JP2771584B2 - Manufacturing method of non-sintering type sealed alkaline storage battery - Google Patents

Manufacturing method of non-sintering type sealed alkaline storage battery

Info

Publication number
JP2771584B2
JP2771584B2 JP1065264A JP6526489A JP2771584B2 JP 2771584 B2 JP2771584 B2 JP 2771584B2 JP 1065264 A JP1065264 A JP 1065264A JP 6526489 A JP6526489 A JP 6526489A JP 2771584 B2 JP2771584 B2 JP 2771584B2
Authority
JP
Japan
Prior art keywords
battery
anode
cobalt
manufacturing
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1065264A
Other languages
Japanese (ja)
Other versions
JPH02244562A (en
Inventor
誠 神林
和昭 尾崎
太計男 浜松
卓也 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1065264A priority Critical patent/JP2771584B2/en
Publication of JPH02244562A publication Critical patent/JPH02244562A/en
Application granted granted Critical
Publication of JP2771584B2 publication Critical patent/JP2771584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、少なくとも金属コバルトが添加された非焼
結式ニッケル陽極と、カドミウム陰極とを有する非焼結
式密閉アルカリ蓄電池の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a non-sintered sealed alkaline storage battery having a non-sintered nickel anode to which at least metal cobalt is added and a cadmium cathode.

従来の技術 アルカリ蓄電池に用いるニッケル陽極の製造方法とし
ては、近年、スポンジ状ニッケルやニッケル繊維状焼結
体のような金属の三次元多孔体を活物質保持体として用
いる、所謂非焼結式陽極製造方法が提案されている。こ
の製造方法は焼結式に比べて、工程の短縮化や簡略化が
可能なうえ、高多孔度の保持体を用いるため高エネルギ
ー密度化が可能である等の特長を有している。このよう
な極板の具体的製造方法は、上記金属からなる三次元多
孔体(以下、基体と称する)に、水酸化ニッケルを主成
分とする活物質粉末を水性分散媒によりペースト状とし
たものを充填し、次に結着剤を付加する。次いで、ペー
ストを乾燥させた後、加圧圧縮することにより行ってい
る。
2. Description of the Related Art In recent years, as a method for manufacturing a nickel anode used for an alkaline storage battery, a so-called non-sintered anode using a three-dimensional porous body of metal such as sponge-like nickel or nickel fibrous sintered body as an active material holding body has been proposed. Manufacturing methods have been proposed. Compared to the sintering method, this manufacturing method has the advantages that the steps can be shortened and simplified, and that a high-porosity holding member is used, so that a high energy density can be achieved. A specific method for manufacturing such an electrode plate is a method in which an active material powder mainly composed of nickel hydroxide is formed into a paste using an aqueous dispersion medium on a three-dimensional porous body (hereinafter, referred to as a substrate) made of the above metal. And then a binder is added. Next, the paste is dried and then pressed and compressed.

しかし、上記製造方法で作製した電池では活物質の電
気化学的利用率が低くなるという課題を有していた。加
えて、密閉系の電池では、過充電時のガス消費をスムー
ズに進行させ、且つ充放電サイクルによる電池容量の低
下を防止するために、密閉充電容量比(〔陰極容量〕/
〔陽極容量〕)を1以上のできるだけ高い値に設定する
ことが望ましい。このため従来は、陰極を組み立てる前
に予備充電したり、電気化学的活性のある金属カドミウ
ムを添加することにより行っていた。ところが、前者で
は予備充電処理という新たな工程が必要となるため電池
の製造コストが高騰する一方、後者では金属カドミウム
は高価且つ化学的安定性に欠けるため電池のコストが高
くつき且つ電池性能が低下するという課題を有してい
た。
However, the battery manufactured by the above manufacturing method has a problem that the electrochemical utilization of the active material is low. In addition, in the case of a closed battery, the closed charge capacity ratio ([cathode capacity] / (cathode capacity) /
[Anode capacity] is desirably set to one or more as high as possible. For this reason, conventionally, pre-charging was performed before assembling the cathode, or by adding a metal cadmium having electrochemical activity. However, in the former case, a new process of pre-charging is required, so that the manufacturing cost of the battery rises. On the other hand, in the latter case, metal cadmium is expensive and lacks chemical stability, so the battery cost is high and the battery performance is degraded. Had the problem of doing so.

そこで、特開昭58-206055号公報に示すように、活物
質ペーストに金属コバルト粉末を添加するような提案が
なされている。このようにして作製すれば、金属コバル
ト粉末をペースト化した際、或いは電池内に電解液が注
入された際に、金属コバルトが分散媒に一旦溶解し、そ
の後主活物質である水酸化ニッケル粒子の表面層の結晶
格子内に固溶化して金属コバルトが再折出する。これに
より、水酸化ニッケルの充電電位が卑側にシフトする
(即ち、充電されやすくなる)ので、活物質の電気化学
的利用率を向上させることができる。
Therefore, as disclosed in JP-A-58-206055, a proposal has been made to add a metal cobalt powder to an active material paste. When manufactured in this way, when the metal cobalt powder is made into a paste or when the electrolytic solution is injected into the battery, the metal cobalt is once dissolved in the dispersion medium, and then the nickel hydroxide particles as the main active material To form a solid solution in the crystal lattice of the surface layer and re-extract metallic cobalt. Thereby, the charging potential of the nickel hydroxide shifts toward the base side (that is, the charging becomes easier), and the electrochemical utilization of the active material can be improved.

しかしながら、上記の製造方法では、以下に示すよう
な課題がある。
However, the above manufacturing method has the following problems.

活物質の電気化学的利用率を向上させるという効果の
バラツキが大きい。
The effect of improving the electrochemical utilization rate of the active material varies greatly.

金属コバルトの再折出が均一に行われないため固溶体
皮膜に欠陥部分を生じること、及び温度等の環境変化に
よって金属コバルト溶解量に差異が生じること等に起因
するものと考えられる。
This is considered to be caused by the fact that the re-extrusion of the metal cobalt is not performed uniformly, so that a defective portion is formed in the solid solution film, and that the amount of dissolved metal cobalt differs due to environmental changes such as temperature.

電池の製造コストの上昇或いは電池のエネルギー密度
の低下を来す。
This leads to an increase in battery manufacturing cost or a decrease in battery energy density.

特開昭63-4568号公報に示すように、陽極に金属コバ
ルトを添加すれば、密閉電池の密閉充電容量比を大きく
することが可能である。なぜなら、陽極に金属コバルト
を添加すると、金属コバルトは水酸化ニッケルよりはる
かに卑な電位であるため、充電時に水酸化ニッケルに優
先してアノード酸化され、且つその生成物であるCoOOH
はほとんど放電に寄与しないため、陽極全体としては充
電効率は非常に低くなる。したがって、陰極との充電効
率の差が大きくなるということ等に起因する。ちなみ
に、金属コバルトを5wt%添加した陽極と水酸化ニッケ
ル単独からなる陽極との開放系単極における初充電の充
電効率は、各々約60%,70%であり、一方酸化カドミウ
ムを主成分とする陰極の充電効率は約80%である。した
がって、金属コバルトを5wt%添加した場合であって
も、密閉充電容量比は約1.2となる。このため、電池と
して望ましい密閉充電容量比(1.3以上)を確保するた
めには、陽極に添加すべき金属コバルトの量は非常に多
量となる。しかしながら、金属コバルトは水酸化ニッケ
ルと比べて価格が数倍高いため、電池の製造コストが高
くなる。加えて、充放電に寄与しないコバルトの極板内
占有比率が高くなるため、電池のエネルギー密度が低下
する。
As disclosed in JP-A-63-4568, the addition of metallic cobalt to the anode makes it possible to increase the sealed charge capacity ratio of the sealed battery. Because, when metallic cobalt is added to the anode, metallic cobalt has a much lower potential than nickel hydroxide, so it is anodized in preference to nickel hydroxide during charging, and its product, CoOOH
Little contributes to the discharge, so that the charging efficiency of the anode as a whole becomes very low. Therefore, this is due to the fact that the difference in charging efficiency from the cathode becomes large. By the way, the charging efficiency of the initial charge in the open system single electrode of the anode to which 5 wt% of metallic cobalt is added and the anode consisting of nickel hydroxide alone are about 60% and 70%, respectively, while the cadmium oxide is the main component. The charging efficiency of the cathode is about 80%. Therefore, even when 5 wt% of metallic cobalt is added, the sealed charge capacity ratio is about 1.2. Therefore, the amount of metallic cobalt to be added to the anode becomes very large in order to secure a desirable closed charge capacity ratio (1.3 or more) as a battery. However, metallic cobalt is several times more expensive than nickel hydroxide, which increases battery manufacturing costs. In addition, the occupancy ratio of cobalt in the electrode plate that does not contribute to charging and discharging increases, so that the energy density of the battery decreases.

尚、陽極における2サイクル目以降の充電効率は、一
旦アノード酸化された金属コバルトが充放電に関与しな
くなるため、90%以上の高い水準で安定している。
The charge efficiency of the anode in the second and subsequent cycles is stable at a high level of 90% or more because the metal cobalt once anodized does not participate in charge and discharge.

発明が解決しようとする課題 そこで本発明は、上記従来の課題を考慮して、金属コ
バルト添加による活物質利用率の向上効果を高めつつそ
の安定化を図ると共に、少量の金属コバルトを添加する
だけで十分な密閉充電容量比を確保しうる非焼結式密閉
アルカリ蓄電池の製造方法の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, the present invention seeks to stabilize the active material utilization rate while increasing the effect of increasing the active material utilization rate by adding metal cobalt, and only adds a small amount of metal cobalt. It is an object of the present invention to provide a method of manufacturing a non-sintered sealed alkaline storage battery capable of ensuring a sufficient sealed charge capacity ratio at a low temperature.

課題を解決するための手段 本発明は上記目的を達成するために、少なくとも金属
コバルトが添加された非焼結式ニッケル陽極と、カドミ
ウム陰極とを有する非焼結式密閉アルカリ蓄電池の製造
方法において、前記陽極と陰極とをセパレータを介して
巻回した後、これを電池缶内に挿入する第1ステップ
と、前記電池缶内に電解液を注入した後、電池缶を密閉
する第2ステップと、端子電圧が0V未満となるまで初期
放電を行う第3ステップとを有することを特徴とする。
Means for Solving the Problems The present invention, in order to achieve the above object, a non-sintered nickel anode to which at least metal cobalt is added, and a method of manufacturing a non-sintered sealed alkaline storage battery having a cadmium cathode, After winding the anode and cathode through a separator, a first step of inserting this into a battery can, and after injecting an electrolyte into the battery can, a second step of sealing the battery can, A third step of performing an initial discharge until the terminal voltage becomes less than 0 V.

作用 陽極に添加した金属コバルト粉末は、初回充電の際に
アノード酸化されてCoOOHとなる。この際、本発明者の
調査によれば、アノード酸化を受けるのは金属コバルト
の中30〜50%であることが判明した。そして、そのアノ
ード酸化を受けた金属コバルトの構造は、金属コバルト
粒子の表層に酸化被膜が生成し、粒子内部は金属のまま
保たれた状態であろうということが電気化学的な測定か
ら推定される。
The metal cobalt powder added to the anode is anodic oxidized to CoOOH during the first charge. At this time, according to the investigation by the present inventor, it was found that 30 to 50% of the metal cobalt was subjected to anodic oxidation. The structure of the metal cobalt that has undergone the anodic oxidation has been estimated from electrochemical measurements to indicate that an oxide film is formed on the surface of the metal cobalt particles, and that the interior of the particles will be kept as a metal. You.

ところで、上記コバルトの酸化被膜は安定であって通
常はその形態のまま保持される。しかし、深い放電が行
われて陽極が完全に放電しつくし陰極の電位〔即ち−0.
9V(VSHg/HgO)〕まで達すると、上記酸化皮膜は還元さ
れて被膜が破れ、内部の金属コバルト露出する。このた
め、金属コバルトはアルカリ溶液に溶解してニッケル−
コバルトの固溶体形成反応が生じ、それに伴って不完全
であった固溶体被膜の欠陥部分が新たに被膜で覆われ
る。この結果、活物質の利用率の向上と安定化が果され
る。
By the way, the above-mentioned oxide film of cobalt is stable and usually kept in its form. However, a deep discharge takes place, the anode is completely discharged, and the potential of the cathode (i.e., -0.
9V ( VS Hg / HgO)], the oxide film is reduced, the film is broken, and the internal metal cobalt is exposed. For this reason, metallic cobalt is dissolved in an alkaline solution and nickel-
A cobalt solid solution forming reaction occurs, and the defective portion of the solid solution film that was incomplete is newly covered with the reaction. As a result, the utilization rate of the active material is improved and stabilized.

また、端子電圧が0V未満となるまで初期放電を行う
と、金属コバルトが露出して再び陽極の充電効率は低下
する。一方、陰極も一旦確保した剰余容量の一部を放出
するために、放電終了時の陰極残存容量は低下する。し
かし、陰極は1サイクル充放電を行えば、2サイクル目
からの充電効率は向上する。このため、陽極−陰極の充
電効率の差は拡大し、結果的に密閉充電容量比は大きく
なる。例えば、金属コバルトを5〜10%添加した陽極
と、酸化カドミウムを主成分とする陰極との組み合わせ
による電池を用い、初回の放電で端子電圧が0Vを割って
から陽極容量の10%過放電を行う。この過放電終了後
に、陰極は陽極容量の5〜7%相当分の残存容量しか持
たないこととなる。しかし、この状態における陽極と陰
極との充電効率は、各々75,95%となるため、第2サイ
クルの充電では密閉充電容量比は1.25〜1.30の水準に達
することができる。
Further, if the initial discharge is performed until the terminal voltage becomes less than 0 V, the metal cobalt is exposed and the charging efficiency of the anode is reduced again. On the other hand, since the cathode also releases a part of the surplus capacity once secured, the remaining capacity of the cathode at the end of discharge decreases. However, if the cathode is charged and discharged for one cycle, the charging efficiency from the second cycle is improved. For this reason, the difference in the charging efficiency between the anode and the cathode increases, and as a result, the sealed charging capacity ratio increases. For example, using a battery with a combination of an anode containing 5 to 10% of metallic cobalt and a cathode containing cadmium oxide as a main component, a terminal voltage of less than 0 V in the first discharge and an overdischarge of 10% of the anode capacity Do. After the end of the overdischarge, the cathode has only a remaining capacity corresponding to 5 to 7% of the anode capacity. However, the charging efficiency of the anode and the cathode in this state is 75 and 95%, respectively, so that the closed charging capacity ratio can reach the level of 1.25 to 1.30 in the charging of the second cycle.

実施例 〔実施例I〕 先ず、金属コバルト粉末7.5重量部と、水酸化ニッケ
ル粉末92.5重量部とからなる活物質を糊料液とともに混
練してペーストを作成した後、このペーストをスポンジ
状ニッケルに充填する。次に、上記ペーストに結着剤で
あるPTFE(ポリテトラフルオロエチレン)ディスパージ
ョンを付加して乾燥させた後、加圧圧延して正極を作製
する。次いで、上記正極と酸化カドミウムを活物質とす
る非焼結式陰極とを組み合わせて、通常のSCサイズの密
閉式Ni-Cd電池を作製した後、この密閉式Ni-Cd電池の初
回充放電を行った。このときの充放電条件は、充電電力
0.1CmAで16時間充電を行った後、放電電流1CmAで端子電
圧0Vを割ってから6分間放電した。
Example [Example I] First, an active material composed of 7.5 parts by weight of metal cobalt powder and 92.5 parts by weight of nickel hydroxide powder was kneaded with a paste liquid to prepare a paste, and then the paste was converted into sponge-like nickel. Fill. Next, a PTFE (polytetrafluoroethylene) dispersion serving as a binder is added to the paste, and the paste is dried, followed by pressure rolling to produce a positive electrode. Next, by combining the above positive electrode and a non-sintered cathode using cadmium oxide as an active material, to produce a sealed Ni-Cd battery of a normal SC size, the initial charge and discharge of this sealed Ni-Cd battery was performed. went. The charging / discharging condition at this time is the charging power
After charging for 16 hours at 0.1 CmA, the battery was discharged for 6 minutes after the terminal voltage was divided by 0 V by the discharge current of 1 CmA.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

〔実施例II〜VII〕(Examples II to VII)

下記第1表に示すように、正極の金属コバルト添加量
と、初回充放電条件を異ならしめる他は上記実施例Iと
同様にして電池を作製した。
As shown in Table 1 below, a battery was produced in the same manner as in Example I except that the amount of metallic cobalt added to the positive electrode and the initial charge / discharge conditions were changed.

このようにして作製した電池を、以下(A2)電池〜
(A7)電称する。
The battery fabricated in this manner is referred to as a battery (A 2 ) below.
(A 7 )

〔比較例I,II〕 上記第1表に示すように、正極の金属コバルト添加量
と、初回充放電条件を異ならしめる他は上記実施例Iと
同様にして電池を作製した。
Comparative Examples I and II As shown in Table 1 above, batteries were produced in the same manner as in Example I except that the amount of metal cobalt added to the positive electrode and the initial charge / discharge conditions were changed.

このようにして作製した電池を、以下(B1)電池、
(B2)電池と称する。
The battery fabricated in this manner is hereinafter referred to as (B 1 ) battery,
(B 2 ) called a battery.

〔実験〕[Experiment]

上記本発明の方法により作製した(A1)電池〜(A7
電池及び比較例の方法により作製した(B1)電池、
(B2)電池の密閉充電容量比と、電池容量及びそのバラ
ツキとを調べたので、その結果を下記第2表に示す。
(A 1 ) battery prepared by the method of the present invention to (A 7 )
(B 1 ) battery produced by the method of the battery and the comparative example,
(B 2 ) The sealed charging capacity ratio of the battery, the battery capacity and its variation were examined, and the results are shown in Table 2 below.

尚、充放電条件は、充電電流0.1CmAで16時間充電を行
った後、放電電流1cmAで端子電圧が1.0Vとなるまで放電
した。そして、端子電圧が1.0Vとなるまでの時間を電池
容量とした。
The charging and discharging conditions were as follows: after charging for 16 hours at a charging current of 0.1 CmA, discharging was performed at a discharging current of 1 cmA until the terminal voltage became 1.0 V. The time required for the terminal voltage to reach 1.0 V was defined as the battery capacity.

上記第1表より明らかなように、金属コバルト添加量
が同一(5wt%)である本発明の(A2)電池〜(A4)電
池と比較例の(B1)電池とを比較すると、(A2)電池〜
(A4)電池では密閉充電容量比が1.23〜1.28となるのに
対して、(B1)電池では1.15しかないことが認められ
る。更に、2サイクル目の電池容量は、(A2)電池〜
(A4)電池では63.0〜63.5(分)であるのに対して、
(B1)電池では61.2(分)しかないことが認められる。
更にまた、電池容量のバラツキは、(A2)電池〜(A4
電池では3.0〜4.5(分)であるのに対して、(B1)電池
では6.0(分)もあることが認められる。同様に、金属
コバルトの添加量が共に7.5wt%の(A1)電池と(B2
電池とにおいても、同じような結果となっていることが
認められる。
As is evident from Table 1 above, when the (A 2 ) to (A 4 ) batteries of the present invention and the (B 1 ) battery of the comparative example in which the addition amount of metallic cobalt is the same (5 wt%) are compared, (A 2) battery -
It can be seen that the (A 4 ) battery has a sealed charge capacity ratio of 1.23 to 1.28, whereas the (B 1 ) battery has only 1.15. Furthermore, the battery capacity in the second cycle is (A 2 )
(A 4 ) For batteries, 63.0-63.5 (minutes),
(B 1 ) It is recognized that the battery has only 61.2 (minutes).
Furthermore, the variation in the battery capacity is (A 2 ) battery to (A 4 )
It is recognized that the battery (B 1 ) has 6.0 (min) while the battery has 3.0 to 4.5 (min). Similarly, the (A 1 ) battery and the (B 2 ) battery both containing 7.5 wt% of metallic cobalt were added.
It can be seen that the same result was obtained with the battery.

これらのことから、本発明の製造方法にて作製された
電池は、比較例の製造方法にて作製された電池と比べて
電池性能が飛躍的に向上していることが伺える。
From these facts, it can be seen that the battery manufactured by the manufacturing method of the present invention has significantly improved battery performance as compared with the battery manufactured by the manufacturing method of the comparative example.

ここで、金属コバルトの添加量の適正範囲について調
べる。上記第2表に示すように、金属コバルトの添加量
によって電池容量が変化することが認められる。例え
ば、初回充放電条件が全て0Vを割ってから6分の電池
〔(A1)電池、(A3)電池、(A5)電池、(A6)電池、
(A7)電池〕について調べてみる。金属コバルトの添加
量が5〜10%の電池〔(A1)電池、(A3)電池、(A5
電池〕では63.5〜64.2(分)であるのに対して、金属コ
バルトの添加量が15%以上の電池〔(A6)電池、(A7
電池〕では59.5〜60.8(分)しかないことが認められ
る。更に、上記第2表には示さないが、金属コバルトの
添加量が2.5%の電池では電池容量が56(分)であるこ
とを確認している。これらのことから、金属コバルトの
添加量は5〜10%であることが望ましい。尚、金属コバ
ルトの添加量を増やせば密閉充電容量比は1.3以上とな
るが、上述の如く余り増やすと電池容量が低下するた
め、10%を超えて添加するのは好ましくない。
Here, an appropriate range of the addition amount of metallic cobalt is examined. As shown in Table 2 above, it is recognized that the battery capacity changes depending on the amount of metallic cobalt added. For example, batteries for 6 minutes after the initial charge / discharge conditions are all below 0V [(A 1 ) battery, (A 3 ) battery, (A 5 ) battery, (A 6 ) battery,
(A 7) Examining the batteries]. Batteries containing 5 to 10% of metallic cobalt [(A 1 ) batteries, (A 3 ) batteries, (A 5 )
Battery] is 63.5 to 64.2 (min), whereas the amount of metallic cobalt added is 15% or more [(A 6 ) battery, (A 7 )
Battery] is only 59.5 to 60.8 (minutes). Further, although not shown in Table 2, it was confirmed that the battery capacity was 56 (minutes) for the battery in which the addition amount of metallic cobalt was 2.5%. For these reasons, it is desirable that the addition amount of metallic cobalt is 5 to 10%. It should be noted that if the added amount of metallic cobalt is increased, the sealed charge capacity ratio becomes 1.3 or more. However, if the amount is excessively increased as described above, the battery capacity decreases. Therefore, it is not preferable to add more than 10%.

次に、初回放電の時間の適正範囲について調べる。上
記第2表に示すように、初回放電の時間によって電池容
量が変化することが認められる。例えば、金属コバルト
の添加量が5wt%電池〔(A2)電池、(A3)電池、
(A4)電池〕について調べてみる。初回放電の時間が0V
を割ってから3分の電池〔(A2)電池〕では63.0(分)
であるのに対して、初回放電の時間が0Vを割ってから6
分、10分の電池〔(A3)電池、(A4)電池〕では共に6
3.5(分)であることが認められる。また、電池容量の
バラツキも(A2)電池では4.5(分)であるのに対し
て、(A3)電池、(A4)電池では3.0(分)、4.0(分)
しかないことが認められる。したがって、電池容量の面
からみれば、初回放電の時間が長い方が好ましい。しか
し、密閉充電容量比の面からみれば、(A3)電池では1.
28であるのに対して、(A4)電池では1.23しかないこと
が認められる。これは、0Vを割ってからの放電時間を余
り長くすると、初回充電で確保した陰極の剰余充電量を
完全に消費し尽くしてしまうために、2サイクル目の陽
−陰極の充電効率の差が初回充電より拡大しても、消費
分を補うだけの差とはならないことに起因することによ
るものと考えられる。これらのことから、初回放電の時
間は0Vを割ってから6分(即ち、陽極容量の約10%を過
剰に放電すること)が好ましいことが伺える。
Next, an appropriate range of the time of the first discharge is examined. As shown in Table 2 above, it is recognized that the battery capacity changes depending on the time of the first discharge. For example, batteries containing 5 wt% of metallic cobalt [(A 2 ) batteries, (A 3 ) batteries,
(A 4) Examining the batteries]. Initial discharge time is 0V
63.0 minutes for a battery [(A 2 ) battery] for 3 minutes after cracking
However, after the time of the first discharge is less than 0V, 6
And 10-minute batteries ((A 3 ) and (A 4 ) batteries)
3.5 (minutes). Moreover, whereas the variation in (A 2) cells of the battery capacity is 4.5 (minutes), (A 3) batteries, 3.0 (min) in (A 4) batteries, 4.0 (min)
It is admitted that there is only one. Therefore, from the viewpoint of battery capacity, it is preferable that the time of the first discharge is long. However, from the viewpoint of the sealed charge capacity ratio, (A 3 )
It is recognized that there are only 1.23 in the (A 4 ) battery, while it is 28. This is because if the discharge time after dividing 0 V is too long, the surplus charge amount of the cathode secured in the first charge will be completely consumed, so the difference between the positive and negative charge efficiency in the second cycle will be different. It is considered that the reason is that even if the charge is expanded beyond the initial charge, the difference is not enough to make up for the consumption. From these facts, it can be said that it is preferable that the time of the first discharge is less than 6 minutes after dividing 0V (that is, about 10% of the anode capacity is excessively discharged).

尚、上記実施例においては、陰極活物質として酸化カ
ドミウムを主成分として用いているが、水酸化カドミウ
ム或いは酸化カドミウムと水酸化カドミウムとの混合物
を用いても上記と同様の効果を得ることができることを
確認している。
In the above embodiment, cadmium oxide is used as a cathode active material as a main component. However, the same effect as described above can be obtained by using cadmium hydroxide or a mixture of cadmium oxide and cadmium hydroxide. Have confirmed.

発明の効果 以上の如く本発明においては、工程を大幅に変更する
ことなく、金属コバルト添加による活物質利用率の向上
効果を高めつつその安定化を図ることができる。したが
って、電池容量を向上させることができると共に、電池
容量のバラツキを減少させることができる。加えて、高
価で化学的安定性に欠ける金属カドミウムを添加した
り、予備充電処理を行うことなく充分な密閉充電容量比
を確保しうる。これらのことから、電池の製造コストを
高騰させることなく電池性能を飛躍的に向上させること
ができるという効果を奏する。
Advantageous Effects of the Invention As described above, in the present invention, the stabilization of the active material utilization rate can be achieved while increasing the effect of improving the utilization rate of the active material by adding metal cobalt without significantly changing the process. Therefore, the battery capacity can be improved and the variation in the battery capacity can be reduced. In addition, a sufficient closed charge capacity ratio can be ensured without adding expensive cadmium metal lacking chemical stability or performing pre-charge treatment. From these facts, there is an effect that the battery performance can be drastically improved without increasing the manufacturing cost of the battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉川 卓也 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭63−4568(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/24 - 10/34──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takuya Tamagawa 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-63-4568 (JP, A) (58) Surveyed fields (Int.Cl. 6 , DB name) H01M 10/24-10/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも金属コバルトが添加された非焼
結式ニッケル陽極と、カドミウム陰極とを有する非焼結
式密閉アルカリ蓄電池の製造方法において、 前記陽極と陰極とをセパレータを介して巻回した後、こ
れを電池缶内に挿入する第1ステップと、 前記電池缶内に電解液を注入した後、電池缶を密閉する
第2ステップと、 端子電圧が0V未満となるまで初期放電を行う第3ステッ
プと、 を有することを特徴とする非焼結式密閉アルカリ蓄電池
の製造方法。
1. A method for producing a non-sintered sealed alkaline storage battery having a non-sintered nickel anode to which at least metal cobalt is added and a cadmium cathode, wherein the anode and the cathode are wound via a separator. Then, a first step of inserting the battery can into the battery can, a second step of injecting the electrolytic solution into the battery can and then sealing the battery can, and performing an initial discharge until the terminal voltage becomes less than 0V. 3. A method for producing a non-sintered sealed alkaline storage battery, comprising:
JP1065264A 1989-03-16 1989-03-16 Manufacturing method of non-sintering type sealed alkaline storage battery Expired - Fee Related JP2771584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065264A JP2771584B2 (en) 1989-03-16 1989-03-16 Manufacturing method of non-sintering type sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065264A JP2771584B2 (en) 1989-03-16 1989-03-16 Manufacturing method of non-sintering type sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH02244562A JPH02244562A (en) 1990-09-28
JP2771584B2 true JP2771584B2 (en) 1998-07-02

Family

ID=13281885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065264A Expired - Fee Related JP2771584B2 (en) 1989-03-16 1989-03-16 Manufacturing method of non-sintering type sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2771584B2 (en)

Also Published As

Publication number Publication date
JPH02244562A (en) 1990-09-28

Similar Documents

Publication Publication Date Title
CN102484245A (en) Method for producing negative plate for use in lead-acid battery and lead-acid battery
US6020088A (en) Gamma niooh nickel electrodes
US5405714A (en) Method for activating an alkaline storage cell employing a non-sintered type nickel positive electrode
JP2003123760A (en) Negative electrode for lead-acid battery
CN112072076B (en) Modification method for surface of negative electrode of lithium metal battery
US3525640A (en) Method of fabricating iron electrodes for alkaline storage batteries
JP2002313332A (en) Control valve type lead-acid battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP3653410B2 (en) Sealed alkaline zinc storage battery
JP3788485B2 (en) Alkaline storage battery
JP2004327299A (en) Sealed lead-acid storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP3192713B2 (en) Manufacturing method of alkaline storage battery
JPH0850896A (en) Manufacture of lead-acid battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2559593B2 (en) Sealed nickel-cadmium battery and its charging method
CN114824523A (en) Method for manufacturing alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH0837022A (en) Alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees