JP3550228B2 - Negative electrode active material for secondary battery, electrode using the same, and secondary battery - Google Patents

Negative electrode active material for secondary battery, electrode using the same, and secondary battery Download PDF

Info

Publication number
JP3550228B2
JP3550228B2 JP25199295A JP25199295A JP3550228B2 JP 3550228 B2 JP3550228 B2 JP 3550228B2 JP 25199295 A JP25199295 A JP 25199295A JP 25199295 A JP25199295 A JP 25199295A JP 3550228 B2 JP3550228 B2 JP 3550228B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
tin
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25199295A
Other languages
Japanese (ja)
Other versions
JPH0973899A (en
Inventor
清史 荒木
利哉 北村
文洋 佐藤
真樹子 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP25199295A priority Critical patent/JP3550228B2/en
Publication of JPH0973899A publication Critical patent/JPH0973899A/en
Application granted granted Critical
Publication of JP3550228B2 publication Critical patent/JP3550228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、金属錫または金属錫と酸化錫との混合物からなる二次電池用負極活物質およびそれを用いた二次電池用電極ならびに二次電池に関する。
【0002】
【従来の技術】
従来から二次電池用の負極活物質として種々の物質を単独あるいは組合わせて用いる研究がなされてきたが、今日実用化された二次電池用負極活物質としては、鉛蓄電池用のPb、ニッケル−カドミウム電池用のCd、水素電池用の水素吸蔵合金、その他Zn、Li等それらを主成分とする物質に限られていた。
【0003】
このため電池の基本性能を左右する負極活物質の種類が限られていたので実用になる二次電池の種類が少なく、それらの電池だけでは互いの電池が持つ欠点を十分に補っているとは言えない状況であった。
【0004】
【発明が解決しようとする課題】
上述のことから従来の二次電池には、(1)取り出せる電圧が低い、(2)化学的に活性な物質であるためにハンドリングに難がある、(3)環境上問題となるような毒性がある、というような欠点があり、二次電池に用いる負極活物質の種類が少ないことから、新規な活物質の開発が望まれていた。
【0005】
したがって本発明の目的は、従来の二次電池の有する欠点を補うことのできる新規な負極活物質とこれを用いた負極用電極ならびに二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究した結果、周期律表第50番目の元素であるSnが前述の欠点を補える負極活物質としての働きを有することを見いだし、その上、Sn粉体をシート化することによって電池用の電極としても使用できることが判明して、二次電池の製造を可能とし、本発明に到達した。
【0007】
すなわち本発明は第1に、金属錫または金属錫と酸化錫との混合物から成る活物質であることを特徴とするアルカリ二次電池用負極活物質;第2に、金属錫または金属錫と酸化錫との混合物から成る活物質を含有するシート体からなることを特徴とするアルカリ二次電池用負極;第3に、金属錫または金属錫と酸化錫との混合物から成る活物質を含有するシート体を金属板面に圧着して得た圧着体上を、微小孔を有する樹脂体で覆う構造であることを特徴とするアルカリ二次電池用負極;第4に、第2または第3記載の負極を用いることを特徴とするアルカリ二次電池を提供するものである。
【0008】
【作用】
本発明の負極活物質に用いられる錫は周期律表第50番元素で、電気化学反応に伴う価数変化が2価および4価であり、アルカリ水溶液中では以下のような反応が進行する。
【0009】
Sn+4OH = SnO +2H O +4e (1)
Sn+2OH = Sn(OH) +2e (2)
Sn+4OH = Sn(OH) +4e (3)
Sn+3OH = HSnO +H O +2e (4)
Sn+6OH = SnO 2− +3H O +4e (5)
これらの反応中、特に高濃度のアルカリ性水溶液中では、(4)、(5)の反応が主になり、溶液中のSnは最終的にSnO 2− イオンとして存在することになる。また錫の電気化学当量は59.35(2価)、29.67(4価)であり、理論的に高容量の電池材料となり得ることを示している。
【0010】
pH14以上の高アルカリ性領域での錫を用いた電極電位は約−1.0V(vs NHE)であり、対極に水酸化ニッケル極を用いて電池を構成した場合、その電池は約1.5Vと想定されることから、Ni−Cd電池の電池電圧1.2Vより25%程度の高電位が得られるため、高エネルギー容量の電池を得ることができる上、錫自体の水素過電圧は0.53Vと高いために、充放電に伴う水素ガス発生が少ないという効果を併せて有する。
【0011】
また、錫極板の分極測定により、該錫極板を電池用負極として使用した場合には、最大放電電流密度が高いことが想像されることから、本発明においては金属錫または金属錫と酸化錫との混合物からなる負極活物質をシート状に作製したシート体を、図2に示すように銅板(エキスパンド銅)上を覆うように接触させ、さらにその上をセロハン等の微小孔を有する樹脂体で覆う構造の電極を作製した。
【0012】
本発明において負極活物質として用いるのは、上述のように金属錫あるいは金属錫と酸化錫との混合物であり、金属板状のものも使用可能であるが、特定粒径の粉末のものをシート化して集電体に圧着して得た電極とする方が充放電特性の向上に寄与することを確認している。
【0013】
上記理由から本発明者らは、電池用負極活物質として錫は非常に有利な元素であると考え、以下の実施例に示すように、錫を負極活物質とする電極を作成し、さらに適当な正極、電解液とを組み合わせ、目的とする高電流密度特性に優れた二次電池を製造することができたのである。
【0014】
【実施例1】
図1は本実施例で使用したセルを示す模式断面図、図3は本実施例において得られた充放電曲線を示すグラフであって、これらを参照して以下説明する。
【0015】
図1に示すセル1は、純度3N、面積1cm×1cm、厚さ0.8mmの金属錫板を負極板3とし、水酸化ニッケル板を正極板4に、30重量%KOH水溶液を電解液2として構成されており、このセルを用いて充放電試験を行った。
【0016】
この充放電試験の条件は、充電電流5mA、充電時間5hr、放電電流5mA、放電終止電圧1.0Vであり、この条件下でサイクル試験を行った。この場合、初期の電池構成では、負極は充電状態にあるが、正極は充電された状態にないため初期充電として正極の充電を行う(この時負極では水素ガス発生が起こっている)ことから、サイクル試験は第2回目の充放電サイクルからが本試験とみなしている。
【0017】
図3に第4サイクルの充放電曲線を示すが、充電時に1.5Vと2V附近に平坦な部分が見られ、充電時電位1.5Vにおいては充電に伴うガス発生は見られないが、充電電位2Vになると負極表面からのガス発生が見られるようになる。一方、放電電位は1.5〜1.4Vで比較的平坦な電位挙動を示している。
【0018】
このように金属錫を電極として用いた場合、充放電は可能となるが、充電時に活物質である錫が負極表面にデンドライト(樹枝状晶)状に析出するため、本電池において6〜8サイクルで正極と短絡してしまい、その後の充放電が不可能となった。
【0019】
【実施例2】
図4は本実施例および実施例3において得られた電流−電圧曲線を示すグラフであって、これを参照して以下説明する。
【0020】
実施例1で使用したセルのうち、正極の水酸化ニッケル極の面積を50倍にしたものを用い、正極の影響をなくした状態で放電電流と電値電圧の関係を求めた。
【0021】
この場合、測定方法としては電池にある電流を印加して30秒後の電圧を測定し、その結果を図4に示した。このグラフから本実施例における錫電極は電流密度380mA/cmの電流が取り出せることがわかった。
【0022】
【実施例3】
図4には本実施例において得られた電流−電圧曲線を示すグラフがあり、これを参照して以下説明する。
【0023】
陰極活物質として100メッシュアンダーのSn粉(高純度化学研究所製、純度3N)10gを用い、この粉末にPTFE(四ふっ化エチレン樹脂)ディスパージョン液(固形分濃度60%)10c.c.と適当量のエタノールを加え、混練して適当な大きさの塊にして乾燥後、0.4mm厚になるまで圧延してシート体を得た。
【0024】
このシート体から1cm×1cmの大きさの板状体を2枚切り出し、集電体であるエキスパンド銅上に圧着したものを電極とし、この電極を負極として実施例1に示すセルに用いて充放電試験を行った。
【0025】
この結果、実施例1と同様の充放電曲線が得られ、また充電時においてデンドライト析出も見られた。しかしながら、Snのデンドライト析出は実施例1の電極よりも少なく、充放電サイクルは20〜25サイクルとなり、実施例1に比べサイクル回数を2〜3倍に向上させることができた。
【0026】
続いて実施例2に示した測定方法によって放電電流と電池電圧の関係を図4に示すが、放電電流は約480mAであり、実施例2に比較して20〜30%程度向上した。
【0027】
【実施例4】
図2は本実施例において使用した電極を示す斜視図であって、この図を参照して以下説明する。
【0028】
実施例3で使用した電極表面に、図2に示すように、水分が移動可能な微小孔を有するセロハン(#500)を張りつけた電極を得、この電極を負極として実施例1に示すセルに組み込み、実施例1に示す放電条件で充放電試験を行ったところ、充放電サイクル特性は100サイクル程度まで向上した。
【0029】
このことから、電極に張りつけたセロハンは、
(1) 正極との短絡を防止するセパレーター
(2) 充電時に析出する体積が大きく比較的軟らかい錫のモス状デンドライトを物理的に負極表面に押し戻し、活物質の欠落、不活性化を防止する
等の大きな機能を有していることが判明した。
【0030】
【実施例5】
負極活物質として100メッシュアンダーのSn粉末(純度3N)に、SnO 粉(高純度化学研究所製)を20重量%、SnO粉(高純度化学研究所製)を5重量%混合した混合粉に実施例3に示すPTEFディスパージョン液やエタノールを加えて得たシート体から2枚の1cm×1cmの板状体を切り出し、図2に示す電極を作製した。
【0031】
この電極を実施例1に示すセルに組み入れて充放電試験を行ったところ、電極中の金属錫含有量が実施例3および4に比較して減少するため、電池容量値、放電電流値は若干低下するが、100サイクル程度の充放電が可能であった。
【0032】
【発明の効果】
以上説明したように、本発明によれば、アルカリ二次電池用の新しい負極活物質として金属錫または金属錫と酸化錫との混合物を利用することによって、高電圧という電池特性が得られる他、従来電池のような毒性がないことから実用上大きな利点を有する。また銅板面を上記負極活物質を含有するシート体で覆い、さらにこのシート体に水分が移動可能な微小孔を有するセロハンを張りつけて負極を構成すれば、充放電に伴って負極上に析出するデンドライトによる正極との短絡を防止できることから、充放電サイクル特性の優れた二次電池が提供される。
【図面の簡単な説明】
【図1】本発明の実施例において使用したセルを示す模式断面図である。
【図2】実施例4において使用して電極の構造を示す斜視図である。
【図3】実施例1において得られた充放電曲線を示すグラフである。
【図4】実施例2および3において得られた電流−電圧曲線を示すグラフである。
【符号の説明】
1 セル
2 電解液
3 負極板
4 正極板
5 エキスパンド銅
6 負極活物質シート
7 セロハン
[0001]
[Industrial applications]
The present invention relates to a negative electrode active material for a secondary battery comprising metal tin or a mixture of metal tin and tin oxide, an electrode for a secondary battery using the same, and a secondary battery.
[0002]
[Prior art]
Conventionally, studies have been made using various materials alone or in combination as a negative electrode active material for a secondary battery. Pb, nickel for a lead storage battery, -Cd for cadmium batteries, hydrogen storage alloys for hydrogen batteries, and other substances containing Zn, Li, etc. as main components thereof.
[0003]
For this reason, the types of negative electrode active materials that affect the basic performance of batteries were limited, so there are few types of secondary batteries that can be used practically, and these batteries alone cannot sufficiently compensate for the disadvantages of each other's batteries. I couldn't say it.
[0004]
[Problems to be solved by the invention]
From the above, conventional secondary batteries have (1) low voltage that can be taken out, (2) difficult handling due to being a chemically active substance, and (3) toxicity that poses environmental problems. There is a drawback that there is a problem, and the development of a new active material has been desired because there are few types of the negative electrode active material used for the secondary battery.
[0005]
Accordingly, it is an object of the present invention to provide a novel negative electrode active material that can compensate for the drawbacks of the conventional secondary battery, a negative electrode electrode using the same, and a secondary battery.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that Sn, which is the 50th element of the periodic table, has a function as a negative electrode active material that can compensate for the above-mentioned disadvantages. It has been found that by forming the body into a sheet, it can be used also as an electrode for a battery, enabling the manufacture of a secondary battery, and achieving the present invention.
[0007]
That is, the present invention firstly provides an anode active material for an alkaline secondary battery, which is an active material comprising metal tin or a mixture of metal tin and tin oxide; secondly, metal tin or metal tin and oxide A negative electrode for an alkaline secondary battery, comprising a sheet body containing an active material composed of a mixture of tin; third, a sheet containing an active material composed of metallic tin or a mixture of metallic tin and tin oxide A negative electrode for an alkaline secondary battery, wherein the negative electrode for an alkaline secondary battery has a structure in which a pressed body obtained by pressing the body to a metal plate surface is covered with a resin body having micropores; An object of the present invention is to provide an alkaline secondary battery using a negative electrode.
[0008]
[Action]
Tin used in the negative electrode active material of the present invention is the 50th element in the periodic table, and the valence changes accompanying the electrochemical reaction are divalent and tetravalent, and the following reaction proceeds in an alkaline aqueous solution.
[0009]
Sn + 4OH - = SnO 2 + 2H 2 O + 4e - (1)
Sn + 2OH = Sn (OH) 2 + 2e (2)
Sn + 4OH - = Sn (OH ) 4 + 4e - (3)
Sn + 3OH - = HSnO 2 - + H 2 O + 2e - (4)
Sn + 6OH - = SnO 3 2- + 3H 2 O + 4e - (5)
During these reactions, particularly in a high-concentration alkaline aqueous solution, the reactions (4) and (5) predominantly occur, and Sn in the solution finally exists as SnO 3 2- ions. The electrochemical equivalent of tin is 59.35 (divalent) and 29.67 (tetravalent), which indicates that the material can theoretically be a high-capacity battery material.
[0010]
The electrode potential using tin in a highly alkaline region having a pH of 14 or more is about -1.0 V (vs NHE). When a battery is formed using a nickel hydroxide electrode as a counter electrode, the battery has a voltage of about 1.5 V. Since it is assumed that a high potential of about 25% is obtained from the battery voltage of the Ni-Cd battery of 1.2 V, a battery having a high energy capacity can be obtained, and the hydrogen overvoltage of tin itself is 0.53 V. Since it is high, it also has an effect that hydrogen gas generation due to charge and discharge is small.
[0011]
In addition, since the maximum discharge current density is supposed to be high when the tin electrode is used as a negative electrode for a battery by the measurement of the polarization of the tin electrode, in the present invention, metal tin or metal tin is oxidized. As shown in FIG. 2, a sheet body made of a negative electrode active material made of a mixture with tin is brought into contact with a copper plate (expanded copper) so as to cover the copper plate (expanded copper). An electrode having a structure to be covered with a body was produced.
[0012]
The negative electrode active material used in the present invention is metal tin or a mixture of metal tin and tin oxide as described above, and a metal plate can also be used. It has been confirmed that the method of forming an electrode obtained by compression bonding to a current collector contributes to improvement of charge and discharge characteristics.
[0013]
For the above reasons, the present inventors consider that tin is a very advantageous element as a negative electrode active material for a battery, and as shown in the following examples, prepared an electrode using tin as a negative electrode active material, By combining such a positive electrode and an electrolytic solution, it was possible to manufacture a desired secondary battery having excellent high current density characteristics.
[0014]
Embodiment 1
FIG. 1 is a schematic sectional view showing a cell used in the present embodiment, and FIG. 3 is a graph showing a charge / discharge curve obtained in the present embodiment, which will be described below with reference to these.
[0015]
The cell 1 shown in FIG. 1 has a metal tin plate having a purity of 3N, an area of 1 cm × 1 cm and a thickness of 0.8 mm as a negative electrode plate 3, a nickel hydroxide plate as a positive electrode plate 4, and a 30 wt% KOH aqueous solution in an electrolyte 2. And a charge / discharge test was performed using this cell.
[0016]
The conditions of the charge / discharge test were a charge current of 5 mA, a charge time of 5 hr, a discharge current of 5 mA, and a discharge end voltage of 1.0 V. A cycle test was performed under these conditions. In this case, in the initial battery configuration, the negative electrode is in a charged state, but the positive electrode is not in a charged state, so that the positive electrode is charged as initial charge (at this time, hydrogen gas is generated in the negative electrode). The cycle test is regarded as the main test from the second charge / discharge cycle.
[0017]
FIG. 3 shows a charge / discharge curve of the fourth cycle. A flat portion is observed around 1.5 V and 2 V at the time of charging, and no gas generation accompanying charging is observed at a potential of 1.5 V during charging. When the potential becomes 2 V, gas generation from the negative electrode surface is observed. On the other hand, the discharge potential shows a relatively flat potential behavior at 1.5 to 1.4V.
[0018]
When metal tin is used as the electrode as described above, charging and discharging are possible, but tin, which is an active material, precipitates in the form of dendrites (dendrites) on the surface of the negative electrode during charging. This short-circuited the positive electrode, making subsequent charging and discharging impossible.
[0019]
Embodiment 2
FIG. 4 is a graph showing the current-voltage curve obtained in the present embodiment and the third embodiment, which will be described below with reference to FIG.
[0020]
Among the cells used in Example 1, the cell having the area of the nickel hydroxide electrode of the positive electrode increased by 50 times was used, and the relationship between the discharge current and the electric voltage was obtained with the influence of the positive electrode being eliminated.
[0021]
In this case, as a measuring method, a voltage was measured 30 seconds after applying a certain current to the battery, and the results are shown in FIG. From this graph, it was found that the tin electrode in the present example can extract a current having a current density of 380 mA / cm 2 .
[0022]
Embodiment 3
FIG. 4 is a graph showing a current-voltage curve obtained in this embodiment, which will be described below with reference to FIG.
[0023]
As a cathode active material, 10 g of Sn powder with 100 mesh under (purity 3N, manufactured by Kojundo Chemical Laboratory) was used, and PTFE (ethylene tetrafluoride resin) dispersion liquid (solid concentration: 60%) was added to the powder. c. And an appropriate amount of ethanol were added, kneaded to form a lump of appropriate size, dried, and then rolled to a thickness of 0.4 mm to obtain a sheet.
[0024]
Two sheets of 1 cm x 1 cm in size were cut out from this sheet and pressed on expanded copper as a current collector to form an electrode. This electrode was used as a negative electrode and filled in the cell shown in Example 1. A discharge test was performed.
[0025]
As a result, the same charge / discharge curve as in Example 1 was obtained, and dendrite deposition was also observed during charging. However, the dendrite precipitation of Sn was smaller than that of the electrode of Example 1, and the number of charge / discharge cycles was 20 to 25, and the number of cycles could be improved to 2 to 3 times as compared with Example 1.
[0026]
Subsequently, the relationship between the discharge current and the battery voltage is shown in FIG. 4 by the measurement method shown in Example 2. The discharge current was about 480 mA, which was improved by about 20 to 30% as compared with Example 2.
[0027]
Embodiment 4
FIG. 2 is a perspective view showing the electrodes used in the present embodiment, which will be described below with reference to FIG.
[0028]
As shown in FIG. 2, an electrode was obtained by attaching cellophane (# 500) having fine pores through which water could move to the surface of the electrode used in Example 3, and using this electrode as a negative electrode in the cell shown in Example 1. When the battery was assembled and subjected to a charge / discharge test under the discharge conditions shown in Example 1, the charge / discharge cycle characteristics were improved to about 100 cycles.
[0029]
From this, cellophane attached to the electrode,
(1) Separator to prevent short circuit with positive electrode (2) Physically push back tin-like moss dendrite, which has a large volume deposited during charging and is relatively soft, to the negative electrode surface to prevent loss and inactivation of active material It was found to have a great function.
[0030]
Embodiment 5
The Sn powder 100 mesh under as a negative electrode active material (purity 3N), SnO 2 powder (manufactured by Kojundo Chemical Laboratory) 20 wt%, mixed powder obtained by mixing SnO powder (manufactured by Kojundo Chemical Laboratory) 5 wt% Then, two 1 cm × 1 cm plate bodies were cut out from a sheet obtained by adding the PTEF dispersion liquid and ethanol shown in Example 3 to produce an electrode shown in FIG.
[0031]
When this electrode was assembled into the cell shown in Example 1 and subjected to a charge / discharge test, the content of metallic tin in the electrode was reduced as compared with Examples 3 and 4, so that the battery capacity value and the discharge current value were slightly Although decreasing, charging and discharging of about 100 cycles were possible.
[0032]
【The invention's effect】
As described above, according to the present invention, by using metal tin or a mixture of metal tin and tin oxide as a new negative electrode active material for an alkaline secondary battery, a battery characteristic of high voltage can be obtained, It has a great practical advantage because it has no toxicity like conventional batteries. Also, if the copper plate surface is covered with a sheet containing the above-mentioned negative electrode active material, and a cellophane having fine pores through which water can move is attached to the sheet to form a negative electrode, the negative electrode is deposited on the negative electrode with charge and discharge. Since a short circuit with the positive electrode due to dendrite can be prevented, a secondary battery having excellent charge / discharge cycle characteristics is provided.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a cell used in an example of the present invention.
FIG. 2 is a perspective view showing a structure of an electrode used in Example 4.
FIG. 3 is a graph showing a charge / discharge curve obtained in Example 1.
FIG. 4 is a graph showing current-voltage curves obtained in Examples 2 and 3.
[Explanation of symbols]
Reference Signs List 1 cell 2 electrolytic solution 3 negative electrode plate 4 positive electrode plate 5 expanded copper 6 negative electrode active material sheet 7 cellophane

Claims (4)

金属錫または金属錫と酸化錫との混合物から成る活物質であることを特徴とするアルカリ二次電池用負極活物質。An anode active material for an alkaline secondary battery, which is an active material comprising metal tin or a mixture of metal tin and tin oxide. 金属錫または金属錫と酸化錫との混合物から成る活物質を含有するシート体からなることを特徴とするアルカリ二次電池用負極A negative electrode for an alkaline secondary battery, comprising a sheet containing an active material comprising metal tin or a mixture of metal tin and tin oxide. 金属錫または金属錫と酸化錫との混合物から成る活物質を含有するシート体を金属板面に圧着して得た圧着体上を、微小孔を有する樹脂体で覆う構造であることを特徴とするアルカリ二次電池用負極A sheet body containing an active material composed of metal tin or a mixture of metal tin and tin oxide is pressure-bonded to a metal plate surface, and the pressure-bonded body is covered with a resin body having micropores. Negative electrode for alkaline secondary batteries. 請求項2または請求項3記載の負極を用いることを特徴とするアルカリ二次電池。An alkaline secondary battery using the negative electrode according to claim 2 or 3.
JP25199295A 1995-09-05 1995-09-05 Negative electrode active material for secondary battery, electrode using the same, and secondary battery Expired - Fee Related JP3550228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25199295A JP3550228B2 (en) 1995-09-05 1995-09-05 Negative electrode active material for secondary battery, electrode using the same, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25199295A JP3550228B2 (en) 1995-09-05 1995-09-05 Negative electrode active material for secondary battery, electrode using the same, and secondary battery

Publications (2)

Publication Number Publication Date
JPH0973899A JPH0973899A (en) 1997-03-18
JP3550228B2 true JP3550228B2 (en) 2004-08-04

Family

ID=17231042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25199295A Expired - Fee Related JP3550228B2 (en) 1995-09-05 1995-09-05 Negative electrode active material for secondary battery, electrode using the same, and secondary battery

Country Status (1)

Country Link
JP (1) JP3550228B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124052A (en) * 2009-12-10 2011-06-23 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery and method for charging the same

Also Published As

Publication number Publication date
JPH0973899A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
KR100349755B1 (en) Anode Electrochemical Battery for Stacked Wafer Cell
JP3056054B2 (en) Zinc secondary battery and zinc electrode
US5462821A (en) Gallium based active material for the negative electrode, a negative electrode using the same, and batteries using said negative electrode
US4130696A (en) Conductive diluent for pressed nickel electrodes
US6858347B2 (en) Paste type positive electrode for alkaline storage battery, and nickel-metal hydride storage battery
JPH08321322A (en) Metallic hydride secondary battery equipped with solid high polymer electrolyte
WO2001059866A1 (en) Nickel hydroxide paste with pectin binder
EP0427192A1 (en) Nickel electrode for alkaline batteries
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
CN113140708B (en) Alkaline storage battery based on tin negative electrode
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JP3653410B2 (en) Sealed alkaline zinc storage battery
JP3094033B2 (en) Nickel hydride rechargeable battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP2019106284A (en) Zinc battery negative electrode and zinc battery
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP3737534B2 (en) Manufacturing method of alkaline secondary battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
TW202406186A (en) Negative electrodes for zinc batteries and zinc batteries
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees