からなる酸化抑制層を設けたも
のである。さらに好ましくは母粒子の表面を被覆する子
粒子の平均粒径は母粒子の平均粒径より1/10〜1/100程
小さく、母粒子の粒子範囲が0.1〜50μm,子粒子の粒子
範囲を0.01〜5μmとしたものである。
Means for Solving the Problems In order to solve this problem, the present invention comprises a metal oxide positive electrode, a negative electrode composed of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, and carbon on the surface of the negative electrode. An oxidation inhibiting layer comprising a hydrogen storage alloy or hydride powder (mother particles) coated with particles (child particles) and a binder is provided. More preferably, the average particle size of the child particles coating the surface of the mother particles is about 1/10 to 1/100 smaller than the average particle size of the mother particles, the particle range of the mother particles is 0.1 to 50 μm, and the particle range of the child particles is It is set to 0.01 to 5 μm.

作用 このように水素吸蔵合金又は水素化物粒子の表面を導電
性,触媒作用,および耐酸化性のある炭素粒子で被覆し
た水素吸蔵合金又は水素化物粉末とフッ素樹脂などの結
着材からなる混合物を水素吸蔵合金又は水素化物からな
る電極基体の表面にのみ形成することにより、負極表面
の酸素触媒作用と酸化抑制作用を有すると共に、単位容
積、重量当たりの放電容量の向上につながる。また高率
充電特性にも優れる。これは、負極表面に形成している
炭素粒子で被覆している水素吸蔵合金も放電容量に関与
しているためである。
Action As described above, a mixture of a hydrogen storage alloy or hydride powder in which the surface of the hydrogen storage alloy or hydride particle is coated with carbon particles having electrical conductivity, catalytic action, and oxidation resistance and a binder such as a fluororesin is used. By forming only on the surface of the electrode substrate made of a hydrogen storage alloy or a hydride, it has an oxygen catalytic action and an oxidation inhibiting action on the surface of the negative electrode, and leads to improvement of the discharge capacity per unit volume and weight. It also has excellent high-rate charging characteristics. This is because the hydrogen storage alloy coated with the carbon particles formed on the surface of the negative electrode also contributes to the discharge capacity.

また、炭素粒子で被覆している水素吸蔵合金又は水素化
物粉末と結着材の混合物からなる表面層は多孔性でしか
も表面積が大きいから酸素触媒作用と炭素粒子の耐酸化
性による酸化抑制作用を助長して電池内圧の上昇抑制と
耐久性の向上を図ることができる。
Further, since the surface layer composed of the mixture of hydrogen storage alloy or hydride powder coated with carbon particles and the binder is porous and has a large surface area, it has an oxygen catalytic action and an oxidation suppressing action due to the oxidation resistance of carbon particles. This can be promoted to suppress the increase in battery internal pressure and improve the durability.

以下その詳細は実施例で説明する。The details will be described in the following examples.

実 施 例 市販のMm(ミッシュメタル)、La,Ni,Coから構成される
試料を一定の組成比に秤量、混合し、アーク溶解法によ
り加熱溶解させた。一例として、合金組成であるMm0.5L
a0.5Ni3.5Co1.5を負極用の水素蔵合金とした。この合金
を粉砕機で37μm以下まで粉砕し発泡状金属内に結着材
と共に充填し、その後加圧、乾燥して負極試料aとし
た。つぎに粉砕機で粉砕した合金粒子の表面に炭素の微
粒子を強固に結合させて、合金粒子の表面改質を行なっ
た試料粉末に数%濃度のフッ素樹脂の分散液を適量加
え、ペースト状となし、このペーストを先の負極試料a
の表面に塗着し、乾燥、熱処理に行なった表面改質型電
極を負極試料bとした。また、合金粒子の表面を炭素で
改質して試料粉末のみを用いて負極試料aと同じ方法で
製造した電極を負極試料cとした。
Example A commercially available sample composed of Mm (Misch metal), La, Ni, and Co was weighed and mixed at a certain composition ratio, and heated and melted by an arc melting method. As an example, the alloy composition is Mm 0.5 L
a 0.5 Ni 3.5 Co 1.5 was used as the hydrogen storage alloy for the negative electrode. This alloy was crushed to 37 μm or less by a crusher, filled in a foam metal together with a binder, and then pressed and dried to obtain a negative electrode sample a. Next, the fine particles of carbon are firmly bonded to the surface of the alloy particles crushed by a crusher, and a suitable amount of a dispersion liquid of a fluororesin having a concentration of several% is added to the sample powder that has been subjected to the surface modification of the alloy particles to form a paste. None, use this paste as the negative electrode sample a
The surface-modified electrode applied to the surface of, and dried and heat-treated was used as a negative electrode sample b. Further, an electrode manufactured by the same method as the negative electrode sample a by modifying the surface of the alloy particles with carbon and using only the sample powder was designated as the negative electrode sample c.

