JP5545975B2 - Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same - Google Patents

Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same Download PDF

Info

Publication number
JP5545975B2
JP5545975B2 JP2010078798A JP2010078798A JP5545975B2 JP 5545975 B2 JP5545975 B2 JP 5545975B2 JP 2010078798 A JP2010078798 A JP 2010078798A JP 2010078798 A JP2010078798 A JP 2010078798A JP 5545975 B2 JP5545975 B2 JP 5545975B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lead
storage battery
lead storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010078798A
Other languages
Japanese (ja)
Other versions
JP2011210640A (en
Inventor
英明 吉田
渉 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2010078798A priority Critical patent/JP5545975B2/en
Publication of JP2011210640A publication Critical patent/JP2011210640A/en
Application granted granted Critical
Publication of JP5545975B2 publication Critical patent/JP5545975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、鉛蓄電池の正極板に使用する正極活物質及び該正極活物質を充填して成る鉛蓄電池用正極板に関する。 The present invention relates to a positive electrode active material used for a positive electrode plate of a lead storage battery and a positive electrode plate for a lead storage battery formed by filling the positive electrode active material.

鉛蓄電池は、ニッケル−カドミウム電池と共に長い歴史を持ち、その安価さもさることながら安定した性能から来る信頼性の故に、現在でも蓄電池の主流を占めている。例えば、自動車用のSLI用電源、小型電子機器及び電動車に使用される移動用電源、又はコンピューター等の電源の停止時に作動するバックアップ用据え置き電源として広く使用されている。 Lead-acid batteries have a long history with nickel-cadmium batteries, and still occupy the mainstream of accumulators because of their reliability that comes from their stable performance as well as their low cost. For example, it is widely used as an SLI power source for automobiles, a mobile power source used in small electronic devices and electric vehicles, or a backup stationary power source that operates when a power source of a computer or the like is stopped.

近年、これらの電源等に使用される鉛蓄電池は、高出力、大容量化への要望が高まり、容積及び重量を低減することと共に、特性を改善した鉛蓄電池が必要になってきている。そこで、鉛蓄電池の特性改善のために種々の検討がなされており、その一つとして、例えば、鉛蓄電池の正極板における活物質の利用率を向上させる取り組みがなされている。 In recent years, lead storage batteries used for these power supplies and the like have been increasingly demanded for high output and large capacity, and lead storage batteries having improved characteristics as well as volume and weight have become necessary. Thus, various studies have been made to improve the characteristics of lead-acid batteries. One example is efforts to improve the utilization of active materials in the positive electrode plates of lead-acid batteries.

鉛蓄電池の正極板の製造は、通常、金属鉛と鉛酸化物とを主原料とする鉛粉を水及び希硫酸で攪拌しながら混練することによって鉛ペーストを調製し、次いで、該鉛ペーストを鉛又は鉛合金から成る格子体に充填した後、熟成、乾燥工程を経て未化成板を製造することにより行われる。該正極板における活物質の利用率は、その粒子間に生ずる細孔の多さ、即ち、多孔度によって左右され、多孔度が大きいほど高い利用率が得られる。その理由は、放電時に生成する硫酸塩によって活物質の細孔が閉塞され、放電反応に必要な硫酸が拡散し難くなるため、多孔度が大きいほど硫酸の拡散がより一層確保されるためであると考えられている。 The production of the positive electrode plate of a lead-acid battery usually involves preparing a lead paste by kneading lead powder mainly composed of metallic lead and lead oxide with water and dilute sulfuric acid, and then using the lead paste. After filling a lattice body made of lead or a lead alloy, an unformed sheet is produced through an aging and drying process. The utilization factor of the active material in the positive electrode plate depends on the number of pores generated between the particles, that is, the porosity, and the higher the porosity, the higher the utilization factor. The reason for this is that the pores of the active material are blocked by the sulfate generated during discharge, and the sulfuric acid necessary for the discharge reaction is less likely to diffuse, so that the greater the porosity, the more ensured the diffusion of sulfuric acid. It is believed that.

そこで、鉛ペースト中に膨張黒鉛を添加し、化成中に黒鉛を膨張させて細孔を増やすという技術が従来から提案されている。しかし、黒鉛を膨張させると活物質を構成している粒子間の結合力が低下し、活物質構造体として弱くなる。その結果、特に深い充放電を繰り返した時に、活物質の正極板からの脱落、活物質と格子体との密着性の低下、集電効率の低下、活物質間の導電性の低下等が起こり、蓄電池としての寿命が短くなってしまうと言う問題があった。同様の技術として、ペースト混練時にアルカリ金属及びアルカリ土類金属の硫酸塩を添加するとともに、混練時の最高温度を40℃以下にし、かつ混練終了時のペースト水分量を12〜14.5重量%の範囲にする方法(特許文献1)、及び、Sn、Pb、Ge、Cr、Os、Mn又はRuから選択される金属酸化物MOを正極活物質中に添加する鉛蓄電池(特許文献2)が知られている。しかし、これらの試みにおいても、未だ、十分な鉛蓄電池は得られていない。 Therefore, a technique has been conventionally proposed in which expanded graphite is added to lead paste, and graphite is expanded during chemical conversion to increase pores. However, when graphite is expanded, the bonding force between the particles constituting the active material is reduced, and the active material structure becomes weak. As a result, particularly when deep charge / discharge is repeated, the active material is detached from the positive electrode plate, the adhesion between the active material and the lattice is lowered, the current collection efficiency is lowered, and the conductivity between the active materials is lowered. There was a problem that the life as a storage battery would be shortened. As a similar technique, alkali metal and alkaline earth metal sulfates are added at the time of paste kneading, the maximum temperature at the time of kneading is 40 ° C. or less, and the moisture content at the end of kneading is 12 to 14.5% by weight. And a lead storage battery in which a metal oxide MO 2 selected from Sn, Pb, Ge, Cr, Os, Mn or Ru is added to the positive electrode active material (Patent Document 2) It has been known. However, even in these attempts, a sufficient lead storage battery has not been obtained yet.

特開平7−122270号公報JP-A-7-122270 特開2000−182615号公報JP 2000-182615 A

本発明は、鉛蓄電池の正極板に使用した際に、活物質粒子間の結合力の低下が生ぜず、かつ、最適な径の空孔を形成することから、著しく良好な利用率を発揮し得る鉛蓄電池用正極活物質及びそれを充填して成る鉛蓄電池用正極板を提供するものである。 The present invention, when used in a positive electrode plate of a lead-acid battery, does not cause a decrease in the bonding force between the active material particles and forms pores with an optimal diameter, so that it exhibits a very good utilization rate. The present invention provides a positive electrode active material for lead storage battery and a positive electrode plate for lead storage battery obtained by filling the positive electrode active material.

本発明者らは、鉛蓄電池の利用率を高めるという観点から、鉛蓄電池の正極板に使用する活物質中に如何にすれば空孔を増やすことができるかについて、種々の検討を試みた。その結果、本発明者らは、金属鉛と鉛酸化物とを主成分とする鉛粉に、希硫酸及び水を加えて混練して作製した正極活物質ペーストがアルカリ性を示すと言うことに着目して、該正極活物質ペーストに金属粉末、例えば、アルミニウム粉末を添加すれば、該アルミニウム粉末が正極活物質ペーストと反応して溶解し、活物質中に空孔を生ずること、かつ、この時点で完全に溶解しない金属粉末があっても、電解液である希硫酸を注液した際に反応して完全に溶解し、更に、空孔が形成されることを見出し、加えて、該空孔は、例えば、従来の黒鉛添加に見られるような電池寿命の低下を生じないことをも見出して、本発明を完成するに至った。 The present inventors tried various examinations about how to increase the number of holes in the active material used for the positive electrode plate of the lead storage battery from the viewpoint of increasing the utilization rate of the lead storage battery. As a result, the present inventors pay attention to the fact that the positive electrode active material paste produced by adding dilute sulfuric acid and water to lead powder containing metal lead and lead oxide as the main components and kneading is alkaline. Then, if a metal powder, for example, aluminum powder is added to the positive electrode active material paste, the aluminum powder reacts with the positive electrode active material paste and dissolves to form voids in the active material. Even if there is a metal powder that does not completely dissolve in the solution, it is found that when the diluted sulfuric acid that is the electrolyte is injected, it reacts and completely dissolves, and further, pores are formed. For example, the inventors have found that the battery life is not reduced as seen in conventional graphite addition, and have completed the present invention.

即ち、本発明は、
(1)金属鉛粉末及び鉛酸化物粉末を含む鉛蓄電池用正極活物質において、更に、金属粉末を含み、上記金属粉末の平均粒子径が、10〜500μmであり、かつ、上記金属粉末の含有量が、上記鉛酸化物粉末に対して、アルミニウム体積換算質量で0.5〜2.0質量%であることを特徴とする鉛蓄電池用正極活物質(ここで、アルミニウム体積換算質量とは、金属粉末の質量を同体積のアルミニウムの質量で置き換えた値を言う)である。
That is, the present invention
(1) In the metallic lead powder and a positive electrode active material for lead-acid battery comprising a lead oxide powder, further look-containing metallic powder, the average particle diameter of the metal powder is a 10 to 500 [mu] m, and the metal powder The positive electrode active material for a lead storage battery, wherein the content is 0.5 to 2.0% by mass in terms of aluminum volume with respect to the lead oxide powder (here, the mass in terms of aluminum volume) And the value obtained by replacing the mass of the metal powder with the mass of aluminum of the same volume) .

好ましい態様として、
(2)上記金属粉末が、アルミニウム、マグネシウム、亜鉛及びスズより成る群から選ばれる1種以上である、上記(1)記載の鉛蓄電池用正極活物質、
(3)上記金属粉末が、アルミニウムである、上記(1)記載の鉛蓄電池用正極活物質、
)上記金属粉末の平均粒子径が、10〜300μmである、上記(1)〜(3)のいずれか一つに記載の鉛蓄電池用正極活物質、
)上記金属粉末の含有量が、上記鉛酸化物粉末に対して、アルミニウム体積換算質量で0.5〜1.5質量%である、上記(1)〜()のいずれか一つに記載の鉛蓄電池用正極活物質(ここで、アルミニウム体積換算質量とは、金属粉末の質量を同体積のアルミニウムの質量で置き換えた値を言う)、
)化成後の多孔度が、55%以上60%未満である、上記(1)〜()のいずれか一つに記載の鉛蓄電池用正極活物質、
)化成後の多孔度が、56.5〜58.0%である、上記(1)〜()のいずれか一つに記載の鉛蓄電池用正極活物質、
)上記(1)〜()のいずれか一つに記載の鉛蓄電池用正極活物質に希硫酸及び水を加えて混練して作製したペーストを充填してなる鉛蓄電池用正極板
を挙げることができる。
As a preferred embodiment,
(2) The positive electrode active material for a lead storage battery according to (1), wherein the metal powder is one or more selected from the group consisting of aluminum, magnesium, zinc, and tin,
(3) The positive electrode active material for a lead storage battery according to (1), wherein the metal powder is aluminum,
( 4 ) The positive electrode active material for a lead storage battery according to any one of (1) to (3), wherein the average particle size of the metal powder is 10 to 300 μm,
( 5 ) Any one of the above (1) to ( 4 ), wherein the content of the metal powder is 0.5 to 1.5% by mass in terms of aluminum volume with respect to the lead oxide powder. The positive electrode active material for lead-acid batteries described in (Herein, the mass in terms of aluminum volume refers to a value obtained by replacing the mass of the metal powder with the mass of aluminum of the same volume),
( 6 ) The positive electrode active material for a lead storage battery according to any one of (1) to ( 5 ), wherein the porosity after chemical conversion is 55% or more and less than 60%,
( 7 ) The positive electrode active material for a lead storage battery according to any one of (1) to ( 5 ), wherein the porosity after chemical conversion is 56.5 to 58.0%,
( 8 ) A lead-acid battery positive plate formed by filling a paste prepared by adding dilute sulfuric acid and water to the positive-electrode active material for a lead-acid battery according to any one of the above (1) to ( 7 ). Can be mentioned.

本発明の鉛蓄電池用正極活物質は、鉛蓄電池の正極板に使用した際に、活物質粒子間の結合力の低下が生ぜず、かつ、最適な径の空孔を形成することから、著しく良好な利用率を発揮し得る。 The positive electrode active material for a lead storage battery of the present invention, when used for a positive electrode plate of a lead storage battery, does not cause a decrease in the binding force between active material particles, and forms pores with an optimal diameter. A good utilization rate can be exhibited.

本発明の鉛蓄電池用正極活物質は、従来の金属鉛粉末及び鉛酸化物粉末を含む鉛蓄電池用正極活物質に、更に、金属粉末を含むことを特徴とするものである。前記正極活物質と金属粉末は希硫酸と水等を用いて混練し、正極活物質ペーストを作成する。金属粉末の種類は、正極活物質ペーストとした後、化成の際に希硫酸と反応し金属粉末を溶解して空孔を形成することが可能な材料であれば特に制限はない。好ましくは、アルミニウム、マグネシウム、亜鉛及びスズより成る群から選ばれる1種以上が使用される。但し、鉛は除くものとする。 The positive electrode active material for a lead storage battery of the present invention is characterized in that the positive electrode active material for a lead storage battery containing a conventional metal lead powder and lead oxide powder further contains a metal powder. The positive electrode active material and metal powder are kneaded using dilute sulfuric acid and water to prepare a positive electrode active material paste. The type of the metal powder is not particularly limited as long as it is a material that can be used as a positive electrode active material paste and can react with dilute sulfuric acid during the formation to dissolve the metal powder to form pores. Preferably, at least one selected from the group consisting of aluminum, magnesium, zinc and tin is used. However, lead is excluded.

上記金属粉末の平均粒子径の下限は、好ましくは10μmである。上記下限未満では、本発明の鉛蓄電池用正極活物質を希硫酸及び水と混練する際に、反応が迅速に進行して金属粉末が溶解して、空孔が形成され難くなるため好ましくない。通常、鉛蓄電池においては、放電が進むにつれて活物質である二酸化鉛が硫酸鉛へと変化して体積膨張して、これにより細孔径が小さくなり、活物質内部への電解液の拡散が不足して放電が終止してしまうと言う現象が生ずる。しかし、金属粉末の平均粒子径が上記下限以上であると、二酸化鉛が硫酸鉛へと変化する体積膨張が生じても、金属粉末により形成される細孔径が十分に大きければ、電解液の拡散を妨げることがない。とりわけ、大型極板のように極板の厚さが、厚ければ厚いほど、金属粉末の平均粒子径が上記下限以上であることの効果が大であり、活物質利用率を大幅に改善し得る。 The lower limit of the average particle size of the metal powder is preferably 10 μm. If it is less than the above lower limit, when the positive electrode active material for a lead storage battery of the present invention is kneaded with dilute sulfuric acid and water, the reaction proceeds rapidly, the metal powder is dissolved, and it becomes difficult to form pores. Normally, in lead-acid batteries, as discharge progresses, lead dioxide, which is the active material, changes to lead sulfate and expands in volume, thereby reducing the pore size and insufficiently diffusing the electrolyte into the active material. This causes the phenomenon that the discharge ends. However, if the average particle diameter of the metal powder is equal to or greater than the above lower limit, even if the volume expansion in which lead dioxide changes to lead sulfate occurs, if the pore diameter formed by the metal powder is sufficiently large, the diffusion of the electrolyte solution Will not be disturbed. In particular, the larger the thickness of the electrode plate as in the case of a large electrode plate, the greater the effect that the average particle diameter of the metal powder is greater than or equal to the above lower limit, which greatly improves the active material utilization rate. obtain.

一方、上記金属粉末の平均粒子径の上限は、好ましくは500μm、より好ましくは300μmである。上記上限を超えると、基板表面が露出し易く基板の腐食が生じやすくなり、それにより、基板の伸びによる短絡及び活物質の剥離等の問題が発生し、また、基板にクラックが発生して活物質と基板との密着性が悪化して、活物質の剥離による容量低下の問題が発生する。 On the other hand, the upper limit of the average particle diameter of the metal powder is preferably 500 μm, more preferably 300 μm. If the above upper limit is exceeded, the substrate surface is likely to be exposed and the substrate is likely to be corroded, thereby causing problems such as short circuit due to elongation of the substrate and peeling of the active material. The adhesion between the substance and the substrate is deteriorated, and a problem of capacity reduction due to peeling of the active material occurs.

上記金属粉末の含有量の下限は、本発明の鉛蓄電池用正極活物質に含まれる鉛酸化物粉末に対して、アルミニウム体積換算質量で、好ましくは0.2質量%であり、上限は、同じく本発明の鉛蓄電池用正極活物質に含まれる鉛酸化物粉末に対して、アルミニウム体積換算質量で、好ましくは2.0質量%、より好ましくは1.5質量%である。上記下限未満では、鉛蓄電池用正極活物質中の多孔度を十分に高めることができず、初期容量を高めることができない。一方、上記上限を超えては、多孔度が不要に増加して、活物質同士の結合力の低下及び活物質と基板格子との結合力の低下を生じ、かつ、空孔の増加により基板表面が露出し易くなって電解液と反応し腐食を助長することがある。ここで、本発明の鉛蓄電池用正極活物質に含まれる鉛酸化物とは、PbOである。また、アルミニウム体積換算質量とは、金属粉末の質量を同体積のアルミニウムの質量で置き換えた値を言う。即ち、金属粉末がいかなる種類の金属である場合にも、体積1.0cmの質量は、アルミニウムの体積1.0cmの質量と同じく2.700グラムとするものである。例えば、マグネシウムをアルミニウム体積換算した場合、マグネシウムの質量1.738グラムを1.0cmとして算出するものである。 The lower limit of the content of the metal powder is, in terms of aluminum volume mass, preferably 0.2% by mass with respect to the lead oxide powder contained in the positive electrode active material for a lead storage battery of the present invention. With respect to the lead oxide powder contained in the positive electrode active material for a lead storage battery of the present invention, the aluminum volume conversion mass is preferably 2.0 mass%, more preferably 1.5 mass%. If it is less than the said minimum, the porosity in the positive electrode active material for lead acid batteries cannot fully be raised, and initial capacity cannot be raised. On the other hand, when the above upper limit is exceeded, the porosity increases unnecessarily, resulting in a decrease in the bonding force between the active materials and a decrease in the bonding force between the active material and the substrate lattice, and the increase in the number of pores results in the substrate surface. May easily be exposed and react with the electrolyte to promote corrosion. Here, the lead oxide contained in the positive electrode active material for a lead storage battery of the present invention is PbO. Moreover, aluminum volume conversion mass means the value which replaced the mass of the metal powder with the mass of the aluminum of the same volume. That is, when the metal powder is any type of metals, the mass of the volume of 1.0 cm 3 are those mass Like 2.700 g of aluminum volume 1.0 cm 3. For example, when magnesium is converted into an aluminum volume, the mass of magnesium, which is 1.738 grams, is calculated as 1.0 cm 3 .

本発明の鉛蓄電池用正極活物質の化成後の多孔度の下限は、好ましくは55%、より好ましくは56.5%であり、上限は、好ましくは60%未満、好ましくは58.0%である。上記下限未満では、鉛蓄電池の高容量化の効果に乏しく、上記上限を超えては、空間体積が大きいことから、活物質同士の密着性が悪くなり、早期容量低下等の原因となる恐れある。ここで、本発明における鉛蓄電池用正極活物質の化成後の多孔度とは、下記の実施例に示したように、該活物質を水及び希硫酸で混練して得たペーストを、正極基板に充填した後、熟成、乾燥工程を経て未化成板を製造し、次いで、化成を実施した後に形成される活物質内の空孔の割合を言う。 The lower limit of the porosity after chemical conversion of the positive electrode active material for a lead storage battery of the present invention is preferably 55%, more preferably 56.5%, and the upper limit is preferably less than 60%, preferably 58.0%. is there. If it is less than the lower limit, the effect of increasing the capacity of the lead storage battery is poor, and if the upper limit is exceeded, the space volume is large, so that the adhesion between the active materials is deteriorated, which may cause early capacity reduction. . Here, the porosity after chemical conversion of the positive electrode active material for a lead storage battery in the present invention is a paste obtained by kneading the active material with water and dilute sulfuric acid as shown in the following examples. The ratio of the void | hole in the active material formed after an unformed board is manufactured through a ripening and a drying process after it fills in, and then it converts into chemicals is said.

上記本発明の鉛蓄電池用正極活物質には、従来公知の方法に従い、希硫酸及び水が加えられて混練されペースト化され、該ペーストを正極板用格子体に充填することにより鉛蓄電池用正極板とされる。かかる鉛蓄電池用正極板の製造方法及び該正極板を使用した鉛蓄電池の製造方法に特に制限はなく、従来公知の方法を使用することができる。 The positive electrode active material for a lead storage battery according to the present invention is added with dilute sulfuric acid and water in accordance with a conventionally known method to be kneaded and pasted, and the positive electrode for a lead storage battery is filled with the paste in a grid for a positive electrode plate. It is made a board. There is no restriction | limiting in particular in the manufacturing method of this positive electrode plate for lead acid batteries, and the manufacturing method of lead acid battery using this positive electrode plate, A conventionally well-known method can be used.

以下の実施例において、本発明を更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。 In the following examples, the present invention will be described in more detail, but the present invention is not limited to these examples.

(実施例)
実施例及び比較例で使用した電池材料及び試験方法は下記の通りである。
(Example)
Battery materials and test methods used in Examples and Comparative Examples are as follows.

電池材料
<基板>
正極基板及び負極基板共に、略正四角形の活物質充填用空間を有しているものを使用した。正四角形の穴の部分は直径6〜12mmである。正極板の寸法は、電極部が40.0×73.0mmであり、耳部が4.0×12.0mmであり、電極部の厚さが2.0mmであり、かつ耳部の厚さが2.0mmである。一方、負極基板の寸法は、電極部が40.0×75.0mmであり、耳部が4×12.0mmであり、電極部及び耳部の厚さがいずれも2.0mmである。正極基板及び負極基板の材質は、いずれも鉛‐カルシウム合金である。
<リテーナーマットセパレーター>
日本板硝子株式会社製の平均直径1μm以下の微細なガラス短繊維を抄紙してマット状にしたものである。該リテーナーマットセパレーターは、40kPa加圧時の厚さが1.5mmである。
<電槽>
ABS樹脂製であり、寸法は25.0mm×45.0mm×120.0mmである。
Battery material <Board>
Both the positive electrode substrate and the negative electrode substrate used have a substantially square-shaped active material filling space. The portion of the regular square hole has a diameter of 6 to 12 mm. The dimensions of the positive electrode plate are 40.0 × 73.0 mm for the electrode portion, 4.0 × 12.0 mm for the ear portion, the thickness of the electrode portion is 2.0 mm, and the thickness of the ear portion. Is 2.0 mm. On the other hand, the dimensions of the negative electrode substrate are 40.0 × 75.0 mm for the electrode portion, 4 × 12.0 mm for the ear portion, and the thickness of the electrode portion and the ear portion is both 2.0 mm. Both the positive electrode substrate and the negative electrode substrate are made of lead-calcium alloy.
<Retainer mat separator>
Paper is made of fine glass short fibers having an average diameter of 1 μm or less manufactured by Nippon Sheet Glass Co., Ltd., and formed into a mat shape. The retainer mat separator has a thickness of 1.5 mm when pressurized to 40 kPa.
<Battery>
It is made of ABS resin and has dimensions of 25.0 mm × 45.0 mm × 120.0 mm.

試験方法
<フロート寿命試験>
各制御弁式鉛蓄電池を、恒温槽にて雰囲気温度60℃一定となるようにして、2.23Vの定電圧充電を行った。そして、試験開始時から1ヶ月毎に0.1CAにおける容量確認試験(雰囲気温度25℃)を実施し、該試験開始時から、放電容量が初期放電容量の70%以下になった時点までの月数を電池寿命とした。
<初期容量試験>
各制御弁式鉛蓄電池を、恒温槽にて雰囲気温度25℃一定となるようにして、0.5Aの放電電流にて電池電圧が1.8Vに達するまで放電した時の容量を測定し初期放電容量値とした。
<多孔度>
自動ポロシメータ(株式会社島津製作所製オートボアIV9500シリーズ)を使用し、水銀圧入法にて測定した。
<平均粒子径>
レーザー回折式粒度分布測定装置(株式会社セイシン企業製LMS−24型)を用いて測定した。そして、全粒子体積に対する累積値で50%に相当する粒子径を平均粒子径(Dp50)と規定した。
Test method <Float life test>
Each control valve type lead-acid battery was charged at a constant voltage of 2.23 V so that the ambient temperature was kept constant at 60 ° C. in a thermostatic bath. Then, a capacity confirmation test at 0.1 CA (atmosphere temperature 25 ° C.) is conducted every month from the start of the test, and the month from the start of the test to the time when the discharge capacity becomes 70% or less of the initial discharge capacity. The number was taken as the battery life.
<Initial capacity test>
Each control valve-type lead-acid battery was measured at its initial capacity by measuring the capacity when the battery voltage reached 1.8V at a discharge current of 0.5A, with the ambient temperature kept constant at 25 ° C in a thermostatic chamber. The capacity value was used.
<Porosity>
An automatic porosimeter (manufactured by Shimadzu Corporation, Auto Bore IV9500 series) was used, and measurement was performed by a mercury intrusion method.
<Average particle size>
It measured using the laser diffraction type particle size distribution measuring apparatus (LMS-24 type | mold by Seishin Enterprise Co., Ltd.). And the particle diameter corresponding to 50% in the cumulative value with respect to the total particle volume was defined as the average particle diameter (Dp50).

評価方法
<初期容量比(%)>
実施例1の初期放電容量値を100%として、各実施例及び比較例の値を算出した。
<総合評価>
初期容量比が95%未満のとき評価1とし、95%以上100未満のとき評価2とし、100%以上のとき評価3とした。また、電池寿命が10ヶ月未満のとき評価1とし、10ヶ月以上13ヶ月未満のとき評価2とし、13ヶ月以上のとき評価3とした。そして、初期容量比の評価値と電池寿命の評価値との積を総合評価として示した。
Evaluation method <Initial capacity ratio (%)>
The initial discharge capacity value of Example 1 was set to 100%, and the values of each Example and Comparative Example were calculated.
<Comprehensive evaluation>
Evaluation 1 was made when the initial capacity ratio was less than 95%, evaluation 2 was made when it was 95% or more and less than 100, and evaluation 3 was made when it was 100% or more. Further, the evaluation is 1 when the battery life is less than 10 months, the evaluation 2 when it is 10 months or more and less than 13 months, and the evaluation 3 when it is 13 months or more. And the product of the evaluation value of initial capacity ratio and the evaluation value of battery life was shown as comprehensive evaluation.

(実施例1)
金属鉛粉末30質量%及び活物質としての鉛酸化物粉末(PbO)70質量%から成る鉛粉100質量部、水10質量部及び希硫酸(比重:1.27)20質量部に、金属粉末としてのアルミニウム粉末(平均粒子径100μm)を鉛酸化物に対して1.0質量%添加して十分に混練し、正極活物質ペーストを調製した。次いで、該ペーストを正極基板に充填し、次いで、40℃、湿度80%で24時間熟成した後、乾燥して未化成の正極板を製造した。
Example 1
100 parts by weight of lead powder consisting of 30% by weight of metal lead powder and 70% by weight of lead oxide powder (PbO) as an active material, 10 parts by weight of water and 20 parts by weight of dilute sulfuric acid (specific gravity: 1.27) As a positive electrode active material paste, an aluminum powder (average particle size: 100 μm) was added in an amount of 1.0 mass% with respect to the lead oxide and sufficiently kneaded. Next, the paste was filled in the positive electrode substrate, and then aged for 24 hours at 40 ° C. and a humidity of 80%, followed by drying to produce an unformed positive electrode plate.

一方、公知の方法により負極活物質ペーストを調製した。次いで、該ペーストを負極基板に充填し、次いで、40℃、湿度80%で24時間熟成した後、乾燥して未化成の負極板を製造した。 Meanwhile, a negative electrode active material paste was prepared by a known method. Then, the paste was filled in a negative electrode substrate, then aged for 24 hours at 40 ° C. and 80% humidity, and then dried to produce an unformed negative electrode plate.

このようにして製造された未化成の正極板3枚と未化成の負極板4枚とを、リテーナーマットセパレーターを介して交互に積層し、かつ同極性の耳列を溶接して極板群を製造した。該極板群をABS樹脂製の電槽内に収納して、電槽と蓋とを樹脂で接着して密閉し、次いで、蓋の液口から電槽内に硫酸電解液(硫酸ナトリウム20グラムを水1リットルに溶解して製造したもので、比重は1.21at 20℃である)を極板群が十分に含浸するまで注入した。これを25℃において、理論容量の200%過充電して電槽化成を実施し、2V−5Ahの制御弁式鉛蓄電池を製造した。化成後の正極活物質の多孔度は57%であった。 Three unchemically produced positive electrode plates and four unformed negative electrode plates thus produced were alternately laminated via retainer mat separators, and the same polarity ear rows were welded to form an electrode plate group. Manufactured. The electrode plate group is housed in a battery case made of ABS resin, and the battery case and the lid are adhered and sealed with a resin, and then a sulfuric acid electrolyte (20 grams of sodium sulfate) is put into the battery case from the liquid port of the lid. Was dissolved in 1 liter of water and the specific gravity was 1.21 at 20 ° C.) until the electrode plate group was sufficiently impregnated. This was overcharged at 25 ° C. by 200% of the theoretical capacity to form a battery case, and a 2V-5Ah control valve type lead storage battery was manufactured. The porosity of the positive electrode active material after conversion was 57%.

製造した制御弁式鉛蓄電池について、フロート寿命試験を実施した。 A float life test was performed on the manufactured control valve type lead acid battery.

(実施例2〜4)
金属粉末としてのアルミニウム粉末を、夫々、実施例1で添加したアルミニウム粉末量と同体積のマグネシウム粉末、亜鉛粉末及びスズ粉末に代えた以外は、実施例1と同一に実施した。電槽化成により、2V−5Ahの制御弁式鉛蓄電池が得られた。化成後の正極活物質の多孔度は57%であった。
(Examples 2 to 4)
The same operation as in Example 1 was performed except that the aluminum powder as the metal powder was replaced with magnesium powder, zinc powder and tin powder having the same volume as the amount of aluminum powder added in Example 1, respectively. A 2V-5Ah control valve type lead storage battery was obtained by battery case formation. The porosity of the positive electrode active material after conversion was 57%.

(比較例1)
金属粉末を添加しなかった以外は、実施例1と同一に実施した。電槽化成により、2V−5Ahの制御弁式鉛蓄電池が得られた。化成後の正極活物質の多孔度は50%であった。
(Comparative Example 1)
The same operation as in Example 1 was carried out except that no metal powder was added. A 2V-5Ah control valve type lead storage battery was obtained by battery case formation. The porosity of the positive electrode active material after chemical conversion was 50%.

実施例1〜4及び比較例1の結果を表1に示す。 The results of Examples 1 to 4 and Comparative Example 1 are shown in Table 1.

Figure 0005545975
Figure 0005545975

実施例1〜4は、添加した金属粉末の種類を変えたものである。ここで、実施例2〜4のマグネシウム、亜鉛及びスズの配合量は、実施例1において配合したアルミニウムの体積と同一にした。初期容量比及び電池寿命共にいずれも同程度かつ良好であり、総合評価もいずれも9と高かった。一方、金属粉末を添加しなかった比較例1においては、初期容量比が著しく低く、総合評価は著しく低くなった。比較例1では、金属粉末を添加していないことから、正極活物質中に空孔が形成されなかったためと考えられる。 Examples 1-4 change the kind of added metal powder. Here, the compounding amounts of magnesium, zinc and tin in Examples 2 to 4 were the same as the volume of aluminum compounded in Example 1. Both the initial capacity ratio and the battery life were similar and good, and the overall evaluation was 9 as high. On the other hand, in Comparative Example 1 in which no metal powder was added, the initial capacity ratio was remarkably low, and the overall evaluation was remarkably low. In Comparative Example 1, since no metal powder was added, it is considered that no voids were formed in the positive electrode active material.

(実施例5〜14)
表2に示す量で2種類以上の金属粉末の混合物を添加した以外は、上記の実施例1と同一に実施した。いずれも、電槽化成により、2V−5Ahの制御弁式鉛蓄電池が得られ、かつ化成後の正極活物質の多孔度は57%であった。各実施例における金属粉末の添加量の合計は、実施例1で添加したアルミニウム粉末の量と同体積となるようにした。そして、実施例5〜10では、2種類の金属粉末の配合量が体積で同量になるように、実施例11〜13では、3種類の金属粉末の配合量が体積で同量になるように、かつ実施例14では、4種類の金属粉末の配合量が体積で同量になるように、夫々、配合した。
(Examples 5 to 14)
The same operation as in Example 1 was performed except that a mixture of two or more kinds of metal powders was added in the amounts shown in Table 2. In any case, a 2V-5Ah control valve type lead-acid battery was obtained by battery case formation, and the porosity of the positive electrode active material after formation was 57%. The total amount of metal powder added in each example was the same as the amount of aluminum powder added in Example 1. And in Examples 5-10, so that the compounding quantity of two types of metal powder may become the same amount by volume, and in Examples 11-13, the compounding quantity of three types of metal powder becomes the same amount by volume. And in Example 14, it mix | blended so that the compounding quantity of four types of metal powder might become the same quantity by volume.

実施例5〜14の結果を表2に示す。 The results of Examples 5-14 are shown in Table 2.

Figure 0005545975
Figure 0005545975

実施例5〜9は、夫々、異なる2種類の金属粉末の混合物を使用したものであり、実施例10〜13は、夫々、異なる3種類の金属粉末の混合物を使用したものであり、かつ実施例14は、異なる4種類の金属粉末の混合物を使用したものである。複数の金属粉末を組み合わせても、また、いずれの金属粉末を使用しても、実施例1と同様にいずれも著しく高い総合評価を示した。 Examples 5 to 9 are each using a mixture of two different kinds of metal powders, and Examples 10 to 13 are each using a mixture of three different kinds of metal powders, and are implemented. Example 14 uses a mixture of four different metal powders. Even when a plurality of metal powders were combined or any of the metal powders was used, all of them showed a remarkably high overall evaluation as in Example 1.

(実施例15〜20)
表3に示すように添加するアルミニウム粉末の平均粒子径を種々変化させた以外は、上記の実施例1と同一に実施した。いずれも、電槽化成により、2V−5Ahの制御弁式鉛蓄電池が得られ、かつ化成後の正極活物質の多孔度は57%であった。
(Examples 15 to 20)
As shown in Table 3, the same procedure as in Example 1 was performed except that the average particle size of the aluminum powder to be added was variously changed. In any case, a 2V-5Ah control valve type lead-acid battery was obtained by battery case formation, and the porosity of the positive electrode active material after formation was 57%.

(実施例21〜26)
表3に示すようにアルミニウム及びマグネシウムの2種類の金属粉末の混合物を使用し、かつこれら金属粉末混合物の平均粒子径を種々変化させた以外は、上記の実施例1と同一に実施した。いずれも、電槽化成により、2V−5Ahの制御弁式鉛蓄電池が得られ、かつ化成後の正極活物質の多孔度は57%であった。ここで、添加したアルミニウム及びマグネシウムの2種類の金属粉末の合計量が、実施例1で添加したアルミニウムと同体積量となるようにし、かつアルミニウムとマグネシウムの量が同体積量となるようにした。
(Examples 21 to 26)
As shown in Table 3, the same procedure as in Example 1 was performed except that a mixture of two types of metal powders of aluminum and magnesium was used and the average particle size of these metal powder mixtures was variously changed. In any case, a 2V-5Ah control valve type lead-acid battery was obtained by battery case formation, and the porosity of the positive electrode active material after formation was 57%. Here, the total amount of the two types of added metal powders of aluminum and magnesium was set to the same volume as the aluminum added in Example 1, and the amounts of aluminum and magnesium were set to the same volume. .

実施例15〜26の結果を表3に示す。また、平均粒子径が100μmの金属粉末を使用した結果である実施例1及び5も併せて示した。 The results of Examples 15 to 26 are shown in Table 3. In addition, Examples 1 and 5 which are results of using metal powder having an average particle diameter of 100 μm are also shown.

Figure 0005545975
Figure 0005545975

実施例1及び15〜20は、アルミニウム粉末の平均粒子径を5μmから600μmまで変化させたものであり、実施例5及び21〜26は、アルミニウム粉末とマグネシウム粉末との混合物の平均粒子径を5μmから600μmまで変化させたものである。いずれの場合においても、平均粒子径が5μm及び600μmの金属粉末を使用した際、総合評価は多少悪くなった。しかし、本発明の効果を損なうものではなかった。 In Examples 1 and 15 to 20, the average particle diameter of the aluminum powder was changed from 5 μm to 600 μm. In Examples 5 and 21 to 26, the average particle diameter of the mixture of the aluminum powder and the magnesium powder was 5 μm. To 600 μm. In any case, when metal powders having an average particle diameter of 5 μm and 600 μm were used, the overall evaluation was somewhat worse. However, the effect of the present invention was not impaired.

平均粒子径が5μmの小さな粒子径の金属を使用した実施例15及び21では、電池寿命は良好であったが、初期容量比が低い値を示した。これは、化成後に出来た空孔の径が非常に小さく、放電が進むにつれて起きる二酸化鉛から硫酸鉛への体積膨張により、空孔が閉塞して活物質内部への電解液の拡散不足が生じたことによる。一方、平均粒子径が600μmの大きな粒子径の金属を使用した実施例20及び26では、初期容量比は良好であったが、電池寿命は短かった。これは、600μmと言う大きな粒度により比較的大きな細孔が形成され、従って、部分的に基板表面が露出され、該基板部分が細孔に存在している硫酸と反応して格子腐食が進行したためであると考えられる。 In Examples 15 and 21, in which a metal having a small particle size with an average particle size of 5 μm was used, the battery life was good, but the initial capacity ratio was low. This is because the pores formed after the formation are very small in diameter, and due to the volume expansion from lead dioxide to lead sulfate that occurs as the discharge progresses, the pores are blocked, resulting in insufficient diffusion of the electrolyte into the active material. It depends. On the other hand, in Examples 20 and 26 using a metal having a large particle size with an average particle size of 600 μm, the initial capacity ratio was good, but the battery life was short. This is because relatively large pores are formed by a large particle size of 600 μm, and therefore the substrate surface is partially exposed, and the substrate portion reacts with sulfuric acid present in the pores, and lattice corrosion proceeds. It is thought that.

また、上記金属及び金属混合物以外にも、マグネシウム、亜鉛及びスズ粉末単独、並びにアルミニウム、マグネシウム、亜鉛及びスズ粉末の種々の混合物を使用して同一の実験を実施したところ上記と同様の結果が得られた。 In addition to the above metals and metal mixtures, the same experiment was performed using magnesium, zinc and tin powder alone and various mixtures of aluminum, magnesium, zinc and tin powder. It was.

(実施例27〜32)
表4に示すようにアルミニウム粉末の添加量を種々変化させた以外は、上記の実施例1と同一に実施した。いずれも、電槽化成により、2V−5Ahの制御弁式鉛蓄電池が得られた。化成後の正極活物質の多孔度は54.0〜60.5%であった。
(Examples 27 to 32)
As shown in Table 4, the same procedure as in Example 1 was performed except that the amount of aluminum powder added was variously changed. In either case, a 2V-5Ah control valve type lead storage battery was obtained by battery case formation. The porosity of the positive electrode active material after chemical conversion was 54.0 to 60.5%.

(実施例33〜39)
表4に示すように、実施例33〜37においては、アルミニウム及びマグネシウムの2種類の金属粉末を体積比で1:1とし、実施列38及び39においては、これら2種類の金属粉末を体積比で夫々1.0:0.5及び0.5:1.0とし、かつこれら金属粉末混合物の添加量を種々変化させた以外は、上記の実施例1と同一に実施した。いずれも、電槽化成により、2V−5Ahの制御弁式鉛蓄電池が得られた。化成後の正極活物質の多孔度は54.5〜61.5%であった。
(Examples 33 to 39)
As shown in Table 4, in Examples 33 to 37, two types of metal powders of aluminum and magnesium were set to 1: 1 in volume ratio, and in Examples 38 and 39, these two types of metal powders were mixed in volume ratio. And 1.0: 0.5 and 0.5: 1.0, respectively, and the same procedure as in Example 1 was performed except that the amount of the metal powder mixture added was variously changed. In either case, a 2V-5Ah control valve type lead storage battery was obtained by battery case formation. The porosity of the positive electrode active material after chemical conversion was 54.5 to 61.5%.

実施例27〜39の結果を表4に示す。また、アルミニウム粉末添加量が1.00質量%である実施例1、並びに、アルミニウム粉末とマグネシウム粉末との体積比で1:1の混合物であり、かつ該混合物を実施例1で添加したアルミニウム粉末の体積と同一の体積量で添加した実施例5も併せて示した。 The results of Examples 27 to 39 are shown in Table 4. In addition, Example 1 in which the amount of aluminum powder added is 1.00% by mass, and a mixture of aluminum powder and magnesium powder in a volume ratio of 1: 1, and the mixture was added in Example 1 Example 5 added in the same volume as the volume of was also shown.

Figure 0005545975
Figure 0005545975

実施例1及び27〜32は、アルミニウム粉末の添加量を0.10質量%から2.50質量%まで変化させたものである。添加量が少ない実施例27並びに添加量の多い実施例32では総合評価値が多少悪かったが、いずれも本発明の効果を損なうものではなかった。実施例27においては、多孔度が55%未満と多少低いことから初期容量比が多少低下したものと考えられる。一方、実施例32においては、多孔度が60%以上であり空間体積が大きいことから、活物質同士の密着性が悪くなる傾向があり、多少の初期容量比の低下及び寿命の低下が生じた。また、実施例5及び33〜39は、アルミニウム粉末とマグネシウム粉末との混合物の添加量を0.12質量%から3.00質量%まで変化させたものである。アルミニウム粉末単独の場合と同様の傾向を示した。 In Examples 1 and 27 to 32, the amount of aluminum powder added was changed from 0.10% by mass to 2.50% by mass. In Example 27 with a small addition amount and Example 32 with a large addition amount, the overall evaluation values were somewhat poor, but none of them impaired the effects of the present invention. In Example 27, the initial capacity ratio is considered to be somewhat lowered because the porosity is slightly lower than 55%. On the other hand, in Example 32, since the porosity is 60% or more and the space volume is large, there is a tendency that the adhesion between the active materials tends to deteriorate, and there is a slight decrease in the initial capacity ratio and a decrease in the life. . In Examples 5 and 33 to 39, the addition amount of the mixture of aluminum powder and magnesium powder was changed from 0.12% by mass to 3.00% by mass. The same tendency as in the case of aluminum powder alone was shown.

また、上記金属及び金属混合物以外にも、マグネシウム、亜鉛及びスズ粉末単独、並びにアルミニウム、マグネシウム、亜鉛及びスズ粉末の種々の混合物を使用して同一の実験を実施したところ上記と同様の結果が得られた。 In addition to the above metals and metal mixtures, the same experiment was performed using magnesium, zinc and tin powder alone and various mixtures of aluminum, magnesium, zinc and tin powder. It was.

本発明の鉛蓄電池用正極活物質は、著しく良好な利用率を発揮し得る。従って、該鉛蓄電池用正極活物質を充填してなる鉛蓄電池用正極板及びそれを使用した鉛蓄電池も同様に著しく良好な利用率を発揮し得ることから、今後、鉛蓄電池の分野での多くの利用を期待できる。 The positive electrode active material for a lead storage battery of the present invention can exhibit a remarkably good utilization rate. Accordingly, since the positive electrode plate for a lead storage battery filled with the positive electrode active material for the lead storage battery and the lead storage battery using the same can also exhibit a remarkably good utilization rate, in the future, there will be many in the field of lead storage batteries. Can be expected.

Claims (4)

金属鉛粉末及び鉛酸化物粉末を含む鉛蓄電池用正極活物質において、更に、金属粉末を含み、上記金属粉末の平均粒子径が、10〜500μmであり、かつ、上記金属粉末の含有量が、上記鉛酸化物粉末に対して、アルミニウム体積換算質量で0.5〜2.0質量%であることを特徴とする鉛蓄電池用正極活物質(ここで、アルミニウム体積換算質量とは、金属粉末の質量を同体積のアルミニウムの質量で置き換えた値を言う)In the positive electrode active material for a lead storage battery comprising a metallic lead powder and lead oxide powder, further look-containing metallic powder, the average particle diameter of the metal powder is a 10 to 500 [mu] m, and the content of the metal powder The positive electrode active material for lead-acid batteries, characterized in that it is 0.5 to 2.0% by mass in terms of aluminum volume with respect to the lead oxide powder (wherein the mass in terms of aluminum volume is metal powder) ) Is replaced with the mass of aluminum of the same volume) . 上記金属粉末が、アルミニウム、マグネシウム、亜鉛及びスズより成る群から選ばれる1種以上である、請求項1記載の鉛蓄電池用正極活物質。 The positive electrode active material for a lead storage battery according to claim 1, wherein the metal powder is at least one selected from the group consisting of aluminum, magnesium, zinc and tin. 化成後の多孔度が、55%以上60%未満である、請求項1又は2記載の鉛蓄電池用正極活物質。 The positive electrode active material for a lead storage battery according to claim 1 or 2 , wherein the porosity after chemical conversion is 55% or more and less than 60%. 請求項1〜のいずれか一つに記載の鉛蓄電池用正極活物質に希硫酸及び水を加えて混練して作製したペーストを充填して成る鉛蓄電池用正極板。 A positive electrode plate for a lead storage battery comprising a paste prepared by adding dilute sulfuric acid and water to the positive electrode active material for a lead storage battery according to any one of claims 1 to 3 and kneading the mixture.
JP2010078798A 2010-03-30 2010-03-30 Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same Active JP5545975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078798A JP5545975B2 (en) 2010-03-30 2010-03-30 Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078798A JP5545975B2 (en) 2010-03-30 2010-03-30 Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same

Publications (2)

Publication Number Publication Date
JP2011210640A JP2011210640A (en) 2011-10-20
JP5545975B2 true JP5545975B2 (en) 2014-07-09

Family

ID=44941463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078798A Active JP5545975B2 (en) 2010-03-30 2010-03-30 Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same

Country Status (1)

Country Link
JP (1) JP5545975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243054A (en) * 2012-05-21 2013-12-05 Gs Yuasa Corp Positive electrode plate for lead-acid battery and lead-acid battery
JP5995191B2 (en) * 2012-09-24 2016-09-21 株式会社Gsユアサ Control valve type lead-acid battery and manufacturing method thereof
JP6797752B2 (en) * 2017-05-24 2020-12-09 古河電池株式会社 Lead-acid battery
JP7337647B2 (en) * 2019-10-17 2023-09-04 エンテックアジア株式会社 Pasting paper for lead-acid batteries

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247959A (en) * 1985-08-27 1987-03-02 Shin Kobe Electric Mach Co Ltd Cathode plate of lead-acid battery
JPH01197966A (en) * 1988-02-02 1989-08-09 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH07122270A (en) * 1993-10-28 1995-05-12 Shin Kobe Electric Mach Co Ltd Manufacture of paste for lead acid battery
JP2000182615A (en) * 1998-12-17 2000-06-30 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP4509660B2 (en) * 2004-06-15 2010-07-21 古河電池株式会社 Lead acid battery
JP4899467B2 (en) * 2005-12-21 2012-03-21 新神戸電機株式会社 Lead acid battery
JP5711483B2 (en) * 2009-08-27 2015-04-30 古河電池株式会社 Method for producing negative electrode plate of composite capacitor for lead storage battery and lead storage battery

Also Published As

Publication number Publication date
JP2011210640A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5771193B2 (en) Paste zinc electrode for rechargeable zinc battery
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP2003123760A (en) Negative electrode for lead-acid battery
TW201535847A (en) Valve-regulated lead-acid storage battery
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
JP4509660B2 (en) Lead acid battery
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP2011070870A (en) Lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2007018820A (en) Sealed lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JPH09180717A (en) Nickel electrode for alkaline storage battery
WO2024043226A1 (en) Aqueous electrolyte secondary battery
JP5277885B2 (en) Method for producing lead-acid battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2007213896A (en) Lead-acid storage battery
JP2008034286A (en) Closed lead battery
JP2006140074A (en) Negative electrode active material for lead-acid battery, and lead-acid battery using it
WO2018025837A1 (en) Lead storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5545975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150