JP2004327299A - Sealed lead-acid storage battery - Google Patents

Sealed lead-acid storage battery Download PDF

Info

Publication number
JP2004327299A
JP2004327299A JP2003121964A JP2003121964A JP2004327299A JP 2004327299 A JP2004327299 A JP 2004327299A JP 2003121964 A JP2003121964 A JP 2003121964A JP 2003121964 A JP2003121964 A JP 2003121964A JP 2004327299 A JP2004327299 A JP 2004327299A
Authority
JP
Japan
Prior art keywords
negative electrode
lead
sealed lead
active material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121964A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Isao Amamiya
功 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003121964A priority Critical patent/JP2004327299A/en
Publication of JP2004327299A publication Critical patent/JP2004327299A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed lead-acid storage battery which can suppress the lowering of a life due to the deterioration of a negative electrode even if used in a usage repeating a deep charge and discharge, especially a usage becoming a partial charging state (PSOC). <P>SOLUTION: As a negative electrode active material in the sealed lead-acid storage battery equipped with a cell interposing a porous body impregnated with an electrolytic solution between a positive electrode and a negative electrode, one in which a compound expressed by Ba<SB>(1-x)</SB>Pb<SB>x</SB>SO<SB>4</SB>(0<x<1) is contained 0.5 parts by weight or more and 5 parts by weight or less in BaSO<SB>4</SB>conversion against 100 parts by weight of lead oxide (PbO) being a main material of the active material is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、電力貯蔵、バックアップなどの用途に用いられる密閉型鉛蓄電池に関する。
【0002】
【従来の技術】
一般に、密閉型鉛蓄電池は、正極と負極との間に、硫酸電解液をガラス繊維マット等の多孔体に含浸させたものを介在させたセルが複数個直列接続された構造となっている。また、正極は鉛合金格子基板に過酸化鉛の活物質が充填されたものであり、負極は鉛合金格子基板に海綿状金属鉛の活物質が充填されたものである。なお、一般に正極の活物質である過酸化鉛および負極の活物質である海綿状金属鉛はそれぞれ酸化鉛を主原料としており、電槽化成工程を経て、正極の活物質は過酸化鉛となり、負極の活物質は海綿状金属鉛となる。
【0003】
このようにして製造された密閉型鉛蓄電池は、電解液が固定化されているため、従来の液式鉛蓄電池と比較して設置や取り扱いが容易であり、かつ正極で発生する酸素ガスが負極で水に還元される反応(密閉反応)により、長期にわたるメンテナンスフリー化が可能となる。このため、情報通信設備等のバックアップ電源に広く実用化されている。
【0004】
ところで、上記のような密閉型鉛蓄電池を、深い充放電を繰り返す用途に用いる場合、比較的早期に容量低下をきたすことが知られている。
【0005】
例えば、深い充放電を繰り返す用途として、電力貯蔵やピークカットのシステムがあり、太陽光、風力などの自然エネルギーや夜間電力を有効に利用するために用いられる。
【0006】
また、同様の用途として、自動車等のハイブリッドシステムがあり、燃費改善のためにブレーキ回生電力を電池に蓄え、この電力を加速時に急速放電して補助動力源としている。この用途に密閉型鉛蓄電池を用いる場合は、充電状態(以下、「SOC」とする。)が約50%〜70%の範囲を中心とする部分充電状態(以下、「PSOC」とする。)で使用されることが多く、密閉型鉛蓄電池が短寿命化する傾向がある。
【0007】
上記の短寿命化の原因は、負極表面に硫酸鉛が蓄積して発生する負極劣化の一種であるサルフェーションであって、この改善手段として負極にカーボンを添加することが知られている(非特許文献1参照)。また、非特許文献1によれば、負極に添加されたカーボンは、硫酸鉛の間隙に入り込むことにより、負極内に導電経路を形成するものとされている。
【0008】
また、サルフェーションによる鉛蓄電池の短寿命化を防ぐため、負極に微細粒子状の硫酸バリウムを添加することも知られている(特許文献1〜2参照)。
【0009】
【特許文献1】特開平8−236119号公報
【特許文献2】特開平10−40906号公報
【非特許文献1】J.Power Source vol.59,(1996), p.153−157
【0010】
【発明が解決しようとする課題】
しかし、非特許文献1に記載された技術に基づいて負極に添加するカーボン量を変化させても、そのことによる寿命延長効果は限定的であって、負極に添加するカーボン量を変化させるだけでは、深い充放電を繰り返す用途に用いる密閉型鉛蓄電池としてはなお不十分なものとなる。
【0011】
また、特許文献1〜2に記載された技術を用いても、充放電サイクルを繰り返しているうちに微細粒子状の硫酸バリウムは硫酸鉛の結晶成長の核として硫酸鉛の結晶に覆われてしまい、硫酸バリウムを微細粒子化した効果を発揮させることはきわめて困難である。
【0012】
そこで、本発明は、深い充放電を繰り返す用途、特に部分充電状態(PSOC)となる用途で使用しても、負極劣化による寿命低下を抑制できる密閉型鉛蓄電池を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1の発明は、正極と負極との間に電解液を含浸させた多孔体を介在させたセルを備えた密閉型鉛蓄電池において、前記負極の活物質は、該活物質の主原料である酸化鉛(PbO)100質量部に対して、Ba(1−x)PbSO(0<x<1)なる化合物が、BaSO換算で0.5質量部以上5質量部以下含有されたものであることを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0015】
本発明の基本的な実施形態は、正極と負極との間に電解液が含浸された多孔体を介在させたセルを備えた密閉型鉛蓄電池における負極の活物質として、該活物質の主原料である酸化鉛(PbO)100質量部に対して、Ba(1−x)PbSO (0<x<1)なる化合物が、BaSO換算で0.5質量部以上5質量部以下含有されたものである。
【0016】
本実施形態においては、負極の活物質の添加剤として、Ba(1−x)PbSO (0<x<1)なる化合物を用いている。この化合物は、BaSOとPbSOの複合化合物であって、BaSOとPbSOの結晶がともにガンエン型結晶構造をとるため、固溶体状の複合化合物を形成しているものと考えられる。
【0017】
そして、この複合化合物は、以下の点で特許文献1〜2に記載された技術に用いられるBaSOの作用と比較して有効な作用を有する。すなわち、(1)この複合化合物は、それぞれ単独の化合物であるBaSOやPbSOと比較して結晶中の歪みが大きく、Pb2+イオンがPbSOとなる際の核化剤としての性能がより高いものと考えられる。また、(2)この複合化合物は、BaSOと比較して電解液への溶解度が高く、負極に付着したPbSOの結晶中に微量含まれることによりその結晶格子を不安定化する効果があるものと考えられる。
【0018】
そして、これらの作用により、結晶の粗大化が抑制され、しかも充電時には容易にPb2+イオンになって分極をより小さく抑制する効果が発揮される。なお、負極活物質である酸化鉛100質量部に対するBa(1−x)PbSO (0<x<1)の添加量をBaSO換算で0.5〜5質量部の範囲とするのは、この範囲の下限未満の場合は効果が不十分となり、上限を超える場合は負極の導電性の低下をもたらすためである。
【0019】
本実施形態の密閉型鉛蓄電池は、従来の密閉型鉛蓄電池と同様、(1)負極活物質を製造して未化成の負極板を製造する工程、(2)正極活物質を製造して未化成の正極板を製造する工程、(3)電池を組み立てる工程、(4)電槽化成工程の4つの工程を経て製造される。本実施形態の密閉型鉛蓄電池が、従来の密閉型鉛蓄電池と異なる点は、未化成の負極板を形成する際の負極活物質に添加する添加剤の種類である。以下、本実施形態の具体例を挙げて詳細に説明する。
【0020】
(1)負極活物質を製造して未化成の負極板を製造する工程
ボールミル法により製造した酸化鉛100質量部に、カーボン粉末としてのアセチレンブラック(比表面積70m/g)を1質量部と、本実施形態の具体例の添加剤であるBa(1−x)PbSO (0<x<1)または従来技術相当の比較例の添加剤であるBaSOを加えて乾式混合した。これにリグニン0.2質量部を水溶液として加え、続いてイオン交換水約10質量部を加えながら混練して水ペーストを調製し、さらに比重1.36の希硫酸10質量部を加えながら混練して負極活物質ペーストとした。なお、できあがったペーストのカップ密度が約4.1g/cmとなるようにイオン交換水の量を調整した。そして、このペーストをカルシウム合金からなる鋳造基板に充填し、温度40℃、湿度95%の雰囲気中で24時間熟成し、その後乾燥して未化成の負極板を製造した。
【0021】
ここで、上記添加剤について、本実施形態の具体例の添加剤および従来例の添加剤の組成をそれぞれ表1に示す。
【0022】
【表1】

Figure 2004327299
【0023】
(2)正極活物質を製造して未化成の正極板を製造する工程
酸化鉛100質量部にイオン交換水10質量部を加え、続いて比重1.27の希硫酸10質量部を加えながら混練して正極活物質用ペーストを製造した。なお、このペーストのカップ密度が約4.3g/cmとなるようにした。このペーストをカルシウム合金からなる鋳造基板に充填し、温度40℃、湿度95%の雰囲気中で24時間熟成し、その後乾燥して未化成の正極板を製造した。
【0024】
(3)電池を組み立てる工程
未化成の極板に、微細なガラス繊維からなり20kPa加圧時の厚みが1.0mmのリテーナマットセパレータを組み合わせ、COS方式で極板同士を溶接して極板群とした。この極板群を、PP製の電槽に収容し、ヒートシールにより蓋をした。
【0025】
(4)電槽化成工程
電槽内に、電槽化成に用いる電解液としての比重1.20の希硫酸と、放電状態での短絡防止用の硫酸ナトリウムを入れ、温度40℃の水槽中で理論容量の200%過充電して電槽化成を行い、2Vの密閉型鉛蓄電池を製造した。この電池の電解液比重は1.32、電解液量は極板群の理論空間体積の100%となるようにそれぞれ調整した。また、この電池の容量は、化成後の容量試験で5時間率容量が20Ahとなるようにした。
【0026】
上述のように製造された本実施形態の具体例の密閉型鉛蓄電池および従来例の密閉型鉛蓄電池について、回生充電性能および耐久性の評価を行った。
【0027】
評価条件は、下記のとおりである。
(1)密閉型鉛蓄電池を、温度25℃(電池温度か雰囲気温度か不明)の5時間率電流で完全充電した後、5時間率電流で8Ah分の放電を行ってSOCを60%に調整する。
(2)電池温度が40℃になるように雰囲気温度を調整し、60Aで60秒間の定電流放電、200Aで1秒間の定電流放電、60Aで65秒間、80Aで5秒間のそれぞれ上限電圧2.40Vの定電流・定電圧充電をこの順で行う行程を1サイクルとする耐久加速試験を行った。
(3)そして、200Aで1秒間の定電流放電を行う際の電池の電圧が1セルあたり1.6Vを下回るまで試験を繰り返し、その時点を寿命とした。その結果を、表1に示した各例に対応させて表2に示す。
【0028】
【表2】
Figure 2004327299
【0029】
表2のとおり、本実施形態の各具体例は、いずれも比較例の150%以上寿命が延びており、耐久加速試験において実用上望ましいとされる2万回以上を満足している。すなわち、本実施形態の密閉型鉛蓄電池は、部分充電状態(PSOC)となる用途で使用しても、負極劣化による寿命低下が起こらないものとなる。
【0030】
以上、本発明の実施形態を説明したが、本発明の実施形態は上述したものに限られず、特許請求の範囲に記載した事項の範囲内で、適宜変更することが可能である。
【0031】
例えば、本実施形態の具体例で用いた添加剤であるBa(1−x)PbSO (0<x<1)は、BaおよびPbを炭酸塩などの水溶性の塩としてこれらの水溶液を所定の比率で混合し、これに硫酸水溶液を混合して析出させて得ることができ、また、所定の組成のBa−Pb合金を酸化し、これに硫酸を加えて得ることもできる。もちろん、その他の構成も上述の事項に限られないことはいうまでもない。
【0032】
【発明の効果】
以上のとおり、本発明によれば、深い充放電を繰り返す用途、特に部分充電状態(PSOC)となる用途で使用しても、負極劣化による寿命低下を抑制できる密閉型鉛蓄電池を容易に得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealed lead-acid battery used for applications such as automobiles, power storage, and backup.
[0002]
[Prior art]
In general, a sealed lead-acid battery has a structure in which a plurality of cells in which a porous body such as a glass fiber mat is impregnated with a sulfuric acid electrolyte is interposed between a positive electrode and a negative electrode. The positive electrode is a lead alloy lattice substrate filled with an active material of lead peroxide, and the negative electrode is a lead alloy lattice substrate filled with a spongy metal lead active material. In general, lead peroxide as a positive electrode active material and spongy metal lead as a negative electrode active material are each mainly composed of lead oxide.After a battery case formation process, the positive electrode active material becomes lead peroxide, The active material of the negative electrode is spongy metal lead.
[0003]
The sealed lead-acid battery manufactured in this manner is easier to install and handle than conventional liquid lead-acid batteries because the electrolyte is fixed, and oxygen gas generated at the positive electrode is The reaction (sealed reaction) that is reduced to water in the above enables maintenance-free operation for a long time. For this reason, it is widely used as a backup power supply for information communication equipment.
[0004]
By the way, it is known that when the above-described sealed lead-acid battery is used for repeated use of deep charge / discharge, the capacity is reduced relatively early.
[0005]
For example, there is an electric power storage or peak cut system as an application that repeats deep charge and discharge, and is used to effectively use natural energy such as sunlight and wind power and nighttime electric power.
[0006]
As a similar application, there is a hybrid system for an automobile or the like, in which brake regenerative electric power is stored in a battery to improve fuel efficiency, and this electric power is rapidly discharged during acceleration to be used as an auxiliary power source. When a sealed lead-acid battery is used for this purpose, the state of charge (hereinafter referred to as "SOC") is partially charged around the range of about 50% to 70% (hereinafter referred to as "PSOC"). In many cases, the sealed lead-acid battery tends to have a shorter life.
[0007]
The cause of the shortening of the service life is sulfation, which is a kind of deterioration of the negative electrode caused by accumulation of lead sulfate on the surface of the negative electrode, and it is known that carbon is added to the negative electrode as a means for improving the negative electrode. Reference 1). According to Non-Patent Document 1, carbon added to a negative electrode enters a gap between lead sulfates to form a conductive path in the negative electrode.
[0008]
It is also known that barium sulfate in the form of fine particles is added to a negative electrode in order to prevent the life of a lead storage battery from being shortened by sulfation (see Patent Documents 1 and 2).
[0009]
[Patent Document 1] JP-A-8-236119 [Patent Document 2] JP-A-10-40906 [Non-Patent Document 1] Power Source vol. 59, (1996), p. 153-157
[0010]
[Problems to be solved by the invention]
However, even if the amount of carbon added to the negative electrode is changed based on the technology described in Non-Patent Document 1, the effect of extending the life due to the change is limited. However, it is still insufficient as a sealed lead-acid battery used for applications where deep charge and discharge are repeated.
[0011]
In addition, even when the techniques described in Patent Documents 1 and 2 are used, barium sulfate in the form of fine particles is covered with lead sulfate crystals as nuclei for crystal growth of lead sulfate during repeated charge / discharge cycles. It is very difficult to exhibit the effect of barium sulfate being made into fine particles.
[0012]
Therefore, an object of the present invention is to provide a sealed lead-acid battery that can suppress a reduction in life due to deterioration of a negative electrode even when used in applications in which deep charge and discharge are repeated, particularly in applications where a partial charge state (PSOC) occurs.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 is a sealed lead-acid battery including a cell in which a porous body impregnated with an electrolytic solution is interposed between a positive electrode and a negative electrode, wherein the active material of the negative electrode is a main raw material of the active material. A compound of Ba (1-x) Pb x SO 4 (0 <x <1) is contained in an amount of 0.5 to 5 parts by mass in terms of BaSO 4 with respect to 100 parts by mass of a certain lead oxide (PbO). It is characterized in that it is.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0015]
The basic embodiment of the present invention is, as a negative electrode active material in a sealed lead-acid battery having a cell in which a porous body impregnated with an electrolytic solution is interposed between a positive electrode and a negative electrode, the main material of the active material containing per 100 parts by weight of lead oxide (PbO) is, Ba (1-x) Pb x SO 4 (0 <x <1) becomes compound, 5 parts by mass or less than 0.5 part by weight with BaSO 4 terms It was done.
[0016]
In the present embodiment, a compound of Ba (1-x) Pb x SO 4 (0 <x <1) is used as an additive of the active material of the negative electrode. This compound is a complex compound of BaSO 4 and PbSO 4, because it has a crystalline both rock salt-type crystal structure of BaSO 4 and PbSO 4, is considered to form a solid solution like composite compounds.
[0017]
Then, this complex compound has a beneficial effect as compared to the effect of BaSO 4 employed in the technique described in Patent Documents 1 and 2 in the following points. That is, (1) this composite compound has larger strain in the crystal than BaSO 4 and PbSO 4 which are single compounds, respectively, and has a higher performance as a nucleating agent when Pb 2+ ions become PbSO 4. It is considered high. (2) The composite compound has a higher solubility in the electrolytic solution than BaSO 4, and has an effect of destabilizing its crystal lattice by containing a small amount of PbSO 4 attached to the negative electrode. It is considered.
[0018]
By these actions, the crystal is prevented from being coarsened, and moreover, Pb 2+ ions are easily formed at the time of charging, and the effect of suppressing the polarization to be smaller is exhibited. Incidentally, in the range of 0.5 to 5 parts by BaSO 4 in terms of the amount of Ba (1-x) Pb x SO 4 (0 <x <1) for the lead oxide to 100 parts by mass of a negative active material This is because the effect is insufficient when the amount is less than the lower limit of the range, and the conductivity of the negative electrode is decreased when the amount exceeds the upper limit.
[0019]
The sealed lead-acid battery of the present embodiment has the following steps: (1) a step of producing a negative electrode active material to produce an unformed negative electrode plate; It is manufactured through four steps: a step of manufacturing a positive electrode plate for chemical formation, (3) a step of assembling a battery, and (4) a battery case formation step. The difference between the sealed lead-acid battery of the present embodiment and the conventional sealed lead-acid battery is the type of additive added to the negative electrode active material when forming an unformed negative electrode plate. Hereinafter, a specific example of the present embodiment will be described in detail.
[0020]
(1) Step of Producing Negative Electrode Active Material and Producing Unformed Negative Electrode Plate 100 parts by mass of lead oxide produced by a ball mill method and 1 part by mass of acetylene black (specific surface area 70 m 2 / g) as carbon powder. Ba (1-x) Pb x SO 4 (0 <x <1) which is an additive of a specific example of the present embodiment or BaSO 4 which is an additive of a comparative example corresponding to the prior art was added and dry-mixed. To this was added 0.2 parts by weight of lignin as an aqueous solution, and then kneaded while adding about 10 parts by weight of ion-exchanged water to prepare a water paste, and further kneaded while adding 10 parts by weight of dilute sulfuric acid having a specific gravity of 1.36. To obtain a negative electrode active material paste. Note that the amount of ion-exchanged water was adjusted so that the cup density of the completed paste was about 4.1 g / cm 3 . The paste was filled in a cast substrate made of a calcium alloy, aged in an atmosphere of a temperature of 40 ° C. and a humidity of 95% for 24 hours, and then dried to produce an unformed negative electrode plate.
[0021]
Table 1 shows the compositions of the additives of the specific example of the present embodiment and the additives of the conventional example.
[0022]
[Table 1]
Figure 2004327299
[0023]
(2) Step of Producing Positive Electrode Active Material and Producing Unformed Positive Electrode Plate 100 parts by mass of lead oxide is added with 10 parts by mass of ion-exchanged water, and then kneaded while adding 10 parts by mass of dilute sulfuric acid having a specific gravity of 1.27. As a result, a paste for a positive electrode active material was produced. The paste had a cup density of about 4.3 g / cm 3 . This paste was filled in a cast substrate made of a calcium alloy, aged in an atmosphere at a temperature of 40 ° C. and a humidity of 95% for 24 hours, and then dried to produce an unformed positive electrode plate.
[0024]
(3) Process of assembling the battery An unformed electrode plate is combined with a retainer mat separator made of fine glass fiber and having a thickness of 1.0 mm when pressed at 20 kPa, and the electrode plates are welded to each other by the COS method to form an electrode plate group. And The electrode group was housed in a PP battery case, and covered with heat sealing.
[0025]
(4) Battery case formation step Into a battery case, dilute sulfuric acid having a specific gravity of 1.20 as an electrolytic solution used for battery case formation and sodium sulfate for preventing short circuit in a discharged state are put. A battery case was formed by overcharging the battery by 200% of the theoretical capacity to produce a 2V sealed lead-acid battery. The specific gravity of the electrolytic solution of this battery was adjusted to 1.32, and the amount of the electrolytic solution was adjusted to 100% of the theoretical space volume of the electrode plate group. Further, the capacity of this battery was set so that the 5-hour rate capacity was 20 Ah in a capacity test after formation.
[0026]
The regenerative charging performance and durability of the sealed lead-acid battery of the specific example of the present embodiment and the sealed lead-acid battery of the conventional example manufactured as described above were evaluated.
[0027]
The evaluation conditions are as follows.
(1) After fully charging the sealed lead-acid battery at a temperature of 25 ° C. (battery temperature or ambient temperature unknown) at a 5-hour rate current, discharging at 8 Ah at a 5-hour rate current to adjust the SOC to 60%. I do.
(2) Adjusting the ambient temperature so that the battery temperature becomes 40 ° C., constant current discharge at 60 A for 60 seconds, constant current discharge at 200 A for 1 second, upper limit voltage 2 at 65 A at 60 A and 5 seconds at 80 A, respectively An endurance acceleration test was performed in which a cycle of performing constant-current / constant-voltage charging of .40 V in this order was one cycle.
(3) Then, the test was repeated until the voltage of the battery when performing a constant current discharge at 200 A for 1 second was less than 1.6 V per cell, and the time was regarded as the life. The results are shown in Table 2 corresponding to each example shown in Table 1.
[0028]
[Table 2]
Figure 2004327299
[0029]
As shown in Table 2, each of the specific examples of the present embodiment has an extended life of at least 150% of that of the comparative example, and satisfies 20,000 times or more which is considered to be practically desirable in a durability acceleration test. That is, even if the sealed lead-acid battery of the present embodiment is used in an application that is in a partially charged state (PSOC), the life of the battery does not decrease due to deterioration of the negative electrode.
[0030]
Although the embodiment of the present invention has been described above, the embodiment of the present invention is not limited to the above, and can be appropriately changed within the scope of the matters described in the claims.
[0031]
For example, Ba (1-x) Pb x SO 4 (0 <x <1), which is an additive used in the specific example of the present embodiment, converts Ba and Pb into water-soluble salts such as carbonates, Can be obtained by mixing at a predetermined ratio and then precipitating by mixing with an aqueous sulfuric acid solution, or by oxidizing a Ba-Pb alloy having a predetermined composition and adding sulfuric acid thereto. Of course, it goes without saying that other configurations are not limited to those described above.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to easily obtain a sealed lead-acid battery that can suppress a decrease in life due to deterioration of a negative electrode even when used in applications where deep charge and discharge are repeated, particularly in applications where a partial charge state (PSOC) is obtained. Can be.

Claims (1)

正極と負極との間に電解液を含浸させた多孔体を介在させたセルを備えた密閉型鉛蓄電池において、
前記負極の活物質は、該活物質の主原料である酸化鉛(PbO)100質量部に対して、Ba(1−x)PbSO (0<x<1)なる化合物が、BaSO換算で0.5質量部以上5質量部以下含有されたものであることを特徴とする密閉型鉛蓄電池。
In a sealed lead-acid battery having a cell in which a porous body impregnated with an electrolytic solution is interposed between a positive electrode and a negative electrode,
The active material of the negative electrode, the main raw material is lead oxide (PbO) 100 parts by weight of the active material, Ba (1-x) Pb x SO 4 (0 <x <1) becomes compound, BaSO 4 A sealed lead-acid battery characterized in that it contains not less than 0.5 part by mass and not more than 5 parts by mass in conversion.
JP2003121964A 2003-04-25 2003-04-25 Sealed lead-acid storage battery Pending JP2004327299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121964A JP2004327299A (en) 2003-04-25 2003-04-25 Sealed lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121964A JP2004327299A (en) 2003-04-25 2003-04-25 Sealed lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2004327299A true JP2004327299A (en) 2004-11-18

Family

ID=33500357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121964A Pending JP2004327299A (en) 2003-04-25 2003-04-25 Sealed lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2004327299A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359744C (en) * 2005-05-13 2008-01-02 陈有孝 12-HK(M)-28 type high-energy dry-charged sealed maintenance-free lead-acid battery
JP5014133B2 (en) * 2005-07-27 2012-08-29 株式会社ミツバ Motor control method and motor control system
US9114446B2 (en) 2008-11-07 2015-08-25 H. Folke Sandelin Ab Methods and system for manufacturing lead battery plates
WO2018100639A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor
US10084208B2 (en) 2014-12-18 2018-09-25 Gs Yuasa International Ltd. Lead-acid battery
JP2020102359A (en) * 2018-12-21 2020-07-02 株式会社Gsユアサ Lead-acid battery
DE112006001839B4 (en) 2005-07-13 2024-06-06 Mitsuba Corp. Engine control method and engine control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359744C (en) * 2005-05-13 2008-01-02 陈有孝 12-HK(M)-28 type high-energy dry-charged sealed maintenance-free lead-acid battery
DE112006001839B4 (en) 2005-07-13 2024-06-06 Mitsuba Corp. Engine control method and engine control system
JP5014133B2 (en) * 2005-07-27 2012-08-29 株式会社ミツバ Motor control method and motor control system
US9114446B2 (en) 2008-11-07 2015-08-25 H. Folke Sandelin Ab Methods and system for manufacturing lead battery plates
US10084208B2 (en) 2014-12-18 2018-09-25 Gs Yuasa International Ltd. Lead-acid battery
WO2018100639A1 (en) * 2016-11-29 2018-06-07 日立化成株式会社 Lead storage battery and production method therefor
JP2020102359A (en) * 2018-12-21 2020-07-02 株式会社Gsユアサ Lead-acid battery
JP7127529B2 (en) 2018-12-21 2022-08-30 株式会社Gsユアサ lead acid battery

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
CN103137955B (en) A kind of storage battery lead/carbon composite and preparation method thereof
CN102576863A (en) Negative plate for lead acid battery
JP5748091B2 (en) Lead acid battery
JP2016115396A (en) Lead power storage battery
JP4053272B2 (en) Negative electrode for lead acid battery
JP2003036882A (en) Sealed type lead storage battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP6112225B2 (en) Control valve type lead acid battery
JP2008243493A (en) Lead acid storage battery
CN111082028A (en) High-capacity negative electrode material, preparation method and lithium ion battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP2008243489A (en) Lead acid storage battery
US6740452B2 (en) Process of forming a negative battery paste
JP2004327299A (en) Sealed lead-acid storage battery
JP5017746B2 (en) Control valve type lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP2000251896A (en) Lead-acid battery and its manufacture
JP2011070870A (en) Lead-acid battery
WO2014014989A2 (en) High performance lead acid battery with advanced electrolyte system
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2002198085A (en) Lead storage battery
JPH09180717A (en) Nickel electrode for alkaline storage battery
JP4984786B2 (en) Lead acid battery
JP4742424B2 (en) Control valve type lead acid battery