JPH0562674A - Alkaline storage battery - Google Patents
Alkaline storage batteryInfo
- Publication number
- JPH0562674A JPH0562674A JP3219657A JP21965791A JPH0562674A JP H0562674 A JPH0562674 A JP H0562674A JP 3219657 A JP3219657 A JP 3219657A JP 21965791 A JP21965791 A JP 21965791A JP H0562674 A JPH0562674 A JP H0562674A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- hydrogen storage
- storage alloy
- charge
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水素吸蔵合金を含む負
極と、正極とを有するアルカリ蓄電池に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery having a negative electrode containing a hydrogen storage alloy and a positive electrode.
【0002】[0002]
【従来の技術】従来から用いられている蓄電池として
は、ニッケル−カドミウム蓄電池のようなアルカリ蓄電
池、あるいは鉛蓄電池などがある。しかし、近年、これ
らの電池よりも軽量かつ高容量で高エネルギー密度にな
る可能性のある水素吸蔵合金を負極に備えた金属−水素
アルカリ蓄電池が注目されるようになった。2. Description of the Related Art Conventionally used storage batteries include alkaline storage batteries such as nickel-cadmium storage batteries and lead storage batteries. However, in recent years, a metal-hydrogen alkaline storage battery having a negative electrode of a hydrogen storage alloy that is lighter in weight, higher in capacity and higher in energy density than these batteries has been attracting attention.
【0003】ここで、上記金属−水素アルカリ蓄電池に
用いられる水素吸蔵合金としては、例えば、特公昭59
−49671号公報に示されているようにLaNi
5 や、その改良である三元素系のLaNi4 Co、La
Ni4.8 Fe0.2 などの合金が提案されている。そし
て、このような水素吸蔵合金を用いて負極を作製する場
合には、特公昭57−30273号公報に示されるよう
に、水素吸蔵合金鋳塊を粉砕することにより作成した水
素吸蔵合金粉末と導電剤粉末との混合物を、耐アルカリ
電解液性の粒子状結着剤によって電極支持体に固着させ
ることにより作製するのが一般的である。Here, examples of the hydrogen storage alloy used in the above-mentioned metal-hydrogen alkaline storage battery include, for example, Japanese Patent Publication No. 59-59.
LaNi as disclosed in Japanese Patent No. 49671.
5 and its improvement, three-element system LaNi 4 Co, La
Alloys such as Ni 4.8 Fe 0.2 have been proposed. When a negative electrode is manufactured using such a hydrogen storage alloy, as shown in Japanese Patent Publication No. 57-30273, the hydrogen storage alloy powder and the conductive material prepared by crushing the hydrogen storage alloy ingot are used. It is generally prepared by fixing a mixture with the agent powder to the electrode support with a particulate binder resistant to alkaline electrolyte.
【0004】また、上記水素吸蔵合金の他にも、Laの
代わりにMm(ミッシュメタル)を用いた各種希土類系
水素吸蔵合金も開発されており、さらに、特開昭60−
250558号公報に示されているように、MmNi3
Co1.5 Al0.5 等のようなアルミニウム、コバルトを
添加した多元素系水素吸蔵合金も提案されている。そし
て、このような多元素系水素吸蔵合金を用いた場合に
は、充放電サイクル特性を向上させることができる。In addition to the above hydrogen storage alloy, various rare earth-based hydrogen storage alloys using Mm (Misch metal) instead of La have been developed.
As disclosed in Japanese Patent No. 250558, MmNi 3
Multi-element hydrogen storage alloys such as Co 1.5 Al 0.5 and the like to which aluminum and cobalt are added have also been proposed. When such a multi-element hydrogen storage alloy is used, charge / discharge cycle characteristics can be improved.
【0005】ところで、近年、電子機器は、ますます小
型、軽量化、コードレス化され、高容量な金属−水素ア
ルカリ蓄電池が要望されるようになった。このようなコ
ードレス電子機器の電源として蓄電池に要求される特性
としては、高容量であること(小型で長時間使用できる
こと)、長寿命であること、及び短時間で充電できるこ
と(急速充電が可能であること)等がある。特に、最近
は生活様式の多様化に起因して、急速充電特性の向上に
対する要求が大きい。By the way, in recent years, electronic devices have become smaller, lighter and more cordless, and there has been a demand for high capacity metal-hydrogen alkaline storage batteries. The characteristics required of a storage battery as a power source for such a cordless electronic device are high capacity (small size and long-term use), long life, and short-time charging (quick charging is possible). There is) etc. In particular, recently, due to the diversification of lifestyles, there is a great demand for improvement of quick charging characteristics.
【0006】上記急速充電特性を改良するには、急速充
電時の電池内圧の上昇を抑制する必要がある。この場
合、水素吸蔵平衡圧の低いランタンリッチな水素吸蔵合
金を用いれば、ある程度電池内圧の上昇を抑制すること
が可能である。In order to improve the above-mentioned rapid charging characteristics, it is necessary to suppress an increase in battery internal pressure during rapid charging. In this case, if a lanthanum-rich hydrogen storage alloy having a low hydrogen storage equilibrium pressure is used, it is possible to suppress the increase in the battery internal pressure to some extent.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記ラ
ンタンリッチな水素吸蔵合金は耐食性に劣るため、充放
電サイクル特性が悪くなるという課題を有していた。本
発明は係る現状を考慮してなされたものであって、充放
電サイクル特性を低下させることなく急速充電特性を向
上させることができるアルカリ蓄電池の提供を目的とし
ている。However, since the lanthanum-rich hydrogen storage alloy is inferior in corrosion resistance, there is a problem that charge / discharge cycle characteristics are deteriorated. The present invention has been made in consideration of the present situation, and an object thereof is to provide an alkaline storage battery capable of improving rapid charge characteristics without deteriorating charge / discharge cycle characteristics.
【0008】[0008]
【課題を解決するための手段】本発明は上記目的を達成
するために、水素吸蔵合金を含む負極と、正極とを有す
るアルカリ蓄電池において、上記水素吸蔵合金には、原
子番号が63以上のランタノイドから選択される一以上
の元素が含有されていることを特徴とする。To achieve the above object, the present invention provides an alkaline storage battery having a negative electrode containing a hydrogen storage alloy and a positive electrode, wherein the hydrogen storage alloy has a lanthanoid with an atomic number of 63 or more. It is characterized by containing one or more elements selected from
【0009】[0009]
【作用】金属−アルカリ蓄電池の負極に用いられている
水素吸蔵合金は、アルカリ電解液中では下記化1のよう
な反応で充電される。The hydrogen storage alloy used in the negative electrode of a metal-alkaline storage battery is charged in an alkaline electrolyte by the reaction shown below.
【0010】[0010]
【化1】 [Chemical 1]
【0011】また、正極からの酸素の発生が開始する
と、負極では下記化2のガス吸収反応が生じる。When the generation of oxygen from the positive electrode starts, the gas absorption reaction of the following chemical formula 2 occurs in the negative electrode.
【0012】[0012]
【化2】 [Chemical 2]
【0013】この反応は、発熱反応であるため負極で酸
素ガスの吸収が開始されると、負極(電池)の温度が上
昇する。ところで、一般に、水素吸蔵合金は、温度が高
くなると水素吸蔵量(電気化学容量)が低下する。即
ち、低い温度で充電(水素の吸蔵)された水素吸蔵合金
の温度が上がると、吸蔵されていた水素ガスが急激に放
出されて、電池内圧が上昇する。そのために、水素ガス
のリークが生じて、その後の電池特性が劣化する。Since this reaction is an exothermic reaction, the temperature of the negative electrode (battery) rises when the absorption of oxygen gas by the negative electrode is started. By the way, generally, in a hydrogen storage alloy, the hydrogen storage amount (electrochemical capacity) decreases as the temperature rises. That is, when the temperature of the hydrogen storage alloy charged (storage of hydrogen) at a low temperature rises, the stored hydrogen gas is rapidly released and the internal pressure of the battery rises. As a result, hydrogen gas leaks and the subsequent battery characteristics deteriorate.
【0014】温度が上昇しても水素ガスが放出されない
ようにするためには、水素吸蔵放出平衡圧が十分低い合
金(例えば、前記ランタンリッチな合金)を用いる必要
がある。ところが、ランタン等の軽希土類は酸化され易
いため、充放電を繰り返すと酸化によって電池の内部抵
抗が上昇して、充放電サイクル特性が悪くなる。ところ
が、本発明のように原子番号が63以上のランタノイド
(重希土類)は酸化され難いので、充放電を繰り返して
も酸化が抑制される。したがって、電池の内部抵抗が上
昇せず、充放電サイクル特性を向上させることができ
る。加えて、上記軽希土類と同様、水素吸蔵放出平衡圧
が十分低いので、水素が急激に放出されて電池内圧が上
昇するようなこともない。In order to prevent hydrogen gas from being released even if the temperature rises, it is necessary to use an alloy having a sufficiently low hydrogen storage / release equilibrium pressure (for example, the lanthanum-rich alloy). However, since light rare earths such as lanthanum are easily oxidized, repeated charging / discharging increases the internal resistance of the battery and deteriorates the charge / discharge cycle characteristics. However, as in the present invention, the lanthanoid (heavy rare earth) having an atomic number of 63 or more is hard to be oxidized, so that the oxidation is suppressed even if charging and discharging are repeated. Therefore, the internal resistance of the battery does not increase, and the charge / discharge cycle characteristics can be improved. In addition, since the hydrogen storage / release equilibrium pressure is sufficiently low as in the case of the light rare earth element, hydrogen will not be rapidly released and the battery internal pressure will not rise.
【0015】[0015]
【実施例】 (第1実施例)本発明の第1実施例を、図1に基づい
て、以下に説明する。 〔実施例1〕図1は本発明の一例に係る円筒型ニッケル
−水素アルカリ蓄電池(電池容量1000mAh )の断面
図であり、焼結式ニッケルから成る正極1と、MmNi
5 (Mmはミッシュメタルであって、具体的には La0.2
Ce0.4 Pr0.1 Nd0.1 Eu0.2から成る)で示される水素吸
蔵合金を含む負極2と、これら正負両極1・2間に介挿
されたセパレータ3とから成る電極群4は渦巻状に巻回
されている。この電極群4は負極端子兼用の外装罐6内
に配置されており、この外装罐6と上記負極2とは負極
用導電タブ5により接続されている。上記外装罐6の上
部開口にはパッキング7を介して封口体8が装着されて
おり、この封口体8の内部にはコイルスプリング9が設
けられている。このコイルスプリング9は電池内部の内
圧が異常上昇したときに矢印A方向に押圧されて内部の
ガスが大気中に放出されるように構成されている。ま
た、上記封口体8と前記正極1とは正極用導電タブ10
にて接続されている。First Embodiment A first embodiment of the present invention will be described below with reference to FIG. Example 1 FIG. 1 is a cross-sectional view of a cylindrical nickel-hydrogen alkaline storage battery (battery capacity 1000 mAh) according to an example of the present invention, in which a positive electrode 1 made of sintered nickel and MmNi are used.
5 (Mm is misch metal, specifically La 0.2
Ce 0.4 Pr 0.1 Nd 0.1 Eu 0.2 ) and a negative electrode 2 containing a hydrogen storage alloy and a separator 3 interposed between the positive and negative electrodes 1 and 2 are spirally wound. ing. The electrode group 4 is arranged in an outer casing 6 which also serves as a negative electrode terminal, and the outer casing 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer casing 6 via a packing 7, and a coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. Further, the sealing body 8 and the positive electrode 1 are the conductive tab 10 for the positive electrode.
It is connected with.
【0016】ここで、上記構造の円筒型ニッケル−水素
アルカリ蓄電池を、以下のようにして作製した。先ず、
La0.2 Ce0.4 Pr0.1 Nd0.1 Eu0.2で示されるMmを作製
した後、このMmとNiとを元素比で1:5の割合とな
るように秤量した後、高周波溶解炉内で溶解して溶湯を
作成し、更にこの溶湯を冷却することにより、MmNi
5で示される合金のインゴットを作成した。次に、上記
インゴットを、粒径50μm以下となるように粉砕した
後、この水素吸蔵合金粉末に、結着剤としてのPTFE
(ポリテトラフルオロエチレン)粉末を5wt%加えて
混練し、ペーストを作成した。更に、このペーストをニ
ッケルメッキを施したパンチングメタルから成る集電体
の両面に圧着して負極2を作製した。Here, the cylindrical nickel-hydrogen alkaline storage battery having the above structure was manufactured as follows. First,
After producing Mm represented by La 0.2 Ce 0.4 Pr 0.1 Nd 0.1 Eu 0.2 , the Mm and Ni were weighed so as to have an element ratio of 1: 5, and then melted in a high-frequency melting furnace. Is prepared, and by cooling this molten metal, MmNi
An alloy ingot shown by 5 was made. Next, the above ingot is pulverized to have a particle size of 50 μm or less, and then the hydrogen-absorbing alloy powder is mixed with PTFE as a binder.
5 wt% of (polytetrafluoroethylene) powder was added and kneaded to prepare a paste. Further, this paste was pressure-bonded to both sides of a current collector made of nickel-plated punching metal to prepare a negative electrode 2.
【0017】次いで、上記負極2と、この負極2よりも
十分容量が大きな焼結式ニッケル正極1とを、不織布か
らなるセパレータ3を介して巻回し、電極群4を作製し
た。しかる後、この電極群4を外装罐6内に挿入し、更
にアルカリ電解液を上記外装罐6内に注液した後、外装
罐6を密閉することにより円筒型ニッケル−水素蓄電池
を作製した。Next, the negative electrode 2 and the sintered nickel positive electrode 1 having a sufficiently larger capacity than the negative electrode 2 were wound around a separator 3 made of a non-woven fabric to form an electrode group 4. Thereafter, the electrode group 4 was inserted into the outer casing 6, the alkaline electrolyte was poured into the outer casing 6, and then the outer casing 6 was sealed to produce a cylindrical nickel-hydrogen storage battery.
【0018】このようにして作製した電池を、以下(A
1 )電池と称する。 〔実施例2〜9〕上記Mmにおいて、Euの代わりにG
d,Tb,Dy,Ho,Er,Tm,Yb,及びLuを
それぞれ用いる他は、上記実施例1と同様にして電池を
作製した。The battery thus produced is
1 ) Called battery. [Examples 2 to 9] In the above Mm, G was used instead of Eu.
A battery was prepared in the same manner as in Example 1 except that d, Tb, Dy, Ho, Er, Tm, Yb, and Lu were used.
【0019】このようにして作製した電池を、以下それ
ぞれ(A2 )電池〜(A9 )電池と称する。 〔比較例1、2〕Mmとして、 La0.4 Ce0.4 Pr0.1 Nd
0.1、 La0.8 Pr0.1 Nd0.1をそれぞれ用いる他は、上記
実施例1と同様にして電池を作製した。The batteries thus produced are hereinafter referred to as (A 2 ) battery to (A 9 ) battery, respectively. [Comparative Examples 1 and 2] As Mm, La 0.4 Ce 0.4 Pr 0.1 Nd
A battery was made in the same manner as in Example 1 except that 0.1 and La 0.8 Pr 0.1 Nd 0.1 were used.
【0020】このようにして作製した電池を、以下それ
ぞれ(X1 )電池、(X2 )電池と称する。 〔実験1〕上記本発明の(A1 )電池〜(A9 )電池及
び比較例の(X1 )電池,(X2 )電池における、充電
後の電池内圧とサイクル特性とを測定したので、その結
果を下記表1に示す。尚、電池内圧の実験条件は、充電
電流2000mAで0.6時間充電するという条件であ
り、充電終了後の各電池の電池内圧を測定した。また、
サイクル特性の実験条件は、充放電電流1000mAで充
放電を行い、放電容量が初期の放電容量の50%に達し
た時点で寿命とした。The batteries thus produced are hereinafter referred to as (X 1 ) battery and (X 2 ) battery, respectively. [Experiment 1] Since the battery internal pressure and cycle characteristics after charging in the (A 1 ) battery to (A 9 ) battery of the present invention and the (X 1 ) battery and (X 2 ) battery of Comparative Examples were measured, The results are shown in Table 1 below. The experimental condition of the battery internal pressure was to charge the battery at a charging current of 2000 mA for 0.6 hours, and the battery internal pressure of each battery after the charging was measured. Also,
The experimental condition of the cycle characteristics was that the charging / discharging was carried out at a charging / discharging current of 1000 mA, and the life was determined when the discharging capacity reached 50% of the initial discharging capacity.
【0021】[0021]
【表1】 [Table 1]
【0022】上記表1より明らかなように、本発明の
(A1 )電池〜(A9 )電池は比較例の(X1 )電池,
(X2 )電池に比べて、急速充電時の電池内圧が低く急
速充電特性に優れると共に、充放電サイクル特性も優れ
ていることが認められる。 〔実験2〕下記表2に示すように、Euの代わりにDy
を用いると共に、Dyの量を変化(これに伴ってLa,
Seの量も変化)させる他は、上記実施例1と同様の電
池を作製した。尚、このようにして作製した電池を、以
下(B1 )電池〜(B7 )電池と称する。As is clear from Table 1 above, the (A 1 ) batteries to (A 9 ) batteries of the present invention are the (X 1 ) batteries of the comparative examples,
As compared with the (X 2 ) battery, it is recognized that the battery internal pressure at the time of rapid charging is low and the rapid charging property is excellent, and the charging / discharging cycle property is excellent. [Experiment 2] As shown in Table 2 below, Dy was used instead of Eu.
And change the amount of Dy (with this, La,
A battery similar to that in Example 1 was manufactured except that the amount of Se was also changed. The batteries thus manufactured are hereinafter referred to as (B 1 ) battery to (B 7 ) battery.
【0023】そして、上記(B1 )電池〜(B7 )電池
の充電後の電池内圧とサイクル特性とを測定したので、
その結果を下記表2に示す。尚、実験条件は、両実験共
に上記実験1と同様の条件である。Then, after measuring the battery internal pressure and the cycle characteristics of the batteries (B 1 ) to (B 7 ) after charging,
The results are shown in Table 2 below. The experimental conditions were the same as those in Experiment 1 in both experiments.
【0024】[0024]
【表2】 [Table 2]
【0025】上記表2から明らかなように、(B1 )電
池,(B7 )電池は(B2 )電池〜(B6 )電池に比べ
て、充電後の電池内圧が高くなると共に、サイクル特性
が低下していることが認められる。したがって、Dyの
添加量はモル分率において、0.01以上0.5以下で
あることが望ましい。尚、Dyのみならず、Eu等であ
っても上記の範囲内であることが望ましいことを実験に
より確認している。As is clear from Table 2 above, the (B 1 ) battery and the (B 7 ) battery have higher battery internal pressure after charging and a higher cycle than the (B 2 ) battery to the (B 6 ) battery. It is recognized that the characteristics are deteriorated. Therefore, the added amount of Dy is preferably 0.01 or more and 0.5 or less in terms of mole fraction. It has been confirmed by experiments that not only Dy but also Eu or the like is preferably within the above range.
【0026】(第2実施例)本発明の第2実施例を、図
2及び図3に基づいて、以下に説明する。 〔実施例〕市販のLa(純度99%以上)を、Ar雰囲
気の高周波溶解炉で溶融し、その中に集電体となる発泡
メタルを浸漬した後、発泡メタルを引き上げて冷却する
ことにより、発泡メタル中にLaを充填した。尚、上記
発泡メタルはNiから成り、多孔度96%、孔径約20
0μm、厚さ2mmとなるように構成されている。次い
で、Laが充填された発泡メタルを、真空中、1200
℃で約10時間熱処理する。これにより、LaとNiと
が合金化して(LaNi5で示される水素吸蔵合金とな
る)、水素吸蔵合金電極が作製される。(Second Embodiment) A second embodiment of the present invention will be described below with reference to FIGS. [Example] Commercially available La (purity: 99% or more) was melted in a high-frequency melting furnace in an Ar atmosphere, and a metal foam serving as a current collector was immersed therein, and then the metal foam was pulled up and cooled. La was filled in the foam metal. The foam metal is made of Ni and has a porosity of 96% and a pore diameter of about 20.
It is configured to have a thickness of 0 μm and a thickness of 2 mm. Next, the foamed metal filled with La was vacuumed at 1200
Heat treatment at ℃ for about 10 hours. Thereby, La and Ni are alloyed (becomes a hydrogen storage alloy represented by LaNi 5 ), and a hydrogen storage alloy electrode is produced.
【0027】この後、上記水素吸蔵合金電極(重さ:1
g)と、公知の焼結式ニッケル正極(理論容量:600
mAh )とを、ポリプロピレン製ケース内に挿入して、密
閉型ニッケル−水素蓄電池を作製した。尚、電解液とし
ては、30重量%のKOH溶液を用いている。このよう
にして作製した電池を、以下(C)電池と称する。 〔比較例〕先ず、市販のLaとNiとを元素比で1:5
の割合となるように秤量した後、アルゴン雰囲気下アー
ク溶解炉内で溶解して溶湯を作成し、更にこの溶湯を冷
却することにより、LaNi5 で示される合金のインゴ
ットを作成した。次に、上記インゴットを、機械的に粒
径50μm以下となるように粉砕した後、この水素吸蔵
合金粉末1gに対して、導電剤としてのニッケル粉末を
0.5gと、結着剤としてのPTFE(ポリテトラフル
オロエチレン)粉末を0.1g添加して混練し、ペース
トを作成した。更に、このペーストをニッケルの金網に
包んで1ton/cm2 の圧力で加圧成型して水素吸蔵合金電
極を作製した。この後、上記実施例1と同様の工程で、
電池を作製した。After that, the hydrogen storage alloy electrode (weight: 1
g) and a known sintered nickel positive electrode (theoretical capacity: 600
mAh) was inserted into a polypropylene case to produce a sealed nickel-hydrogen storage battery. A 30 wt% KOH solution is used as the electrolytic solution. The battery thus manufactured is hereinafter referred to as (C) battery. [Comparative Example] First, commercially available La and Ni were mixed at an element ratio of 1: 5.
After being weighed so as to have the above ratio, it was melted in an arc melting furnace under an argon atmosphere to prepare a molten metal, and this molten metal was further cooled to prepare an alloy ingot represented by LaNi 5 . Next, the above ingot was mechanically pulverized to have a particle size of 50 μm or less, and 0.5 g of nickel powder as a conductive agent and PTFE as a binder were added to 1 g of the hydrogen storage alloy powder. 0.1 g of (polytetrafluoroethylene) powder was added and kneaded to prepare a paste. Further, this paste was wrapped in a nickel wire mesh and pressure-molded at a pressure of 1 ton / cm 2 to prepare a hydrogen storage alloy electrode. After that, in the same process as in the first embodiment,
A battery was produced.
【0028】このようにして作製した電池を、以下
(Y)電池と称する。 〔実験1〕上記本発明の(C)電池と比較例の(Y)電
池との放電率特性を調べたので、その結果を図2に示
す。尚、放電条件は、50mA,100mA,150m
A,200mAで各電池を放電するというという条件で
ある。The battery thus manufactured is hereinafter referred to as (Y) battery. [Experiment 1] The discharge rate characteristics of the battery (C) of the present invention and the battery (Y) of the comparative example were examined. The results are shown in FIG. The discharge conditions are 50 mA, 100 mA, 150 mA.
The condition is that each battery is discharged at A, 200 mA.
【0029】図2より明らかなように、本発明の(C)
電池は比較例の(Y)電池に比べて、低電流では余り差
異がないものの、高電流になると大きな差異を有するこ
とが認められる。これは、以下に示す理由によるものと
考えられる。即ち、比較例の(Y)電池では、結着剤が
介在しているため、合金と集電体との接触抵抗が大きく
なる。これに対して、本発明の(C)電池では、集電体
の一部が水素吸蔵合金となるため、合金と集電体との接
触抵抗が増大しないという理由に起因するものと考えら
れる。 〔実験2〕上記本発明の(C)電池と比較例の(Y)電
池とのサイクル特性を調べたので、その結果を図3に示
す。尚、実験条件は、50mAの電流で8時間充電した
後、50mAの電流で1.0Vまで放電するという条件
である。As is apparent from FIG. 2, (C) of the present invention.
It is recognized that the battery has little difference at a low current, but has a large difference at a high current, as compared with the battery (Y) of the comparative example. This is considered to be due to the following reasons. That is, in the (Y) battery of the comparative example, since the binder is present, the contact resistance between the alloy and the current collector increases. On the other hand, in the battery (C) of the present invention, part of the current collector is a hydrogen storage alloy, which is considered to be because the contact resistance between the alloy and the current collector does not increase. [Experiment 2] The cycle characteristics of the battery (C) of the present invention and the battery (Y) of the comparative example were examined. The results are shown in FIG. The experimental condition is that the battery is charged with a current of 50 mA for 8 hours and then discharged with a current of 50 mA to 1.0 V.
【0030】図3より明らかなように、本発明の(C)
電池は比較例の(Y)電池に比べて、サイクル特性が飛
躍的に向上していることが認められる。これは、以下に
示す理由によるものと考えられる。即ち、比較例の
(Y)電池では、充放電サイクルを繰り返すと、水素吸
蔵合金が集電体から剥がれて、両者間の接触抵抗が更に
増大する。これに対して、本発明の(C)電池では、上
記の如く集電体の一部が水素吸蔵合金となるため、充放
電サイクルを繰り返しても、合金が集電体から剥がれな
いため、両者間の接触抵抗が増大しないという理由に起
因するものと考えられる。As is apparent from FIG. 3, (C) of the present invention.
It is recognized that the battery has dramatically improved cycle characteristics as compared with the battery (Y) of the comparative example. This is considered to be due to the following reasons. That is, in the battery (Y) of the comparative example, when the charge / discharge cycle is repeated, the hydrogen storage alloy is peeled off from the current collector, and the contact resistance between the two is further increased. On the other hand, in the battery (C) of the present invention, a part of the current collector is a hydrogen storage alloy as described above, and therefore the alloy does not peel off from the current collector even after repeated charge and discharge cycles. It is considered that this is because the contact resistance between them does not increase.
【0031】[0031]
【発明の効果】以上説明したように本発明によれば、充
放電を繰り返しても水素吸蔵合金が酸化されるのを抑制
することができるので、電池の内部抵抗の上昇が抑制さ
れ、この結果充放電サイクル特性を向上させることがで
きる。加えて、水素吸蔵合金の水素吸蔵放出平衡圧が十
分低いので、水素が急激に放出されて電池内圧が上昇す
るようなこともない。したがって、急速充放電特性にも
優れることになる。As described above, according to the present invention, it is possible to suppress the oxidation of the hydrogen storage alloy even when charging and discharging are repeated, so that the increase of the internal resistance of the battery is suppressed. Charge / discharge cycle characteristics can be improved. In addition, since the hydrogen storage / release equilibrium pressure of the hydrogen storage alloy is sufficiently low, hydrogen will not be rapidly released and the internal pressure of the battery will not rise. Therefore, the rapid charge / discharge characteristics are also excellent.
【図1】本発明の第1実施例に係るニッケル−水素アル
カリ蓄電池の断面図である。FIG. 1 is a cross-sectional view of a nickel-hydrogen alkaline storage battery according to a first embodiment of the present invention.
【図2】本発明の(C)電池と比較例の(Y)電池との
放電率特性を示すグラフである。FIG. 2 is a graph showing discharge rate characteristics of a battery (C) of the present invention and a battery (Y) of a comparative example.
【図3】本発明の(C)電池と比較例の(Y)電池との
サイクル特性を示すグラフである。FIG. 3 is a graph showing cycle characteristics of the battery (C) of the present invention and the battery (Y) of a comparative example.
1 正極 2 負極 3 セパレータ 1 Positive electrode 2 Negative electrode 3 Separator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 武江 正夫 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 伊勢 忠司 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 齋藤 俊彦 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-18 Keiyohondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Masao Takee 2-18-2 Keihanhondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Tadashi Ise 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18 Keihan Hondori, Moriguchi City Sanyo Electric Co., Ltd.
Claims (1)
するアルカリ蓄電池において、 上記水素吸蔵合金には、原子番号が63以上のランタノ
イドから選択される一以上の元素が含有されていること
を特徴とするアルカリ蓄電池。1. An alkaline storage battery having a negative electrode containing a hydrogen storage alloy and a positive electrode, wherein the hydrogen storage alloy contains one or more elements selected from lanthanoids having an atomic number of 63 or more. Characteristic alkaline storage battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21965791A JP3192694B2 (en) | 1991-08-30 | 1991-08-30 | Alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21965791A JP3192694B2 (en) | 1991-08-30 | 1991-08-30 | Alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0562674A true JPH0562674A (en) | 1993-03-12 |
JP3192694B2 JP3192694B2 (en) | 2001-07-30 |
Family
ID=16738937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21965791A Expired - Fee Related JP3192694B2 (en) | 1991-08-30 | 1991-08-30 | Alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3192694B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124132A (en) * | 2002-09-30 | 2004-04-22 | Yuasa Corp | Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same |
JP2008059818A (en) * | 2006-08-30 | 2008-03-13 | Sanyo Electric Co Ltd | Alkaline storage battery |
-
1991
- 1991-08-30 JP JP21965791A patent/JP3192694B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124132A (en) * | 2002-09-30 | 2004-04-22 | Yuasa Corp | Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same |
JP2008059818A (en) * | 2006-08-30 | 2008-03-13 | Sanyo Electric Co Ltd | Alkaline storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP3192694B2 (en) | 2001-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3247933B2 (en) | Hydrogen storage alloy, method for producing hydrogen storage alloy, and alkaline secondary battery | |
JP2680669B2 (en) | Hydrogen storage alloy electrode for alkaline storage battery | |
JPH1140189A (en) | Nickel-hydrogen storage battery | |
JP2000311704A (en) | Sealed nickel hydrogen secondary battery | |
JP3192694B2 (en) | Alkaline storage battery | |
US6197448B1 (en) | Hydrogen storage alloy | |
JP2792938B2 (en) | Hydrogen storage alloy electrode for alkaline storage batteries | |
JPH1021908A (en) | Active material for battery, and battery | |
JP3071026B2 (en) | Metal hydride storage battery | |
JP2566912B2 (en) | Nickel oxide / hydrogen battery | |
JP3143109B2 (en) | Cylindrical sealed nickel storage battery | |
JP3071003B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP2994704B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JPH0810596B2 (en) | Metal oxide / hydrogen battery | |
JP2001223000A (en) | Alkaline secondary battery | |
JP2679441B2 (en) | Nickel-metal hydride battery | |
JP3043128B2 (en) | Metal-hydrogen alkaline storage battery | |
JP3362400B2 (en) | Nickel-metal hydride storage battery | |
JP3454574B2 (en) | Manufacturing method of alkaline secondary battery | |
JPH05144433A (en) | Electrode with hydrogen storage alloy | |
JPH0690924B2 (en) | Storage battery electrode | |
JP2957745B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JP3316687B2 (en) | Nickel-metal hydride storage battery | |
JP3306154B2 (en) | Hydrogen storage alloy and method for producing the same | |
JPS61292855A (en) | Metal oxide and hydrogen cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080525 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090525 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |