JPH0831314B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH0831314B2
JPH0831314B2 JP61200915A JP20091586A JPH0831314B2 JP H0831314 B2 JPH0831314 B2 JP H0831314B2 JP 61200915 A JP61200915 A JP 61200915A JP 20091586 A JP20091586 A JP 20091586A JP H0831314 B2 JPH0831314 B2 JP H0831314B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
oxygen
storage battery
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61200915A
Other languages
Japanese (ja)
Other versions
JPS6355856A (en
Inventor
伸行 柳原
宗久 生駒
博志 川野
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61200915A priority Critical patent/JPH0831314B2/en
Publication of JPS6355856A publication Critical patent/JPS6355856A/en
Publication of JPH0831314B2 publication Critical patent/JPH0831314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する合金又は水
素化物からなる電極すなわち水素吸蔵電極を負極とし、
金属酸化物電極を正極とする密閉型アルカリ蓄電池に係
わるもので、とくに負極の改良に関するものである。
TECHNICAL FIELD The present invention uses an electrode made of an alloy or a hydride that reversibly stores and releases hydrogen, that is, a hydrogen storage electrode as a negative electrode,
The present invention relates to a sealed alkaline storage battery having a metal oxide electrode as a positive electrode, and particularly relates to improvement of a negative electrode.

従来の技術 従来、この種の水素吸蔵合金又は水素化物を負極とす
る密閉型金属酸化物−水素蓄電池では、正極で発生する
酸素ガスを負極に吸蔵している水素と反応して水にする
ことによって、密閉状態を保持する方法が考えられてい
る。この場合、酸素ガスは負極表面で還元反応又はイオ
ン化反応を起こさせて水にする必要があるが、水素吸蔵
電極を構成する合金はNi−Cd蓄電池に見られる負極での
酸素ガス吸収方法とは異なり、正極で発生する酸素ガス
を効率よく還元するとは限らない。したがって、酸素ガ
スが発生する反応より消費する反応がおくれると、電池
内に酸素ガスが蓄積して電池内圧が上昇することにな
る。とくに急速充電においてこの現象が顕著に現われ
る。
2. Description of the Related Art Conventionally, in a sealed metal oxide-hydrogen storage battery having a negative electrode of this kind of hydrogen storage alloy or hydride, oxygen gas generated in the positive electrode is reacted with hydrogen stored in the negative electrode to form water. According to the above, a method of maintaining a sealed state is considered. In this case, the oxygen gas needs to undergo reduction reaction or ionization reaction on the surface of the negative electrode to become water, but the alloy constituting the hydrogen storage electrode is the oxygen gas absorption method at the negative electrode found in Ni-Cd storage batteries. Differently, the oxygen gas generated in the positive electrode is not always efficiently reduced. Therefore, if a reaction to consume is delayed from a reaction to generate oxygen gas, oxygen gas accumulates in the battery and the internal pressure of the battery rises. This phenomenon is particularly noticeable in rapid charging.

したがって、このような問題点を解消するために、電
極内部に白金などの貴金属からなる水素触媒を含有し、
水素吸蔵合金からなる負極の表面に多孔度が20%以下の
表面積の小さいち密な酸素触媒層を形成する提案がある
(特開昭58−163157号公報)。
Therefore, in order to solve such a problem, the electrode contains a hydrogen catalyst made of a noble metal such as platinum,
There is a proposal to form a dense oxygen catalyst layer with a small surface area having a porosity of 20% or less on the surface of a negative electrode made of a hydrogen storage alloy (Japanese Patent Laid-Open No. 58-163157).

発明が解決しようとする問題点 このような従来の構成では、密閉型金属酸化物−水素
蓄電池が過充電領域に入ると正極から酸素ガスが発生す
る。この酸素ガスによる水素吸蔵合金表面の酸化はある
程度抑制することは出来る。しかし、急速充電におい
て、酸素ガスが正極から発生する速度の方が負極表面で
の酸素ガスが吸収される速度より大きく、過剰の酸素ガ
スが電池内に蓄積され電池内圧の上昇につながり、安全
性の面で問題があった。
Problems to be Solved by the Invention In such a conventional configuration, when the sealed metal oxide-hydrogen storage battery enters the overcharge region, oxygen gas is generated from the positive electrode. The oxidation of the surface of the hydrogen storage alloy by the oxygen gas can be suppressed to some extent. However, in rapid charging, the rate at which oxygen gas is generated from the positive electrode is faster than the rate at which oxygen gas is absorbed on the negative electrode surface, and excess oxygen gas accumulates in the battery, leading to an increase in battery internal pressure and safety. There was a problem in terms of.

本発明は、このような問題点を解決するもので比較的
充電率の大きい場合でも負極を構成する水素吸蔵合金の
酸素ガスによる酸化の防止と負極表面での酸素吸収又は
酸素の還元反応を効率良く行なわせて、電池の内圧上昇
を抑制し、充放電サイクル寿命の伸長と電池コストの低
減を図ることを目的とするものである。
The present invention solves such a problem and prevents the oxidation of the hydrogen storage alloy constituting the negative electrode by oxygen gas even when the charge rate is relatively large, and efficiently promotes oxygen absorption or oxygen reduction reaction on the negative electrode surface. The purpose of the present invention is to improve the internal pressure of the battery, to extend the charging / discharging cycle life, and to reduce the battery cost.

問題点を解決するための手段 この問題点を解決するために本発明は、金属酸化物正
極と、水素吸蔵合金又は水素化物からなる負極と、セパ
レータ及びアルカリ電解液を備え、前記正極側に接する
負極の表面に内部から順に金属酸化物あるいはセラミッ
ク粉末からなる酸化抑制層と炭素粉末単独あるいは触媒
を担持した炭素粉末からなる酸素イオン化触媒層を設け
たいわゆる二重層を形成し、負極自体に触媒作用と酸化
抑制機能を持たせたものである。そしてここでの酸素触
媒層の多孔度を30〜60%にしたものである。
Means for Solving the Problems In order to solve this problem, the present invention comprises a metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, and is in contact with the positive electrode side. On the surface of the negative electrode, a so-called double layer is formed in which an oxidation suppression layer made of a metal oxide or ceramic powder and an oxygen ionization catalyst layer made of carbon powder alone or a carbon powder carrying a catalyst are sequentially formed from the inside to form a so-called double layer, and the negative electrode itself has a catalytic action. And has an oxidation inhibiting function. The oxygen catalyst layer here has a porosity of 30 to 60%.

作用 このような構成により過充電時に正極から発生する酸
素ガスと水素を吸蔵している水素吸蔵合金と直接接触さ
せることなく、負極表面に達した酸素ガスは比較的表面
積の大きい炭素粉末または触媒担持の炭素粉末層からな
る酸素イオン化触媒層で還元反応によりイオン化され
る。とくに急速充電では一部未反応の酸素ガスが酸化抑
制層にまで達し、水素を吸蔵した水素吸蔵合金と反応す
る前に、酸化抑制層と水素吸蔵合金間にある吸着水素と
反応するので、直接水素吸蔵合金の酸化反応を抑制す
る。従って、急速充電において、正極から発生する酸素
ガスを負極表面で還元し、吸収することができるので電
池内圧の上昇を抑制し、水素吸蔵合金の酸化を防止する
ので、電池のサイクル寿命を伸長することとなる。
Action Oxygen gas that reaches the surface of the negative electrode does not come into direct contact with the oxygen gas generated from the positive electrode during overcharge and the hydrogen storage alloy that is storing hydrogen due to such a structure It is ionized by the reduction reaction in the oxygen ionization catalyst layer consisting of the carbon powder layer. Especially in rapid charging, some unreacted oxygen gas reaches the oxidation suppression layer and reacts with the adsorbed hydrogen between the oxidation suppression layer and the hydrogen storage alloy before reacting with the hydrogen storage alloy that has stored hydrogen. Suppresses the oxidation reaction of hydrogen storage alloy. Therefore, during rapid charging, oxygen gas generated from the positive electrode can be reduced and absorbed on the surface of the negative electrode, suppressing an increase in internal pressure of the battery and preventing oxidation of the hydrogen storage alloy, thereby extending the cycle life of the battery. It will be.

以下、その詳細は実施例により説明する。 Hereinafter, the details will be described by way of examples.

実施例 市販のMn(ミッシュメタル),La,Ni,Coから構成され
る試料を一定の組成比になるように秤量して混合し、ア
ーク溶解法により加熱溶解させた。一例として、合金組
成がMm0.5La0.5Ni3.5Co1.5になるように選択し、負極用
の水素吸蔵合金とした。この水素吸蔵合金をボールミル
などで38μm以下の微粉末とし、適量のポリビニルアル
コール樹脂水溶液とよく混練し、このペースト状合金を
一定の大きさに切断してあるパンチングメタル板の両面
に塗着し、その上に耐食性のある金属酸化物粉末又はセ
ラミック粉末を薄く塗布し、加圧・乾燥させた後、酸化
抑制層を形成する。さらに、この酸化制御層の上に弗素
樹脂を含むペースト状の炭素粉末を塗布して酸素イオン
化触媒層を形成し再度乾燥した後リード板を取付け負極
とした。また、必要に応じて合金を水素化物にして用い
ることもできる。本実施例では、酸化抑制層として、酸
化ニッケル及び炭化シリコン粉末を用い、酸素イオン化
触媒層である炭素粉末にはA・B(アセチレンブラッ
ク)と植物活性炭であるC・B(カルボラフィン)の混
合物を用いた。この負極の構成と断面を第1図に示す。
第1図Aにおいて、集電体であるパンチングメタル1の
両面に水素吸蔵合金2,酸化抑制層3,酸素イオン化触媒層
4を順次塗着して負極5を構成する。Bは負極5の断面
を表わしたものである。
Example A sample composed of commercially available Mn (Misch metal), La, Ni and Co was weighed and mixed so as to have a constant composition ratio, and heated and melted by an arc melting method. As an example, the alloy composition was selected to be Mm 0.5 La 0.5 Ni 3.5 Co 1.5 to obtain a hydrogen storage alloy for the negative electrode. This hydrogen-absorbing alloy was made into fine powder of 38 μm or less by a ball mill, kneaded well with an appropriate amount of polyvinyl alcohol resin aqueous solution, and the paste-like alloy was applied to both sides of a punching metal plate cut into a certain size, A metal oxide powder or a ceramic powder having corrosion resistance is thinly applied thereon, and is pressed and dried, and then an oxidation suppressing layer is formed. Further, a paste-like carbon powder containing a fluorine resin was applied onto the oxidation control layer to form an oxygen ionization catalyst layer, which was dried again, and a lead plate was attached to form a negative electrode. If necessary, the alloy can be used in the form of a hydride. In this embodiment, nickel oxide and silicon carbide powder are used as the oxidation suppressing layer, and the carbon powder that is the oxygen ionization catalyst layer is a mixture of AB (acetylene black) and CB (carborafine) that is plant activated carbon. Was used. The structure and cross section of this negative electrode are shown in FIG.
In FIG. 1A, a hydrogen storage alloy 2, an oxidation suppression layer 3, and an oxygen ionization catalyst layer 4 are sequentially applied to both surfaces of a punching metal 1 which is a current collector to form a negative electrode 5. B represents a cross section of the negative electrode 5.

水素吸蔵合金粉末15gを用いて負極を構成し、公知の
方法で製造した発泡状ニッケル正極をセパレータを介し
て組合わせて、試験に用いた単2サイズの密閉型アルカ
リ蓄電池の構成を第2図に示す。第2図において、水素
吸蔵合金からなる負極板5と酸化ニッケル正極6はセパ
レータ7を介して渦巻き状に巻回され、負極端子を兼ね
るケース8内に挿入される。なお、極板群の上・下は絶
縁板9,10が当てがわれ、安全弁11のある封口板12でケー
ス8の開口部は密閉化されている。13は封口板12を介し
て正極リード14と接続しているキャップ状の正極端子で
ある。なお、充電時に負極からの水素発生を抑制するた
めに正極容量より負極容量を大きくし、正極律則とし
た。電池の充・放電条件として0.4C(電流800mA)で3.7
5時間充電(150%充電)し、0.2C(電流400mA)で放電
した。測定温度はすべて室温とし、150%充電時におけ
る電池内圧を測定した。その結果を表1に示す。ここ
で、従来型電池として酸化イオン化抑制層と酸素触媒層
を設けない負極Aおよび20%以下の低多孔度の酸素イオ
ン化触媒層のみ設けた負極Bを用いて各種電池を構成す
る。一方、本発明型電池は酸化抑制層に酸化ニッケル粉
末を用い、酸素イオン化触媒にA・BとC・Bの混合物
からなる負極C、前記の炭素粉末に貴金属触媒としてパ
ラジウムを0.1wt%程担持させた負極D、さらに酸化抑
制層に炭化シリコン粉末を用い、酸素イオン化触媒にA
・BとC・Bの混合物を用いた負極E、A・BとC・B
の混合物に貴金属触媒としてパラジウムを0.1wt%程担
持させた負極Fを各々用いて電池を構成した。また従来
型電池A・Bと本発明型電池C,D,E,Fの充・放サイクル
寿命を第3図に示す。
Fig. 2 shows the configuration of a size AA alkaline storage battery used in the test by constructing a negative electrode using 15 g of hydrogen storage alloy powder and combining the foamed nickel positive electrode manufactured by a known method via a separator. Shown in. In FIG. 2, a negative electrode plate 5 made of a hydrogen storage alloy and a nickel oxide positive electrode 6 are spirally wound via a separator 7 and inserted in a case 8 which also serves as a negative electrode terminal. The insulating plates 9 and 10 are applied to the upper and lower sides of the electrode plate group, and the opening of the case 8 is sealed by a sealing plate 12 having a safety valve 11. Reference numeral 13 is a cap-shaped positive electrode terminal connected to the positive electrode lead 14 via the sealing plate 12. In addition, in order to suppress hydrogen generation from the negative electrode during charging, the negative electrode capacity was made larger than the positive electrode capacity, and the positive electrode law was adopted. 3.7 at 0.4C (current 800mA) as battery charge / discharge conditions
It was charged for 5 hours (150% charge) and discharged at 0.2C (current 400mA). All measurement temperatures were room temperature, and the battery internal pressure at 150% charge was measured. Table 1 shows the results. Here, as a conventional battery, various batteries are configured by using the negative electrode A provided with no oxide ionization suppressing layer and the oxygen catalyst layer and the negative electrode B provided with only the oxygen ionization catalyst layer having a low porosity of 20% or less. On the other hand, the battery of the present invention uses nickel oxide powder for the oxidation suppressing layer, the negative electrode C made of a mixture of A and B and C and B as the oxygen ionization catalyst, and palladium of about 0.1 wt% as the noble metal catalyst on the carbon powder. The negative electrode D was used, and silicon carbide powder was used for the oxidation suppressing layer, and A was used for the oxygen ionization catalyst.
・ Negative electrode E, A ・ B and C ・ B using a mixture of B and C ・ B
A battery was constructed by using each of the negative electrodes F in which about 0.1 wt% of palladium was carried as a noble metal catalyst in the mixture. FIG. 3 shows the charging / discharging cycle life of the conventional batteries A / B and the batteries C, D, E, F of the present invention.

表1と第3図からわかるように、従来型電池A・Bの
内圧は初期において各々12kg/cm2,8kg/cm2から50サイク
ル後は電池A・Bの内圧は両方共15kg/cm2以上に達し安
全弁からの漏液現象が見られた。また充・放電サイクル
においても電池Aは50サイクル後、電池Bは75サイクル
後において、電池容量2Ahの25%程低下している。これ
は負極での酸素ガスの吸収が不十分であり電池内圧が上
昇したものと考えられる。電池Bにおいては酸素イオン
化触媒のみを設けてはいるが、低多孔度であるため表面
積も小さく、比較的高率充電になると負極での酸素ガス
の吸収が効率よく進行していない。また酸化抑制層も設
けていないので水素吸蔵合金の表面で一部酸化がおこ
り、酸化被膜を形成することにより、放電容量が低下し
ている。このことは容量の低下した電池を分解し、負極
容量を測定した結果、負極容量が減少していることから
もわかる。容量低下の最大の理由は電池内圧の上昇によ
って電解液が安全弁から飛散し電解液の減少による内部
抵抗の増大に起因している。
Table 1 As can be seen from Figure 3, a conventional battery A · each 12 kg / cm 2 pressure in early B, 8 kg / cm 2 from 50 cycles later the internal pressure of the battery A · B are both 15 kg / cm 2 As a result, the phenomenon of liquid leakage from the safety valve was observed. Also in the charge / discharge cycle, after 50 cycles of the battery A and 75 cycles of the battery B, the battery capacity decreased by about 25% of the battery capacity of 2 Ah. It is considered that this is because the absorption of oxygen gas in the negative electrode was insufficient and the internal pressure of the battery increased. Although only the oxygen ionization catalyst is provided in the battery B, the surface area is small due to the low porosity, and the absorption of oxygen gas at the negative electrode does not proceed efficiently at a relatively high rate charge. Further, since the oxidation suppressing layer is not provided, the surface of the hydrogen storage alloy is partially oxidized to form an oxide film, which reduces the discharge capacity. This can also be understood from the fact that the negative electrode capacity decreased as a result of disassembling the battery having the decreased capacity and measuring the negative electrode capacity. The biggest reason for the decrease in capacity is that the electrolytic solution scatters from the safety valve due to the increase in the battery internal pressure and the internal resistance increases due to the decrease in the electrolytic solution.

これに対して本発明型電池C・Eの内圧は初期3.0,3.
5kg/cm2であり、50サイクル後の内圧は4.0,4.5kg/cm2
ある。電池C・Eは50サイクル後においても大きな内圧
の上昇がなく、負極における酸素ガスの吸収も円滑に進
行している。従って、充・放電サイクルを200回まで行
なっても放電容量は10〜20%の低下にとどまっている。
一方、電池D・Fの内圧は初期1.5,2.0kg/cm2であり、5
0サイクル後の内圧は2.0,3.0kg/cm2である。電池D・F
は電池C・Eと比較して酸素イオン化触媒の活性が強
く、酸素ガスによる内圧も1.5〜2.0kg/cm2程低くなると
共に放電容量の低下も5〜10%まで抑制されている。本
発明型電池は電池内圧力の上昇が少なく、水素吸蔵合金
の酸化を防止するなどの相乗効果によって充放電サイク
ル寿命を大幅に改善されている。とくに、0.3C以上の高
率充電による程本発明型電池の効果は大きくなる。
On the other hand, the internal pressure of the batteries C and E of the present invention is 3.0, 3.
Was 5 kg / cm 2, the internal pressure after 50 cycles is 4.0,4.5kg / cm 2. Batteries C and E did not show a large increase in internal pressure even after 50 cycles, and the absorption of oxygen gas in the negative electrode proceeded smoothly. Therefore, even if the charge / discharge cycle is performed up to 200 times, the discharge capacity is reduced by 10 to 20%.
On the other hand, the internal pressure of batteries D and F was 1.5, 2.0 kg / cm 2 at the initial stage, and
The internal pressure after 0 cycles is 2.0,3.0 kg / cm 2 . Battery D / F
In comparison with batteries C and E, the oxygen ionization catalyst has a stronger activity, the internal pressure due to oxygen gas is lower by about 1.5 to 2.0 kg / cm 2 , and the reduction in discharge capacity is suppressed to 5 to 10%. The battery of the present invention has a small increase in the internal pressure of the battery, and has a synergistic effect of preventing the oxidation of the hydrogen storage alloy and the like, and thus the charge / discharge cycle life is greatly improved. In particular, the higher the rate of charge of 0.3 C or more, the greater the effect of the battery of the present invention.

本実施例で示したように水素吸蔵合金と酸化抑制層の
部分は加圧して多孔度を25〜40%まで圧縮してもよいが
酸素イオン化触媒層は加圧力を調整して多孔度30〜60%
を保持する方が望ましい。30%以下の多孔度にすると表
面積が小さくなり、酸素イオン化触媒活性が低下する。
一方60%以上にすると機械的強度が弱く、負極表面から
脱落して不良の原因となる。従って、酸素イオン化触媒
層の多孔度は30〜60%が最適な範囲である。また触媒が
結着剤で完全に包囲しないように水溶液系の結着剤より
もフッ素樹脂の分散液を用いると炭素粉末あるいは触媒
担持の炭素粉末をフッ素樹脂の粒子又は繊維と強く結合
させることができる。ここで用いる炭素粉末は活性炭,
アセチレンブラック,カルボラフィンの他にカーボンブ
ラックなど表面積の大きい材料が望ましい。また触媒と
してパラジウムを用いているが金属酸化物からなる触媒
を用いてもよい。
As shown in this example, the hydrogen storage alloy and the portion of the oxidation suppressing layer may be compressed to have a porosity of 25 to 40%, but the oxygen ionization catalyst layer has a porosity of 30 to 60%
It is preferable to hold. When the porosity is 30% or less, the surface area becomes small and the oxygen ionization catalytic activity decreases.
On the other hand, if it is more than 60%, the mechanical strength is weak and it may fall off from the surface of the negative electrode, causing a defect. Therefore, the optimum porosity of the oxygen ionization catalyst layer is 30 to 60%. When a fluororesin dispersion liquid is used rather than an aqueous binder so that the catalyst is not completely surrounded by the binder, the carbon powder or the catalyst-supporting carbon powder can be strongly bonded to the particles or fibers of the fluororesin. it can. The carbon powder used here is activated carbon,
In addition to acetylene black and carborafine, carbon black and other materials with a large surface area are desirable. Although palladium is used as the catalyst, a catalyst made of a metal oxide may be used.

発明の効果 以上のように、本発明によれば過充電における電池内
の圧力上昇が少なく安全性に優れ、しかも充放電サイク
ル寿命が長く、低コストで品質の安定した密閉型アルカ
リ蓄電池が得られるという効果が得られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain a sealed alkaline storage battery in which the pressure increase in the battery during overcharging is small, the safety is excellent, the charge / discharge cycle life is long, the cost is low, and the quality is stable. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図A・Bは本発明における負極の構成を示す側面図
及び断面図、第2図は本発明の実施例に用いた密閉型ア
ルカリ蓄電池の構造を示す断面図、第3図は本発明の負
極と従来の負極を用いた密閉型アルカリ蓄電池の充・放
電サイクル寿命特性を示す図である。 1……パンチングメタル、2……水素吸蔵合金、3……
酸化抑制層、4……酸素イオン化触媒層、5……負極
板。
1A and 1B are side views and cross-sectional views showing the constitution of the negative electrode in the present invention, FIG. 2 is a cross-sectional view showing the structure of the sealed alkaline storage battery used in the embodiment of the present invention, and FIG. 3 is the present invention. FIG. 3 is a diagram showing charge / discharge cycle life characteristics of a sealed alkaline storage battery using the negative electrode of FIG. 1 ... punching metal, 2 ... hydrogen storage alloy, 3 ...
Oxidation suppression layer, 4 ... Oxygen ionization catalyst layer, 5 ... Negative electrode plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物正極と、水素吸蔵合金叉は水素
化物からなる負極と、セパレータ及びアルカリ電解液を
備え、前記正極側に接する負極の表面に内部から順に金
属酸化物粉末あるいはセラミック粉末からなる酸化抑制
層と炭素粉末単独あるいは触媒を担持した炭素粉末から
なる酸素イオン化触媒層との二層構造を設けたことを特
徴とする密閉型アルカリ蓄電池。
1. A metal oxide positive electrode, a negative electrode made of a hydrogen storage alloy or a hydride, a separator and an alkaline electrolyte, and a metal oxide powder or a ceramic powder in order from the inside to the surface of the negative electrode in contact with the positive electrode side. A sealed alkaline storage battery comprising a two-layer structure comprising an oxidation suppressing layer made of (1) and an oxygen ionization catalyst layer made of carbon powder alone or a carbon powder carrying a catalyst.
【請求項2】酸素イオン化触媒層の多孔度が30〜60パー
セントである特許請求の範囲第1項記載の密閉型アルカ
リ蓄電池。
2. The sealed alkaline storage battery according to claim 1, wherein the oxygen ionization catalyst layer has a porosity of 30 to 60%.
【請求項3】酸素イオン化触媒層の炭素粉末がA・B
(アセチレンブラック)とC・B(カルボラフィン)の
混合物である特許請求の範囲第1項記載の密閉型アルカ
リ蓄電池。
3. The carbon powder of the oxygen ionization catalyst layer is A / B.
The sealed alkaline storage battery according to claim 1, which is a mixture of (acetylene black) and CB (carborafine).
JP61200915A 1986-08-27 1986-08-27 Sealed alkaline storage battery Expired - Lifetime JPH0831314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200915A JPH0831314B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200915A JPH0831314B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6355856A JPS6355856A (en) 1988-03-10
JPH0831314B2 true JPH0831314B2 (en) 1996-03-27

Family

ID=16432390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200915A Expired - Lifetime JPH0831314B2 (en) 1986-08-27 1986-08-27 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0831314B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS618848A (en) * 1984-06-22 1986-01-16 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163157A (en) * 1982-03-23 1983-09-27 Toshiba Corp Metal oxide-hydrogen cell
JPS618848A (en) * 1984-06-22 1986-01-16 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JPS6355856A (en) 1988-03-10

Similar Documents

Publication Publication Date Title
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPH0831314B2 (en) Sealed alkaline storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JPH0815077B2 (en) Sealed alkaline storage battery
JPH0568828B2 (en)
JP2861057B2 (en) Alkaline secondary battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3118930B2 (en) Hydrogen storage electrode
JP2797440B2 (en) Alkaline secondary battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPH0677450B2 (en) Sealed nickel-hydrogen battery
JPH0795443B2 (en) Sealed alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0690922B2 (en) Sealed alkaline storage battery
JPH0234433B2 (en)
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPH0815076B2 (en) Sealed alkaline storage battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate