JP4509660B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4509660B2
JP4509660B2 JP2004176423A JP2004176423A JP4509660B2 JP 4509660 B2 JP4509660 B2 JP 4509660B2 JP 2004176423 A JP2004176423 A JP 2004176423A JP 2004176423 A JP2004176423 A JP 2004176423A JP 4509660 B2 JP4509660 B2 JP 4509660B2
Authority
JP
Japan
Prior art keywords
positive electrode
alloy
lead
active material
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004176423A
Other languages
Japanese (ja)
Other versions
JP2006004636A (en
Inventor
淳 古川
大輔 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004176423A priority Critical patent/JP4509660B2/en
Publication of JP2006004636A publication Critical patent/JP2006004636A/en
Application granted granted Critical
Publication of JP4509660B2 publication Critical patent/JP4509660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、鉛蓄電池に関する。   The present invention relates to a lead-acid battery.

従来、自動車用鉛蓄電池はSLIバッテリーと呼ばれるように、始動時のスタータ起動、照明、イグニションをはじめ、高級車では100個以上搭載されていると言うモーターの電源として使用されて来たが、始動時のスタータ起動以外はエンジンが発電機を駆動して電力を供給するため、該鉛蓄電池はさほど深い放電が行われることはなかった。また、該鉛蓄電池は、発電機からの充電により、多くの場合は満充電状態に置かれるため、過充電に強いことが求められていた。該鉛蓄電池は、同時に、過充電時のガス発生による電解液の減少を抑制し、補水の手間をなくすメンテナンスフリー性が求められ、正極の多孔基板を構成する合金はPb−Sb系合金からPb−Ca系合金に変更された。
また、近年、自動車は燃費改善や排出ガスの削減が強く求められるようになり、これに伴い、正極の多孔基板としてPb−Ca系合金から成る合金基板を用いた鉛蓄電池の使用条件は大きく変わってきた。即ち、その使用条件の一つは、信号などによる停車中にエンジンを停止するアイドリングストップである。エンジンの停止により発電機からの電力供給も停止するため、この間の電力は鉛蓄電池の放電によってまかなうことになる。そのため、従来と比較して深く放電されることになった。その結果、該鉛蓄電池は深い充放電状態で使用されることとなり、著しく短命となった。この原因の一つは正極基板合金がPb−Sb系合金からPb−Ca系合金に変わったことによるものである。
即ち、正極基板合金がPb−Sb系合金であった場合は、該基板の酸化で生成した5価のSbイオンが基板と活物質の界面に強固なα−PbO2 層を形成し、基板と活物質の密着性を保つと共に高い導電性を確保していた。これに加え、5価のSbイオンが活物質に作用してその一部をゲル化し、活物質粒子同士の結合性を強化していた。
これに対し、正極基板合金をPb−Ca系合金とした場合には、Sbで見られたような上記のバインダー作用が弱く、基板と活物質の界面が剥離して電解液である硫酸が侵入して不導体である硫酸鉛を生成し、導電性を著しく損なった結果、早期に寿命に達する現象が現れた。また、放電状態で放置した場合も同様の原因で容量が回復しなくなる現象が現れた。更に、深い充放電を繰り返すとPb−Sb系合金を用いた場合の半分程度の回数で活物質が軟化し寿命となった。
そこで、かゝる不都合を有するPb−Ca系合金から成る正極板につき、Pb−Sb系合金を用いた場合と同様のバインダー効果を得ようとする目的で、例えば、特開昭49−71429号公報では、化成した陽極板にSbを付着させたものが、特開昭53−75444号公報では、正極活物質中にアンチモンを放出する貯蔵体を含む正極が、特開昭63−148556号公報では、Pb−Ca系合金格子体の少なくとも一面にPb−Sb−Sn合金層を形成することが夫々提案された。これらに開示の発明によるSbの添加は上記の目的を達成した。しかし乍ら、微量であるとは言えSbの付与は負極の水素過電圧を低下させ、充電時のガス発生による電解液の減少を招き、メンテナンスフリー性を損なう結果となった。
更に、かゝるPb−Ca系合金にSbを付与した上記の課題を解決するため、Sbを付与せずに、Sbと同程度の基板と活物質の界面や活物質粒子相互の結合力を維持し、メンテナンスフリー性を有する鉛蓄電池に係る発明が特開平3−145061号公報に提案された。
この公報に記載の発明は、格子母材の少なくとも一部に鉛−ビスマス系合金層を付与した格子体を正極に用いることにより、メンテナンスフリー性を維持しつつ深い放電を繰り返す寿命特性の向上を計ったものであるが、基板と活物質の界面や活物質粒子相互の結着性の改善効果は不充分であった。
一方、放電後、長期間放置された鉛蓄電池の充電による容量回復性を向上させることを目的とし、格子体としてスズを含有する非アンチモン系鉛合金を用い、且つ電解液中にアルカリ金属イオンを存在させることを特徴とする鉛蓄電池や格子体としてCaとSnを含有する非アンチモン系合金を用い、且つ電解液中にアルカリ土類金属イオンとアルカリ金属イオンを共存させ且つ格子−活物質界面にα−PbO2 皮膜を生成させたことを特徴とする鉛蓄電池が、特公昭57−32873号公報、特公平7−242243号公報などに夫々開示されている。
しかし乍ら、これらに開示の発明は、上記の目的は達成したが、それ以上の効果、例えば、基板と活物質の界面の密着性、活物質の粒子相互の結着性の効果は得られなかった。
本願の発明者は、先に、鉛蓄電池の基板用のPb−Ca系合金として、特開2003−306733号公報において、Ca,Sn,Al,Baの夫々の含有量を特定し、残部鉛から成る鉛蓄電池用鉛合金と、この合金に夫々特定量の銀、ビスマス、タリウムの中から選ばれた少なくとも一種を更に含む鉛基合金とを提案し、これらを用いて作製した合金基板に通常の活物質を充填し、通常の電解液を用いた鉛蓄電池に係る発明を開示した。しかし乍ら、この発明では、これら鉛基合金を用いて向上した耐食性と機械的強度の双方を有する合金基板と、更には、かゝる特性に加え、高温苛酷な条件でも安定して長期の使用に耐えることができる鉛蓄電池を提供することができるが、試験の結果、該鉛合金格子は、その高耐食性の故に、正極基板と充填活物質との界面の密着性及び活物質粒子相互の結合性が低いことが判明した。
特開昭49−71429号公報 特開昭53−75444号公報 特開昭63−148556号公報 特開平3−145061号公報 特公昭57−32873号公報 特開平4−206150号公報 特開2003−306733号公報
Traditionally, lead-acid batteries for automobiles, called SLI batteries, have been used as a power source for motors that have been installed in more than 100 high-end cars, including starter start-up, lighting, and ignition at start-up. Since the engine drives the generator to supply power except for starting the starter at that time, the lead-acid battery was not discharged so deeply. Moreover, since the lead storage battery is often placed in a fully charged state by charging from a generator, it has been required to be resistant to overcharging. At the same time, the lead storage battery is required to have a maintenance-free property that suppresses the decrease in the electrolyte due to gas generation during overcharge and eliminates the need for rehydration. The alloy constituting the porous substrate of the positive electrode is made of Pb—Sb alloy to Pb. -Changed to Ca alloy.
In recent years, automobiles are strongly required to improve fuel consumption and reduce exhaust gas. With this, the usage conditions of lead-acid batteries using an alloy substrate made of a Pb-Ca alloy as a positive electrode porous substrate have changed greatly. I came. That is, one of the use conditions is an idling stop that stops the engine while the vehicle is stopped by a signal or the like. Since the power supply from the generator is also stopped when the engine is stopped, the electric power during this time is provided by the discharge of the lead storage battery. Therefore, it has been deeply discharged compared to the conventional case. As a result, the lead-acid battery was used in a deep charge / discharge state, and the life was significantly shortened. One of the causes is that the positive electrode substrate alloy is changed from a Pb—Sb alloy to a Pb—Ca alloy.
That is, when the positive electrode substrate alloy is a Pb—Sb alloy, pentavalent Sb ions generated by oxidation of the substrate form a strong α-PbO 2 layer at the interface between the substrate and the active material, While maintaining the adhesion of the active material, high conductivity was ensured. In addition to this, pentavalent Sb ions act on the active material to gel a part thereof, thereby strengthening the bonding between the active material particles.
On the other hand, when the positive electrode substrate alloy is a Pb—Ca alloy, the binder action as seen in Sb is weak, and the interface between the substrate and the active material is peeled off and sulfuric acid as an electrolyte enters. As a result, lead sulfate, which is a non-conductor, was produced and the conductivity was significantly impaired. Further, when left in a discharged state, a phenomenon that the capacity is not recovered due to the same cause appeared. Further, when deep charge / discharge was repeated, the active material softened and reached the end of life about half the number of times when the Pb—Sb alloy was used.
Therefore, for the purpose of obtaining a binder effect similar to that obtained when a Pb-Sb alloy is used for a positive electrode plate made of a Pb-Ca alloy having such disadvantages, for example, JP-A-49-71429. In Japanese Patent Laid-Open No. 63-148556, Sb is attached to a formed anode plate. In Japanese Patent Laid-Open No. 53-75444, a positive electrode including a storage body that releases antimony in a positive electrode active material is disclosed in Japanese Patent Laid-Open No. Therefore, it has been proposed to form a Pb—Sb—Sn alloy layer on at least one surface of the Pb—Ca alloy lattice. These additions of Sb according to the disclosed invention achieved the above objectives. However, the application of Sb, although a trace amount, lowered the hydrogen overvoltage of the negative electrode, resulting in a decrease in the electrolyte due to gas generation during charging, and the maintenance-free property was impaired.
Furthermore, in order to solve the above-mentioned problem of imparting Sb to such a Pb—Ca-based alloy, the interface between the substrate and the active material and the binding force between the active material particles are the same as those of Sb without imparting Sb. An invention relating to a lead storage battery that is maintained and has maintenance-free properties has been proposed in Japanese Patent Laid-Open No. 3-145061.
The invention described in this publication uses a lattice body in which a lead-bismuth-based alloy layer is provided on at least a part of a lattice base material for a positive electrode, thereby improving the life characteristics of repeating deep discharge while maintaining maintenance-free properties. Although it was measured, the effect of improving the binding property between the interface between the substrate and the active material and the active material particles was insufficient.
On the other hand, a non-antimony-based lead alloy containing tin is used as a lattice and an alkali metal ion is added to the electrolyte for the purpose of improving capacity recovery by charging a lead storage battery left for a long time after discharge. A lead-acid battery characterized by being present and a non-antimony alloy containing Ca and Sn as a lattice body, and an alkaline earth metal ion and an alkali metal ion coexist in the electrolytic solution, and at the lattice-active material interface Lead storage batteries characterized by forming an α-PbO 2 film are disclosed in Japanese Patent Publication No. 57-32873, Japanese Patent Publication No. 7-242243, and the like.
However, although the inventions disclosed in these documents have achieved the above-mentioned object, further effects such as adhesion at the interface between the substrate and the active material and the binding property between the particles of the active material can be obtained. There wasn't.
The inventor of the present application first specifies the content of each of Ca, Sn, Al, and Ba in Japanese Patent Application Laid-Open No. 2003-306733 as a Pb—Ca-based alloy for a lead-acid battery substrate. A lead alloy for lead-acid batteries and a lead-base alloy further containing at least one selected from a specific amount of silver, bismuth, and thallium, respectively. An invention relating to a lead-acid battery using an ordinary electrolyte filled with an active material has been disclosed. However, in the present invention, an alloy substrate having both improved corrosion resistance and mechanical strength using these lead-based alloys, and in addition to such characteristics, it is stable and long-term even under severe conditions at high temperatures. A lead storage battery that can withstand use can be provided, but as a result of testing, the lead alloy lattice has a high corrosion resistance. The binding was found to be low.
JP-A-49-71429 Japanese Patent Laid-Open No. 53-75444 JP-A 63-148556 Japanese Patent Laid-Open No. 3-145061 Japanese Patent Publication No.57-32873 JP-A-4-206150 JP 2003-306733 A

本発明は、上記特許文献1〜7に記載の発明の不都合を解消し、Pb−Sb系合金多孔基板を用い、該多孔基板と活物質との密着性及び活物質粒子相互の結合性が良好であり、且つメンテナンスフリー性を維持し乍ら、サイクル寿命及び容量回復性を向上した鉛蓄電池を提供することを目的とする。 The present invention eliminates the disadvantages of the inventions described in Patent Documents 1 to 7 above, uses a Pb—Sb alloy porous substrate, and has good adhesion between the porous substrate and the active material and good bonding between the active material particles. , and the and maintaining maintenance-free property乍Ra, and an object thereof is to provide a lead-acid battery with improved cycle life and capacity recovery.

本発明は、上記の目的を達成した鉛蓄電池を提供するもので、その請求項1に記載の通り、Pb−Ca系合金から成る多孔基板にカルシウムを含む正極活物質を充填して成る正極板とアルミニウムイオンを含む電解液との組み合わせを具備したことを特徴とする。
更に本発明は、上記の発明において、Pb−Ca系合金から成る多孔基板にカルシウムとスズを含む正極活物質を充填して成る正極とアルミニウムイオンを含む電解液との組み合わせを具備したことを特徴とする。
The present invention provides a lead-acid battery that achieves the above-mentioned object. As described in claim 1, a positive electrode plate comprising a porous substrate made of a Pb-Ca alloy and filled with a positive electrode active material containing calcium. And a combination of an electrolytic solution containing aluminum ions.
The present invention, in the above invention, by comprising a combination of an electrolytic solution containing a positive electrode and A Rumi ion formed by filling a positive electrode active material containing calcium and tin into a porous substrate made of Pb-Ca alloy Features.

本発明によれば、後記に明らかにするように、Pb−Ca系合金から成る多孔基板にカルシウムを含んだ正極活物質を充填して成る正極板とアルミニウムイオンを含む電解液とを組み合わせて鉛蓄電池を構成するときは、Pb−Ca系合金から成る多孔基板にカルシウムを含まない正極活物質を充填して成る正極板とアルミニウムイオンを含まない電解液とを組み合わせて成る鉛蓄電池、Pb−Ca系合金から成る多孔基板にカルシウムを含む正極活物質を充填して成る正極板とアルミニウムイオンを含まない電解液とを組み合わせて成る鉛蓄電池、或いは、Pb−Ca系合金から成る多孔基板にカルシウムを含まない正極活物質を充填して成る正極板と、アルミニウムイオンを含む電解液とを組み合わせて成る鉛蓄電池に比し、サイクル寿命及び容量回復性が向上し、且つメンテナンスフリー性を有する鉛蓄電池が得られる。
更に、上記の本発明において、Pb−Ca系合金から成る多孔基板にカルシウムとスズを含ませた正極活物質を充填して成る正極板を、アルミニウムイオンを含有する電解液と組み合わせるときは、サイクル寿命及び容量回復性が更に向上したメンテナンスフリー性を有する鉛蓄電池が得られる。
According to the present invention, as will be clarified later, lead is obtained by combining a positive electrode plate made by filling a positive electrode active material containing calcium on a porous substrate made of a Pb-Ca alloy and an electrolyte containing aluminum ions. When forming a storage battery, a lead storage battery comprising a combination of a positive electrode plate formed by filling a porous substrate made of a Pb-Ca alloy with a positive electrode active material not containing calcium and an electrolytic solution not containing aluminum ions, Pb-Ca Lead-acid battery in which a positive electrode plate made by filling a porous substrate made of an aluminum alloy with a positive electrode active material containing calcium and an electrolytic solution not containing aluminum ions, or calcium on a porous substrate made of a Pb-Ca alloy Compared to lead-acid batteries, which are a combination of a positive electrode plate filled with a positive electrode active material not contained and an electrolyte containing aluminum ions, And improved capacity recovery property, lead-acid battery is obtained and has a maintenance-free property.
Further, in the present invention, when a positive electrode plate obtained by filling a porous substrate made of a Pb—Ca alloy with a positive electrode active material containing calcium and tin is combined with an electrolytic solution containing aluminum ions , lead-acid battery having a maintenance-free properties of cycle life and the capacity recovery property is further improved Ru obtained.

本発明の鉛蓄電池の正極を製造するに用いられる格子体などの多孔基板は、従来公知の各種のPb−Ca系合金から成る鉛基合金を選択、使用できるが、好ましくは、出願人が先に上記の特許文献7に開示のPb−Ca系合金を用いるときは、優れた耐食性と機械的強度を有し、更には、高温苛酷な条件下でも安定して長期の使用に耐える鉛蓄電池を製造することができる。而も、この鉛蓄電池用鉛基合金を用いて重力鋳造法、連続鋳造法、圧延・加工法などの所望の方法によって電極基板を製造できるので、本発明は、この合金を用いて以下にその実施の態様を説明する。
即ち、更に詳細には、上記の優れた耐食性と機械的強度を有するPb−Ca系合金を材料とし、上記所望の製造法を用いて格子基板などの電極基板を製造する。その合金組成は、カルシウムが0.02重量%以上で0.05重量%未満、スズが0.4重量%以上で2.5重量%以下、アルミニウムが0.005重量%以上で0.04重量%以下、バリウムが0.002重量%以上で0.14重量%以下、残部が鉛とから成る。以下、これを第1基板と称する。
上記の組成合金に更に、0.005重量%以上で0.07重量%以下の銀、0.01重量%以上で0.10重量%以下のビスマス、0.001重量%以上で0.05重量%以下のタリウムの中から選ばれる少なくとも一種を含ませることにより、更に機械的強度を高め、且つ高温でのクリープ破断強度を向上せしめた多孔基板が得られる。以下、これを第2基板と称する。
As a porous substrate such as a lattice used for manufacturing the positive electrode of the lead storage battery of the present invention, a conventionally known lead-based alloy made of various Pb—Ca alloys can be selected and used. In addition, when using the Pb—Ca alloy disclosed in Patent Document 7 above, a lead storage battery having excellent corrosion resistance and mechanical strength, and being able to withstand long-term use stably under high temperature and severe conditions. Can be manufactured. In addition, an electrode substrate can be manufactured by a desired method such as a gravity casting method, a continuous casting method, a rolling / working method using the lead-based alloy for a lead-acid battery. An embodiment will be described.
That is, in more detail, an electrode substrate such as a lattice substrate is manufactured using the above-described desired manufacturing method using the Pb—Ca alloy having excellent corrosion resistance and mechanical strength as a material. The alloy composition is 0.02 wt% or more and less than 0.05 wt% calcium, 0.4 wt% or more and 2.5 wt% or less of tin, and aluminum is 0.005 wt% or more and 0.04 wt%. % Or less, barium is 0.002% by weight or more and 0.14% by weight or less, and the balance is lead. Hereinafter, this is referred to as a first substrate.
In addition to the above compositional alloy, 0.005 wt% or more and 0.07 wt% or less silver, 0.01 wt% or more and 0.10 wt% or less bismuth, 0.001 wt% or more and 0.05 wt% or more. By including at least one selected from thallium or less of% or less, it is possible to obtain a porous substrate with further improved mechanical strength and improved creep rupture strength at high temperature. Hereinafter, this is referred to as a second substrate.

本発明の1つの実施態様によれば、従来の所望のPb−Ca系合金から成る格子体などの多孔基板に、好ましくは、上記の第1基板又は第2基板の多孔基板の多孔内に充填する通常の正極活物質に、即ち、正極用鉛粉にカルシウムとして、その硫酸塩、炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩などの塩類から選択した少なくとも一種の粉末を添加、混在せしめて調製したカルシウム含有の正極活物質を充填し、本発明の正極板を作製する。然るときは、カルシウムは、多孔基板と活物質の界面との導電性を確保すると共に密着性を向上すると同時に、活物質粒子相互の結着性の向上した正極板が得られる。以下これを第1正極板と称する。   According to one embodiment of the present invention, a porous substrate such as a lattice body made of a conventional desired Pb—Ca alloy is preferably filled in the pores of the porous substrate of the first substrate or the second substrate. At least one kind of powder selected from salts such as sulfate, carbonate, bicarbonate, phosphate, borate, etc. is added to and mixed with normal cathode active material, that is, lead powder for cathode as calcium The calcium-containing positive electrode active material prepared by caulking is filled to produce the positive electrode plate of the present invention. In such a case, calcium can secure a conductivity between the porous substrate and the interface between the active materials and improve adhesion, and at the same time, a positive electrode plate with improved binding between the active material particles can be obtained. Hereinafter, this is referred to as a first positive electrode plate.

また、本発明の他の実施態様によれば、前記と同じPb−Ca系合金から成る多孔基板の多孔内に、前記と同じ正極活物質に、上記のカルシウム材の少なくとも1種の粉末と金属スズ、スズの塩類などのスズ化合物から成るスズ材のうち、その少なくとも1種の粉末を、例えば、硫酸スズの粉末を添加、混在せしめて調製した両成分を含有する正極活物質を充填し、本発明の正極板を作製する。これを第2正極板とする。然るときは、後記に明らかにするように、第2正極板を用いるときは、第1正極板に比し更に向上した効果をもたらす正極板が得られる。 上記のような正極板の改善をもたらす理由は明らかでないが、カルシウムは、アンチモンには劣るが、基板−活物質界面のα−PbO2 を安定化する働きがある。そこにスズが併存する場合は、スズがドープされて導電性が向上し、実質的に界面の密着性を高めたと同じ効果が生ずると考えられると共に、カルシウムをドープしたα−PbO2 は酸化触媒が高まり、導電性の高いSnO2 を安定化したためと考えられる。活物質粒子同士についても、電解液である硫酸水溶液と反応する表面はβ−PbO2 であるが、内部はα−PbO2 であることから、同様の作用効果があるものと考えられる。また、カルシウムもスズも、アンチモンのようなメンテナンスフリー性を損なう作用はないので、上記の第1正極板又は第2正極板を用いてメンテナンス性の鉛蓄電池が得られ有利である。 Further, according to another embodiment of the present invention, at least one powder of the above calcium material and metal in the same positive electrode active material as above in the pores of the porous substrate made of the same Pb-Ca alloy as described above. Among the tin materials composed of tin compounds such as tin and tin salts, the positive electrode active material containing both components prepared by adding and mixing at least one kind of powder, for example, tin sulfate powder, is filled, The positive electrode plate of the present invention is prepared. This is a second positive electrode plate. In such a case, as will be clarified later, when the second positive electrode plate is used, a positive electrode plate having an effect further improved as compared with the first positive electrode plate can be obtained. Although the reason for the improvement of the positive electrode plate as described above is not clear, calcium is inferior to antimony but has a function of stabilizing α-PbO 2 at the substrate-active material interface. In the case where tin coexists therewith, it is considered that the same effect is produced when tin is doped to improve conductivity and substantially improve the adhesion at the interface, and α-PbO 2 doped with calcium is an oxidation catalyst. This is thought to be due to the stabilization of highly conductive SnO 2 . Also for the active material particles, the surface that reacts with the sulfuric acid aqueous solution that is the electrolytic solution is β-PbO 2 , but since the inside is α-PbO 2, it is considered that there are similar effects. Further, since neither calcium nor tin has an effect of impairing maintenance-free properties like antimony, a maintenance-type lead storage battery can be obtained advantageously using the first positive electrode plate or the second positive electrode plate.

更に、本発明によれば、上記のように、第1正極板又は第2正極板を用意する一方、鉛蓄電池に用いる硫酸電解液として、該電解液に、硫酸アルミニウムなどのアルミニウム材を添加、溶解してそのアルミニウムイオンを含む電解液を調製する。かゝる電解液を調製するには、アルミニウム材として、金属アルミニウムや硫酸アルミニウムなど電解液に可溶性の各種のアルミニウム化合物を用い、これを通常の硫酸電解液に添加溶解して本発明のアルミニウムイオン含有電解液を調製する。アルミニウムイオンの効果は、これも明らかではないが、放電放置における電解液中の硫酸イオン濃度の低下を抑制することにとどまらず、正極及び負極に生成する硫酸鉛の結晶の粗大化や緻密化を抑制して、回復充電時の充電受け入れ性を大幅に改善する効果があり、とくに、本発明の上記の第1正極板又は第2正極板と組み合わせて鉛蓄電池を製造した場合は、そのサイクル寿命及び容量回復性に著しい向上をもたらす。   Furthermore, according to the present invention, as described above, while preparing the first positive electrode plate or the second positive electrode plate, as a sulfuric acid electrolytic solution used for a lead storage battery, an aluminum material such as aluminum sulfate is added to the electrolytic solution. An electrolytic solution containing the aluminum ions is prepared by dissolution. In order to prepare such an electrolytic solution, various aluminum compounds soluble in an electrolytic solution such as metallic aluminum and aluminum sulfate are used as an aluminum material, and this is added to and dissolved in a normal sulfuric acid electrolytic solution to obtain the aluminum ion of the present invention. A containing electrolyte solution is prepared. The effect of aluminum ions is not clear, but it is not limited to suppressing the decrease in the sulfate ion concentration in the electrolyte when left in a discharge, and the lead sulfate crystals produced on the positive and negative electrodes are coarsened and densified. It has the effect of suppressing and significantly improving the charge acceptance at the time of recovery charging, and particularly when the lead storage battery is manufactured in combination with the first positive electrode plate or the second positive electrode plate of the present invention, its cycle life. And a significant improvement in capacity recovery.

即ち、本発明は、正極板として、PB−Ca系合金から成る多孔基板に、例えば上記の第1基板又は第2基板にカルシウム又はカルシウムとスズを含有せしめた正極活物質を充填して成る第1正極板又は第2正極板と、硫酸電解液として、これにアルミニウムイオンを含有せしめた電解液とを組み合わせて成る鉛蓄電池を構成することにより、後記に明らかにするように、活物質にカルシウムやスズを含まない正極板とアルミニウムイオンを含まない硫酸電解液とを組み合わせて成る鉛蓄電池、充填した正極活物質にカルシウム又はカルシウムとスズを含ませた正極板とアルミニウムイオンを含まない硫酸電解液とを組み合わせて成る鉛蓄電池及び活物質にカルシウム又はカルシウムとスズを含まない正極板とアルミニウムイオンを含む硫酸電解液とを組み合わせて成る鉛蓄電池に比し、サイクル寿命及び長時間放電状態に放置後の容量回復性の両者を著しく向上せしめることができると共に、メンテナンス性が維持された鉛蓄電池が得られる。   That is, according to the present invention, a positive electrode plate is formed by filling a porous substrate made of a PB-Ca alloy with, for example, a positive electrode active material containing calcium or calcium and tin in the first substrate or the second substrate. By constructing a lead storage battery comprising a combination of one positive electrode plate or second positive electrode plate and an electrolyte solution containing aluminum ions as a sulfuric acid electrolyte solution, as will be clarified later, calcium is used as the active material. Lead acid battery comprising a positive electrode plate not containing tin and tin and a sulfuric acid electrolyte solution not containing aluminum ions, a positive electrode plate containing calcium or calcium and tin in the filled positive electrode active material, and a sulfuric acid electrolyte solution not containing aluminum ions Lead acid battery and a positive electrode plate containing no calcium or calcium and tin in the active material and sulfuric acid containing aluminum ions Compared to lead-acid battery comprising a combination of a solution liquid, it is possible allowed to significantly increase both the capacity recovery characteristics after left in the cycle life and long discharge state, the lead-acid battery is obtained maintainability is maintained.

次に、本発明の詳細な実施例を比較例と共に詳述する。
Pb−Ca系合金から成る多孔基板として、前記の第2基板に属する合金、即ち、その合金組成がカルシウム0.04重量%、スズ1.0重量%、アルミニウム0.015重量%、バリウム0.008重量%、ビスマス0.05重量%、残部鉛と不可避物から成る合金を用い、ブックモールドによる鋳造式基板を製造した。鋳造は毎分15枚の速度で行った。そして鋳造した基板は120℃で3時間熱処理を施し、時効硬化させた。
一方、正極用鉛粉に硫酸カルシウム単独又は硫酸カルシウムと硫酸スズを下記表1に示すように、添加しない正極活物質及び添加量を変えて添加し、混合して成る種々の正極活物質を夫々製造し、その夫々を公知の方法で調製した夫々の正極ペーストを、前記の時効硬化処理して得られた各多孔基板に充填し、その後40℃、湿度95%の雰囲気で24時間熱し、乾燥して夫々の正極未化成板を作製した。その夫々と公知の方法で製造した負極未化成板とポリエチレンセパレータを組み合わせて成る夫々の極板群を夫々の電槽内に収容し、更に夫々の電槽内に、下記表1に示すように、硫酸アルミニウムを添加しないものから添加量を変えて調製して成る夫々の硫酸電解液を注入した後、電槽化成を行い、5時間率容量が50AhのD23サイズの12V電池を夫々作製した。
尚、カルシウム及びスズの量は、金属換算での添加量を示し、アルミニウムは硫酸塩換算での添加量を示す。
これらの電池を用いてJIS D 5301に準拠して重負荷試験を行い、サイクル寿命(回数)を測定した。これとは別に、上記の夫々の電池を60℃で4週間の放電放置試験を行い、放電後の容量回復性(%)を測定した。その結果を、表1に示した。
Next, detailed examples of the present invention will be described together with comparative examples.
As the porous substrate made of a Pb—Ca alloy, the alloy belonging to the second substrate, that is, the alloy composition is 0.04% by weight of calcium, 1.0% by weight of tin, 0.015% by weight of aluminum, 0. A cast-type substrate by a book mold was manufactured using an alloy consisting of 008 wt%, bismuth 0.05 wt%, the balance lead and inevitable materials. Casting was performed at a rate of 15 sheets per minute. The cast substrate was heat-treated at 120 ° C. for 3 hours and age hardened.
On the other hand, as shown in the following Table 1, calcium sulfate alone or calcium sulfate and tin sulfate are added to the lead powder for the positive electrode in various amounts, and various positive electrode active materials are added and mixed. Each of the positive electrode pastes produced and prepared by a known method is filled in each of the porous substrates obtained by the age-hardening treatment, and then heated in an atmosphere of 40 ° C. and 95% humidity for 24 hours, followed by drying. Thus, each positive electrode unformed plate was produced. As shown in Table 1 below, each electrode plate group formed by combining a negative electrode non-formed plate and a polyethylene separator produced by a known method is housed in each battery case. Then, after injecting each sulfuric acid electrolyte solution prepared by changing the addition amount from the one not added with aluminum sulfate, formation of a battery was performed, and a D23 size 12V battery with a 5-hour rate capacity of 50 Ah was produced.
In addition, the quantity of calcium and tin shows the addition amount in metal conversion, and aluminum shows the addition amount in sulfate conversion.
Using these batteries, a heavy load test was performed in accordance with JIS D 5301, and the cycle life (number of times) was measured. Separately from this, each of the above batteries was subjected to a discharge standing test at 60 ° C. for 4 weeks, and the capacity recoverability (%) after discharge was measured. The results are shown in Table 1.

Figure 0004509660
Figure 0004509660

表1において、比較例1から明らかなように、カルシウム及びスズを含まない正極板とアルミニウムイオンを含まない硫酸電解液とを組み合わせて成る鉛蓄電池のサイクル寿命及び容量回復性は最も低いことが判る。また、Pb−Ca系合金基板の成分として、アルミニウム、カルシウム及びスズは、サイクル寿命及び容量回復の向上効果に寄与しないことが判る。
また、比較例2から明らかなように、活物質にカルシウムを含有する正極とアルミニウムイオンを含有しない電解液と組み合わせた場合は、比較例1と比べるとき、サイクル寿命がいくらか向上することが認められる。
比較例3から明らかなように、活物質にスズを含有する正極とアルミニウムイオンを含有しない電解液とを組み合わせた場合は、比較例1と比べるとき、容量回復性はやゝ向上するが、サイクル寿命の向上は認められない。
また、比較例4から、電解液にアルミニウムを添加しても、正極活物質にカルシウム又は/及びスズを添加しなければ、サイクル寿命の向上は認められず、容量回復性の向上効果も殆どないことが判る。
また、比較例5から、正極活物質にカルシウムとスズを添加しても、電解液にアルミニウムイオンが存在しない場合は、サイクル寿命と容量回復性の著しい向上効果は認められないことが判る。
これに対し、実施例1〜13から明らかにように、正極活物質にカルシウム単独又はカルシウムとスズの両者を添加すると共に電解液にアルミニウム材を添加溶解することにより始めて、サイクル寿命と容量回復性の両者の著しい向上が認められることが判る。
また、実施例3〜5から明らかなように、アルミニウムの添加量を一定とし、カルシウムとスズを合わせた添加量を増大すると、その増大に伴い、サイクル寿命及び容量回復性の向上が認められることが判る。
かくして、本発明の上記の実施例に用いたPb−Ca系合金基板を用いた正極板は、上記の合金により優れた耐食性と機械的強度と高温でのクリープ破断強度を有する特性に加え、上記の本発明の添加剤を含有せしめた正極活物質と電解液の組み合わせによりサイクル寿命と容量回復性の向上をもたらし、メンテナンスフリー特性を維持した鉛蓄電池が得られることが判る。
In Table 1, it is clear from Comparative Example 1 that the cycle life and capacity recoverability of a lead storage battery comprising a combination of a positive electrode plate containing no calcium and tin and a sulfuric acid electrolyte containing no aluminum ions are the lowest. . Moreover, it turns out that aluminum, calcium, and tin do not contribute to the improvement effect of a cycle life and capacity | capacitance as a component of a Pb-Ca-type alloy substrate.
Further, as is clear from Comparative Example 2, when combined with a positive electrode containing calcium in the active material and an electrolytic solution not containing aluminum ions, it is recognized that the cycle life is somewhat improved when compared with Comparative Example 1. .
As is clear from Comparative Example 3, when the positive electrode containing tin and the electrolytic solution not containing aluminum ions are combined in the active material, the capacity recovery is slightly improved when compared with Comparative Example 1, but the cycle There is no improvement in life.
Further, from Comparative Example 4, even when aluminum is added to the electrolytic solution, if calcium or / and tin are not added to the positive electrode active material, no improvement in cycle life is observed, and there is almost no improvement effect on capacity recovery. I understand that.
Further, it can be seen from Comparative Example 5 that even when calcium and tin are added to the positive electrode active material, when aluminum ions are not present in the electrolytic solution, no significant improvement in cycle life and capacity recoverability is observed.
On the other hand, as apparent from Examples 1 to 13, cycle life and capacity recoverability are started only by adding calcium alone or both calcium and tin to the positive electrode active material and adding and dissolving an aluminum material in the electrolyte. It can be seen that there is a marked improvement in both.
Further, as apparent from Examples 3 to 5, when the addition amount of aluminum is made constant and the addition amount of calcium and tin is increased, an improvement in cycle life and capacity recoverability is observed with the increase. I understand.
Thus, the positive electrode plate using the Pb-Ca-based alloy substrate used in the above-described examples of the present invention has the above-described properties of having excellent corrosion resistance, mechanical strength, and creep rupture strength at high temperatures. It can be seen that the combination of the positive electrode active material containing the additive of the present invention and the electrolytic solution can improve the cycle life and capacity recovery, and provide a lead-acid battery maintaining maintenance-free characteristics.

上記の添加剤としてのアルミニウム材は、その硫酸塩を添加した場合を示したが、硫酸水溶液や水に可溶性の夫々の化合物であれば良く、例えば、その夫々の炭酸塩、炭酸水素塩、リン酸塩、ホウ酸塩、水酸化物、アルミン酸塩などの化合物で添加することができる。また、添加剤としてのカルシウムやスズは夫々の酸化物でもよい。また、これらはその水溶液として添加してもよい。
尚、カルシウムの添加量は、金属換算で正極活物質に対し1.5重量%以下が好ましい。1.5重量%を越えるときは、利用率や放電電圧の低下の傾向がある。スズの添加量は、金属換算で正極活物質に対し1.0重量%以下が、カルシウムの場合と同様に好ましい。アルミニウムの添加量は、硫酸塩換算で硫酸電解液1リットルに対し2〜50g以下が好ましい。50g/lを越えると導電率が低下して、低温での急放電特性が低下する傾向が認められる。
The aluminum material as the additive has been shown in the case where the sulfate is added, but any compound that is soluble in an aqueous sulfuric acid solution or water may be used. For example, the respective carbonate, bicarbonate, phosphorus It can be added as a compound such as acid salt, borate, hydroxide, aluminate. Further, calcium and tin as additives may be respective oxides. Moreover, you may add these as the aqueous solution.
In addition, the addition amount of calcium is preferably 1.5% by weight or less with respect to the positive electrode active material in terms of metal. When it exceeds 1.5% by weight, the utilization factor and the discharge voltage tend to decrease. The amount of tin added is preferably 1.0% by weight or less with respect to the positive electrode active material in terms of metal, as in the case of calcium. The amount of aluminum added is preferably 2 to 50 g or less per 1 liter of sulfuric acid electrolyte in terms of sulfate. When it exceeds 50 g / l, the electric conductivity is lowered, and a tendency to deteriorate the rapid discharge characteristics at low temperature is recognized.

尚、上記の第2基板やPb−Ca−Sn合金から成る合金基板を用いて、これらの多孔基板に上記の実施例と同様にカルシウム単独又はカルシウムとスズの両成分を上記の添加量含有せしめて成る正極活物質を充填して成る夫々の正極板と上記の実施例と同様にアルミニウムを上記の添加量含有せしめて成る硫酸電解液とを具備して成る夫々の鉛蓄電池に構成するときも、上記の実施例と同様の結果が得られた。   In addition, using the above-mentioned second substrate or an alloy substrate made of a Pb—Ca—Sn alloy, these porous substrates are made to contain calcium alone or both components of calcium and tin in the same manner as in the above examples. When each lead storage battery is configured to include each positive electrode plate filled with a positive electrode active material and a sulfuric acid electrolyte solution containing aluminum in the above-mentioned addition amount in the same manner as in the above embodiment. The same results as in the above example were obtained.

以上のように、試験結果から明らかな通り、カルシウム又はカルシウム及びスズを混在させた正極活物質をPb−Ca系合金から成る多孔基板に充填した正極板とアルミニウム材を添加溶解したアルミニウムイオンを含む電解液とを具備した鉛蓄電池により、メンテナンスフリー性を維持し乍ら、長寿命で且つ長期放置後の容量回復性が向上した鉛蓄電池をもたらす。かくして、本発明の鉛蓄電池は、メンテナンスフリー性を維持されると共に、従来に比し、充放電サイクル寿命や放電状態に長期間放置後の容量回復性が優れているので、アイドリングストップ、HEV又はサイクルユースなどの深いDODの用途での長寿命化が達成され、特に、自動車用鉛蓄電池に適用でき、また鉛蓄電池の用途拡大に貢献できる。   As described above, as is apparent from the test results, the positive electrode plate in which the positive electrode active material mixed with calcium or calcium and tin is filled in the porous substrate made of the Pb-Ca alloy and the aluminum ion added and dissolved are included. The lead storage battery comprising the electrolytic solution provides a lead storage battery having a long life and improved capacity recovery after being left for a long time while maintaining maintenance-free properties. Thus, the lead-acid battery of the present invention maintains maintenance-free properties, and has superior capacity recovery after being left in a charge / discharge cycle life or discharge state for a long period of time compared to the conventional case. Longer life is achieved in deep DOD applications such as cycle use, and in particular, it can be applied to lead-acid batteries for automobiles and can contribute to the expansion of the use of lead-acid batteries.

Claims (2)

Pb−Ca系合金から成る多孔基板にカルシウムを含む正極活物質を充填して成る正極板とアルミニウムイオンを含む電解液との組み合わせを具備したことを特徴とする鉛蓄電池。   A lead-acid battery comprising a combination of a positive electrode plate formed by filling a porous substrate made of a Pb-Ca alloy with a positive electrode active material containing calcium and an electrolytic solution containing aluminum ions. Pb−Ca系合金から成る多孔基板にカルシウムとスズを含む正極活物質を充填して成る正極とアルミニウムイオンを含む電解液との組み合わせを具備したことを特徴とする請求項1に記載の鉛蓄電池。 Lead according to claim 1, characterized by comprising a combination of an electrolytic solution containing a positive electrode and A Rumi ion formed by filling a positive electrode active material containing calcium and tin into a porous substrate made of pb-Ca alloy Storage battery.
JP2004176423A 2004-06-15 2004-06-15 Lead acid battery Active JP4509660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176423A JP4509660B2 (en) 2004-06-15 2004-06-15 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176423A JP4509660B2 (en) 2004-06-15 2004-06-15 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006004636A JP2006004636A (en) 2006-01-05
JP4509660B2 true JP4509660B2 (en) 2010-07-21

Family

ID=35772867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176423A Active JP4509660B2 (en) 2004-06-15 2004-06-15 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4509660B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036979A1 (en) 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP5223327B2 (en) * 2007-12-21 2013-06-26 株式会社Gsユアサ Lead acid battery
JP5545975B2 (en) * 2010-03-30 2014-07-09 古河電池株式会社 Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
CN104471781B (en) 2012-12-21 2016-04-06 松下知识产权经营株式会社 Lead accumulator
JP6045329B2 (en) * 2012-12-21 2016-12-14 パナソニック株式会社 Lead acid battery
JP6202197B2 (en) * 2014-04-22 2017-09-27 日立化成株式会社 Bisphenol resin, resin composition, electrode layer, electrode and lead acid battery
JPWO2022113623A1 (en) 2020-11-27 2022-06-02

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136332A (en) * 1976-05-08 1977-11-15 Kouhei Mogi Lead battery and method of regenerating lead battery
JPH0210665A (en) * 1988-06-29 1990-01-16 Furukawa Battery Co Ltd:The Sealed lead-acid battery
JPH04206150A (en) * 1990-11-28 1992-07-28 Matsushita Electric Ind Co Ltd Lead acid battery
JPH09289020A (en) * 1996-04-24 1997-11-04 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery and its manufacture
JPH10302796A (en) * 1997-04-25 1998-11-13 Shin Kobe Electric Mach Co Ltd Lead-acid battery and manufacture thereof
JP2001126720A (en) * 1999-10-29 2001-05-11 Yuasa Corp Method of manufacturing anode plate for lead cell
JP2003036882A (en) * 2001-07-19 2003-02-07 Furukawa Battery Co Ltd:The Sealed type lead storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136332A (en) * 1976-05-08 1977-11-15 Kouhei Mogi Lead battery and method of regenerating lead battery
JPH0210665A (en) * 1988-06-29 1990-01-16 Furukawa Battery Co Ltd:The Sealed lead-acid battery
JPH04206150A (en) * 1990-11-28 1992-07-28 Matsushita Electric Ind Co Ltd Lead acid battery
JPH09289020A (en) * 1996-04-24 1997-11-04 Shin Kobe Electric Mach Co Ltd Positive plate for lead-acid battery and its manufacture
JPH10302796A (en) * 1997-04-25 1998-11-13 Shin Kobe Electric Mach Co Ltd Lead-acid battery and manufacture thereof
JP2001126720A (en) * 1999-10-29 2001-05-11 Yuasa Corp Method of manufacturing anode plate for lead cell
JP2003036882A (en) * 2001-07-19 2003-02-07 Furukawa Battery Co Ltd:The Sealed type lead storage battery

Also Published As

Publication number Publication date
JP2006004636A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP4799560B2 (en) Lead-acid battery and method for producing lead-acid battery
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
JP2008243487A (en) Lead acid battery
WO2010032782A1 (en) Lead acid storage battery
JP2008243606A (en) Lead acid storage battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP4544791B2 (en) Sealed lead acid battery
JP4053272B2 (en) Negative electrode for lead acid battery
JP4509660B2 (en) Lead acid battery
JP2008243489A (en) Lead acid storage battery
JP2008243493A (en) Lead acid storage battery
JP4274873B2 (en) Lead-acid battery substrate and lead-acid battery using the same
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
JP2003051334A (en) Sealed lead-acid battery
JP2006086039A (en) Lead-acid storage battery
JP2003142085A (en) Lead-acid battery
JP5116331B2 (en) Lead acid battery
JP5396216B2 (en) Lead acid battery
JP2006210059A (en) Lead acid storage battery
JP4364054B2 (en) Lead acid battery
JP4503358B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2005294142A (en) Lead storage battery
JP2007213896A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3