ここで、表面改質法に用いた方法はその1例として「化
学装置」1986年9月号(P.19)記載のハイブリダイゼー
ションシステムを応用した。この表面改質法は合金粒子
(母粒子)の表面に静電気的にカーボン粒子(子粒子)
を付着させる。この状態では母粒子と炭素粒子との結合
力が弱く、脱落するので、さらに、この炭素で被覆した
合金粉末を回転ドラムの中で粉末を回転させて母粒子の
表面に炭素粒子を打ち込むように衝撃を与え、強固に炭
素を被覆した合金粉末を作る事が出来る。
Here, as the method used for the surface modification method, the hybridization system described in "Chemical apparatus" September 1986 (P.19) was applied as an example. In this surface modification method, carbon particles (child particles) are electrostatically charged on the surface of alloy particles (mother particles).
Attach. In this state, the bonding force between the mother particles and the carbon particles is weak, and the carbon particles fall off.Therefore, the carbon-coated alloy powder is rotated in a rotating drum so that the carbon particles are driven into the surface of the mother particles. It is possible to give an impact and to make an alloy powder with a strong carbon coating.

この各負極試料a,b,cにリードを取り付け電極とした。
未処理の水素吸蔵合金粉末と電極表面に形成する改質型
の水素吸蔵合金粉末両者合わせて15gを用いた。公知の
発泡状ニッケル正極をセパレータを介して公称2Ahの密
閉型アルカリ蓄電池を構成し各々電池をA,B,Cとする。
第1図に炭素で改質した水素吸蔵合金の構造を示し、第
2図に負極の構成を示し、第3図に密閉型アルカリ蓄電
池を示す。
A lead was attached to each of the negative electrode samples a, b, and c to serve as an electrode.
A total of 15 g of the untreated hydrogen storage alloy powder and the modified hydrogen storage alloy powder formed on the electrode surface were used. A publicly known foamed nickel positive electrode is used to form a sealed alkaline storage battery of nominal 2 Ah through a separator, and the batteries are designated as A, B, and C, respectively.
FIG. 1 shows the structure of a hydrogen storage alloy modified with carbon, FIG. 2 shows the constitution of the negative electrode, and FIG. 3 shows a sealed alkaline storage battery.

第1図において(I)は水素吸蔵合金粒子(母粒子)1
の表面に炭素粒子(子粒子)2が付着した状態であり、
(II)は水素吸蔵合金粒子(母粒子)1の表面から炭素
粒子(子粒子)2が一部内部に食い込んでいる状態を示
したものであり、炭素粒子が強固に結合している。第2
図において(I)は水素吸蔵合金3からなる基板の両面
に酸化抑制層4を形成した負極板5を示す。(II)は負
極5の断面を表わし、(III)は(II)の断面の一部を
拡大した図であり、水素吸蔵合金粒子6に表面改質され
た合金粒子7が配列され、表面改質された合金粒子7及
び水素吸蔵合金粒子6の結合剤にフッ素樹脂8が介在し
ている。
In FIG. 1, (I) is a hydrogen storage alloy particle (mother particle) 1
The carbon particles (child particles) 2 are attached to the surface of the
(II) shows a state in which carbon particles (child particles) 2 partially invade the surface of the hydrogen storage alloy particles (mother particles) 1 and the carbon particles are firmly bonded. Second
In the figure, (I) shows a negative electrode plate 5 in which an oxidation suppressing layer 4 is formed on both surfaces of a substrate made of a hydrogen storage alloy 3. (II) is a cross section of the negative electrode 5, (III) is an enlarged view of a part of the cross section of (II), and the surface-modified alloy particles 7 are arranged on the hydrogen storage alloy particles 6 to improve the surface modification. The fluororesin 8 is present in the binder of the refined alloy particles 7 and the hydrogen storage alloy particles 6.

第3図において、水素吸蔵合金からなる負極9とニッケ
ル正極10はセパレータ11を介して渦巻き状に巻回され、
負極端子を兼ねるケース12に挿入される。なお極板群の
上、下は絶縁板13,14が当てがわれ、安全弁15のある封
口板16でケース12の開口部は密閉化されている。17は封
口板16を介して正極リード18と接続してキャップ状の正
極端子である。なお充電時に負極からの水素発生を抑制
するために正極容量より負極容量を大きくし正極律則と
した。電池の充・放電条件として0.3C(667ma)で5時
間充電(150%充電)し、0.2C(400ma)で放電した。充
・放電サイクル試験の温度はすべて25℃とし、各種電池
の150%充電時における電池内圧を測定した。電池内圧
の測定は50サイクル後に行なった。また、初期容量に対
する200サイクル後の0.2Cにおける容量比較も行なっ
た。この測定結果を従来型電池A,Cと本発明電池Bとを
比較して表1に示す。
In FIG. 3, a negative electrode 9 made of a hydrogen storage alloy and a nickel positive electrode 10 are spirally wound via a separator 11,
It is inserted into the case 12 which also serves as the negative electrode terminal. The insulating plates 13 and 14 are applied to the upper and lower sides of the electrode plate group, and the opening of the case 12 is sealed by a sealing plate 16 having a safety valve 15. Reference numeral 17 is a cap-shaped positive electrode terminal connected to the positive electrode lead 18 via the sealing plate 16. In order to suppress the generation of hydrogen from the negative electrode during charging, the negative electrode capacity was made larger than the positive electrode capacity, and the positive electrode law was adopted. The battery was charged / discharged at 0.3 C (667 ma) for 5 hours (150% charge) and discharged at 0.2 C (400 ma). The temperature of the charge / discharge cycle test was set to 25 ° C, and the internal pressure of each battery was measured at 150% charge. The battery internal pressure was measured after 50 cycles. In addition, the capacity at 0.2C after 200 cycles was compared with the initial capacity. The measurement results are shown in Table 1 comparing the conventional batteries A and C with the battery B of the present invention.

表1からわかる様に電池Aの内圧は10Kg/cm2まで達し、
一部漏液現象が観察され、電解液の減少からおこる内部
抵抗の増大による放電容量の減少も大きい。200サイク
ル後における放電容量は1.2Ahを示し、初期容量の40%
程減少している。これは、過充電時にニッケル正極から
発生する酸素ガスによって水素吸蔵合金が酸化され、水
素を吸蔵する能力が低下している事にも起因している。
一方、電池Cの内圧は3Kg/cm2であり、電池Bと大差な
いが、放電容量は1.5Ahを示し、初期容量の25%減少し
ているが、電池Bの放電容量は1.8Ahを示し、初期容量
の10%の低下にとどまっている。電池Bと比較して、電
池Cの放電容量の低下割合いが大きいのは、電池Cの方
が電極自体の内部抵抗が充・放電サイクルと共に増大す
るものと考えられる。即ち電極内の炭素被覆合金粒子間
の結合力が弱まって、接触抵抗が増大し、放電容量が低
下している。つぎに各電池の電流−電圧特性を測定し、
第4図に示す。この電流−電圧曲線は初期の特性であ
り、電池AとBは殆んど差はないが、電池Cの特性は電
池A,Bと比較して良くない事がわかる。電池Cは先にも
述べた様に放電初期の状態においても、水素吸蔵合金粒
子の表面を耐酸化性の炭素粒子で被覆しているために、
金属の抵抗値よりはるかに大きな抵抗値を持つ炭素粒子
を水素吸蔵合金粒子間にすべて介在しているので、水素
吸蔵合金粒子間の接触抵抗が大きく、当然、電極自体の
分極も大きくなるために、高率放電を行なうと電圧降下
が大きくなる。電流値4A(2C相当)放電では、電池A,B
と比べて電池Cは0.05Vの差を生じている。
As can be seen from Table 1, the internal pressure of Battery A reaches 10 kg / cm 2 ,
A partial liquid leakage phenomenon was observed, and the discharge capacity was greatly reduced due to the increase in internal resistance caused by the decrease in the electrolyte solution. Discharge capacity after 200 cycles shows 1.2Ah, 40% of initial capacity
It is decreasing. This is also due to the fact that the hydrogen storage alloy is oxidized by the oxygen gas generated from the nickel positive electrode during overcharge, and the ability to store hydrogen is reduced.
On the other hand, the internal pressure of Battery C is 3 kg / cm 2, which is not much different from that of Battery B, but the discharge capacity is 1.5 Ah, which is 25% of the initial capacity, but the discharge capacity of Battery B is 1.8 Ah. , The initial capacity has been reduced by 10%. It is considered that the decrease rate of the discharge capacity of the battery C is larger than that of the battery B because the internal resistance of the electrode itself of the battery C increases with charge / discharge cycles. That is, the bonding force between the carbon-coated alloy particles in the electrode is weakened, the contact resistance is increased, and the discharge capacity is reduced. Next, measure the current-voltage characteristics of each battery,
It is shown in FIG. This current-voltage curve shows the initial characteristics, and although there is almost no difference between the batteries A and B, it can be seen that the characteristics of the battery C are not as good as those of the batteries A and B. As described above, in the battery C, even in the initial state of discharge, the surface of the hydrogen storage alloy particles is covered with the oxidation resistant carbon particles,
Since all carbon particles having a resistance value much larger than the resistance value of the metal are interposed between the hydrogen storage alloy particles, the contact resistance between the hydrogen storage alloy particles is large, and naturally the polarization of the electrode itself is also large. The voltage drop increases when high-rate discharge is performed. When discharging current of 4A (equivalent to 2C), batteries A and B
In comparison with the battery C, the difference is 0.05V.

これに対して、本発明の電池Bは第1図の(II)の様
に、粒径0.1〜50μmの水素吸蔵合金粒子(母粒子)の
表面内に粒径0.01〜5μmの炭素粒子を打ち込む型で結
合させた表面改質の水素吸蔵合金粉末を第2図に示すよ
うに水素吸蔵合金からなる負極の表面にのみ配置する事
によって、負極自体の抵抗を大きくする事なく、また過
充電時にニッケル正極から発生する酸素ガスに対しても
耐酸化性の炭素が水素吸蔵合金の酸化を防止し、さらに
は100m2/g以上の大きい比表面積を持つ炭素粒子が酸素
触媒の働きをし、過充電時の電池内圧の上昇を抑制し、
電池の長寿命化を達成している。同時に放電容量の低下
が減少し、高率放電特性も優れ、従来型電池と比べて実
用上価値の高いものである。この様に高率充電におい
て、電池内圧力の上昇抑制と高容量化が得られた理由と
して、負極板の表面において、正極から発生する酸素ガ
スを効率よく吸収する酸素触媒の働きと共に、この酸素
ガスによる水素吸蔵合金表面の酸化を抑制し、炭素粒子
で被覆した水素吸蔵合金も放電容量に寄与している。ま
た、炭素粒子を酸化抑制層に用いているので、酸化抑制
層の表面層の表面積が大きく酸素触媒も非常に活性とな
り、酸素吸収速度を早くしているものと考えられる。
On the other hand, in the battery B of the present invention, as shown in (II) of FIG. 1, carbon particles having a particle size of 0.01 to 5 μm are implanted into the surface of hydrogen storage alloy particles (mother particles) having a particle size of 0.1 to 50 μm. By disposing the surface-modified hydrogen-absorbing alloy powder bonded in a mold only on the surface of the negative electrode made of hydrogen-absorbing alloy as shown in FIG. 2, without increasing the resistance of the negative electrode itself and during overcharging. Carbon, which is oxidation resistant to the oxygen gas generated from the nickel positive electrode, prevents the hydrogen storage alloy from being oxidized, and further, carbon particles having a large specific surface area of 100 m 2 / g or more act as an oxygen catalyst. Suppresses the rise in battery internal pressure during charging,
Achieved longer battery life. At the same time, the decrease in discharge capacity is reduced and the high rate discharge characteristics are excellent, which is of high practical value as compared with conventional batteries. In such high-rate charging, the reason why the increase in battery internal pressure and the increase in capacity are obtained is that the oxygen catalyst works efficiently on the surface of the negative electrode plate to absorb the oxygen gas generated from the positive electrode. Oxidation of the surface of the hydrogen storage alloy due to gas is suppressed, and the hydrogen storage alloy coated with carbon particles also contributes to the discharge capacity. Further, since the carbon particles are used for the oxidation inhibiting layer, it is considered that the surface layer of the oxidation inhibiting layer has a large surface area and the oxygen catalyst becomes very active, thereby increasing the oxygen absorption rate.

本実施例の様に、酸化抑制層を形成する時にフッ素樹脂
を用いることにより、酸素触媒の活性度を低下させない
で、両粉末を結合させることが出来る。金属を被覆した
水素吸蔵合金粉末、炭素粉末、フッ素樹脂粉末が各々独
立して、両者の結合間にフッ素樹脂が介在し、両粒子の
結合を強化している。しかも表面積を減少させていない
所に大きな効果が見られる。
By using a fluororesin when forming the oxidation suppressing layer as in this example, both powders can be combined without lowering the activity of the oxygen catalyst. The hydrogen-occlusion alloy powder coated with metal, the carbon powder, and the fluororesin powder are independent of each other, and the fluororesin intervenes between the bonds to strengthen the bond between both particles. Moreover, a great effect can be seen where the surface area is not reduced.

本実施例では水素吸蔵合金を機械的に粉砕した粉末を用
いたが、水素吸蔵合金を水素化させて細分化した水素化
物を用いることも出来る。水素化した粉末を脱水素化し
た状態で負極を作り、密閉型アルカリ蓄電池を構成し、
特性を測定したが、電池Bと同様な値が得られた。
In this embodiment, a powder obtained by mechanically crushing a hydrogen storage alloy was used, but a hydride obtained by hydrogenating the hydrogen storage alloy and subdividing the hydrogen storage alloy may also be used. Making a negative electrode in the state of dehydrogenating the hydrogenated powder, to form a sealed alkaline storage battery,
When the characteristics were measured, the same value as that of the battery B was obtained.

本実施例では炭素粒子単体として用いたが、この炭素粒
子の部分に触媒金属を担持させると酸素触媒作用は向上
するので酸素ガス吸収速度を増大させる働きがある。し
かし、価格の点で問題となるので、少量添加する事が望
ましい。本発明型電池の様に負極表面に、表面改質され
た表面積の大きい水素吸蔵合金粒子が配置されているの
で、少量の触媒金属の担持でも大きな効果が期待でき
る。
In this embodiment, the carbon particles are used as a simple substance. However, when a catalytic metal is supported on the carbon particles, the oxygen catalytic action is improved, so that the oxygen gas absorption rate is increased. However, since it causes a problem in terms of price, it is desirable to add a small amount. Like the battery of the present invention, since the surface-modified hydrogen storage alloy particles having a large surface area are arranged on the surface of the negative electrode, a large effect can be expected even if a small amount of catalyst metal is carried.

水素吸蔵合金又は水素化物粉末(母粒子)の表面を改質
する炭素粒子(子粒子)の平均粒径は母粒子の平均粒径
の1/10〜1/100の範囲にある事が望ましく、この範囲外
の場合は母粒子の表面に子粒子が均質に付着結合しな
い、とくに子粒子が大きくなると脱落しやすくなり、改
質の効果がうすい、また、粒径についても表面改質効果
に大きな影響があり、母粒子は0.1〜50μm、子粒子は
0.01〜5μmの範囲が効率よく、均質に表面の改質が進
む。
The average particle size of the carbon particles (child particles) for modifying the surface of the hydrogen storage alloy or hydride powder (mother particles) is preferably 1/10 to 1/100 of the average particle size of the mother particles, Outside this range, the child particles do not adhere and bond uniformly to the surface of the mother particles, especially when the child particles become large, they easily fall off, the modification effect is thin, and the particle size is also large in the surface modification effect. Affects, the mother particles are 0.1-50 μm, and the child particles are
The range of 0.01 to 5 μm is efficient and the surface modification proceeds uniformly.

各々の粒子がこれ以上細か過ぎると結合効果がなくな
り、表面改質は困難となる。一方、大き過ぎると表面改
質時に母粒子がさらに粉砕されて表面改質されない面が
露出し、均質な表面改質が出来ない。
If each particle is too fine, the binding effect will be lost and surface modification will be difficult. On the other hand, if it is too large, the mother particles are further crushed during the surface modification, and the surface which is not surface modified is exposed, so that uniform surface modification cannot be performed.

よって、母粒子は0.1〜50μm,子粒子0.01〜50μm、し
かも子粒子は母粒子の1/10〜1/100の範囲が最適であ
る。
Therefore, the optimum range of the mother particles is 0.1 to 50 μm, the daughter particles are 0.01 to 50 μm, and the daughter particles are in the range of 1/10 to 1/100 of the mother particles.

発明の効果 以上の様に、本発明によれば過充電時における安全性が
高く、効率放電特性が優れ、サイクル寿命の長い、高容
量の密閉型アルカリ蓄電池を提供できるという効果が得
られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to provide a high-capacity sealed alkaline storage battery having high safety during overcharge, excellent efficiency discharge characteristics, and long cycle life.

【図面の簡単な説明】[Brief description of drawings]

第1図I,IIは本発明に用いる表面改質した水素吸蔵合金
粒子の構造をした模式図、第2図I,II,IIIは本発明にお
ける負極板の構造を示した略図、第3図は本発明の実施
例に用いた密閉型アルカリ蓄電池の構成を示す斜視図、
第4図は電流−電圧曲線を示す図である。 1……水素吸蔵合金粒子、水素化物粒子(母粒子)、2
……炭素粒子(子粒子)、3……水素吸蔵合金、水素化
物、4……酸化抑制層、5……負極板。
1 and 2 are schematic diagrams showing the structure of surface-modified hydrogen storage alloy particles used in the present invention, and FIGS. 2 I, II, and III are schematic diagrams showing the structure of the negative electrode plate in the present invention, and FIG. Is a perspective view showing a configuration of a sealed alkaline storage battery used in an embodiment of the present invention,
FIG. 4 is a diagram showing a current-voltage curve. 1 ... Hydrogen storage alloy particles, hydride particles (mother particles), 2
...... Carbon particles (child particles), 3 ... Hydrogen storage alloy, hydride, 4 ... Oxidation suppressing layer, 5 ... Negative electrode plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物正極と水素吸蔵合金又は水素化
物からなる負極と、セパレータおよびアルカリ電解液を
備え、前記負極の表面に炭素粒子(子粒子)で被覆した
水素吸蔵合金又は水素化物粉末(母粒子)と結着剤から
なる酸化抑制層を設けたことを特徴とする密閉型アルカ
リ蓄電池。
1. A hydrogen storage alloy or hydride powder comprising a metal oxide positive electrode, a negative electrode composed of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, and the surface of the negative electrode coated with carbon particles (child particles). A sealed alkaline storage battery, characterized in that an oxidation-inhibiting layer composed of (mother particles) and a binder is provided.
【請求項2】水素吸蔵合金又は水素化物粉末(母粒子)
の表面を被覆する炭素粒子(子粒子)の平均粒径は母粒
子の平均粒径の1/10〜1/100の範囲にあることを特徴と
する特許請求の範囲第1項記載の密閉型アルカリ蓄電
池。
2. Hydrogen storage alloy or hydride powder (mother particles)
The closed type according to claim 1, wherein the average particle size of the carbon particles (child particles) coating the surface of the is in the range of 1/10 to 1/100 of the average particle size of the mother particles. Alkaline storage battery.
【請求項3】水素吸蔵合金又は水素化物粉末(母粒子)
の粒子範囲が0.1〜50μmであり、母粒子を被覆する炭
素粒子(子粒子)の粒子範囲が0.01〜5μmであること
を特徴とする特許請求の範囲第1項記載の密閉型アルカ
リ蓄電池。
3. Hydrogen storage alloy or hydride powder (mother particles)
2. The sealed alkaline storage battery according to claim 1, wherein the particle range of 0.1 to 50 μm and the particle range of the carbon particles (child particles) coating the mother particles are 0.01 to 5 μm.
JP62028816A 1987-02-10 1987-02-10 Sealed alkaline storage battery Expired - Lifetime JPH0763005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028816A JPH0763005B2 (en) 1987-02-10 1987-02-10 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028816A JPH0763005B2 (en) 1987-02-10 1987-02-10 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63195961A JPS63195961A (en) 1988-08-15
JPH0763005B2 true JPH0763005B2 (en) 1995-07-05

Family

ID=12258930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028816A Expired - Lifetime JPH0763005B2 (en) 1987-02-10 1987-02-10 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0763005B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023126A1 (en) * 2009-05-20 2010-11-25 Varta Microbattery Gmbh Galvanic element with mercury-free negative electrode

Also Published As

Publication number Publication date
JPS63195961A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
EP0386305B1 (en) Alkaline storage battery and method of producing negative electrode thereof
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JP3387381B2 (en) Alkaline storage battery
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPH0763005B2 (en) Sealed alkaline storage battery
JPH0815077B2 (en) Sealed alkaline storage battery
JP3478030B2 (en) Alkaline storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH02281560A (en) Nickel-hydrogen alkaline storage battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JPH1125964A (en) Alkaline storage battery
JP3429684B2 (en) Hydrogen storage electrode
JP2689473B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH0568828B2 (en)
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPH0736333B2 (en) Sealed alkaline storage battery
JPH0935718A (en) Alkaline secondary battery
JPH07111884B2 (en) Metal oxide / hydrogen storage battery
JPH07111885B2 (en) Metal oxide-hydrogen storage battery and manufacturing method thereof
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPS60119079A (en) Hydrogen absorption electrode
JPH0234433B2 (en)
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term