JP2003142085A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JP2003142085A
JP2003142085A JP2001337351A JP2001337351A JP2003142085A JP 2003142085 A JP2003142085 A JP 2003142085A JP 2001337351 A JP2001337351 A JP 2001337351A JP 2001337351 A JP2001337351 A JP 2001337351A JP 2003142085 A JP2003142085 A JP 2003142085A
Authority
JP
Japan
Prior art keywords
negative electrode
lead
active material
acid battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001337351A
Other languages
Japanese (ja)
Inventor
Masaaki Shiomi
塩見  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001337351A priority Critical patent/JP2003142085A/en
Publication of JP2003142085A publication Critical patent/JP2003142085A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead-acid battery excellent in high-temperature resisting performance and having an excellent high rate characteristics. SOLUTION: This lead-acid battery is provided with a negative electrode plate having a non-Sb-based negative electrode grid, and a negative electrode active material containing 0.1-3 wt.% of Ba and 0.1-2 wt.% of graphite or carbon. The negative electrode active material contains at least one kind selected from among the group comprising Sb, Sn, Bi, Zn, Se, Mn, Ca, Mg and Sr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉛蓄電池に関する。FIELD OF THE INVENTION The present invention relates to a lead storage battery.

【0002】[0002]

【従来の技術】近年、自動車の高性能化が進むにつれ、
エンジンルーム内により多くの機器が搭載されるように
なり、蓄電池の周囲の冷却空間が減少している。また、
エンジン自体の高性能化により、エンジンに発熱量も増
加している。そのためにエンジンルーム内の蓄電池の温
度はますます高くなる傾向にある。特に夏場では、蓄電
池温度が90℃以上になる場合もある。自動車に搭載さ
れる蓄電池としては鉛蓄電池が主流であるが、高温下に
おいては、常温下における場合よりも性能の低下が早
い。この原因としては、主に負極板の劣化が考えられ
る。すなわち、鉛蓄電池の負極板には、高温寿命性能を
改善するため、従来からパルプ廃液を原料とする有機添
加剤リグニンが添加されているが、蓄電池温度上昇とと
もに、負極板に添加したリグニンの電解液への溶解度が
増して溶出したり分解したりすることにより、負極活物
質中に残存するリグニン量が少なくなってしまうためで
ある。なお、リグニンには、負極活物質の表面積を大き
くして放電容量を多くするという作用効果がある。かか
る問題を解決するために、負極活物質に添加剤を加える
ことにより負極でのリグニンの分解を抑え、鉛蓄電池の
高温での寿命性能を向上させることが提案されている。
例えば、特開平8−329948号には、かかる目的か
ら、負極活物質中に鉛よりも水素過電圧の低い金属やそ
の酸化物を添加することが開示されている。具体的に
は、通常、負極板に添加されるリグニン、バリウム、カ
ーボン以外に、Sb、Ni、Co、Mo、Bi、Pt、Au
等を添加するというものである。
2. Description of the Related Art In recent years, as the performance of automobiles has advanced,
More equipment has been installed in the engine room, and the cooling space around the storage battery has decreased. Also,
Due to the high performance of the engine itself, the amount of heat generated by the engine is also increasing. Therefore, the temperature of the storage battery in the engine room tends to become higher and higher. Especially in summer, the storage battery temperature may reach 90 ° C. or higher. Lead-acid batteries are the mainstream of storage batteries installed in automobiles, but their performance deteriorates faster at high temperatures than at room temperature. The main cause is considered to be deterioration of the negative electrode plate. That is, in order to improve the high temperature life performance, the negative electrode plate of the lead acid battery has conventionally been added with an organic additive lignin made from pulp waste liquid, but as the temperature of the battery increases, electrolysis of the lignin added to the negative electrode plate is performed. This is because the amount of lignin remaining in the negative electrode active material decreases due to the increased solubility in the liquid and the elution or decomposition. The lignin has the effect of increasing the surface area of the negative electrode active material and increasing the discharge capacity. In order to solve such a problem, it has been proposed to suppress the decomposition of lignin in the negative electrode by adding an additive to the negative electrode active material to improve the life performance of the lead storage battery at high temperature.
For example, Japanese Patent Application Laid-Open No. 8-329948 discloses adding a metal having a hydrogen overvoltage lower than that of lead or an oxide thereof to the negative electrode active material for this purpose. Specifically, in addition to lignin, barium, and carbon which are usually added to the negative electrode plate, Sb, Ni, Co, Mo, Bi, Pt, Au
Etc. are to be added.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記提
案でも今だ耐高温性能は十分ではなく、さらなる改善が
求められている。
However, even with the above proposal, the high temperature resistance is still insufficient, and further improvement is required.

【0004】本発明はかかる課題を解決するためになさ
れたものであり、その目的は耐高温性能やハイレート特
性に優れた鉛蓄電池を提供することである。
The present invention has been made to solve the above problems, and an object thereof is to provide a lead storage battery excellent in high temperature resistance and high rate characteristics.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の第1の発明は、非Sb系負極格子と、Baを0.1〜
3重量%、グラファイトもしくはカーボンを0.1〜
2.5重量%含む負極活物質とを有する負極板を備え、
前記負極活物質がSb、Sn、Bi、Zn、Se、M
n、Ca、Mg、Srの群から選ばれた少なくとも1種を
含むことを特徴とする鉛蓄電池である。第2の発明は、
第1の発明において、負極活物質が、Sbが0.005
〜0.5重量%、Snが0.05〜0.8重量%、Bi
が0.008〜0.5重量%、Znが0.004〜0.
6重量%、Seが0.005〜0.3重量%、Mnが
0.005〜0.5重量%、Caが0.006〜0.6
重量%、Mgが0.005〜0.7重量%、Srが0.
007〜0.5重量%の群から選ばれた少なくとも1種
を含むことを特徴とする鉛蓄電池である。第3の発明
は、第1又は2の発明において、負極活物質が、Sb、
Sn、Bi、Zn、Se、Mn、Ca、Mg、Srの群
から選ばれた少なくとも1種を含む鉛合金から製作され
たことを特徴とする鉛蓄電池である。第4の発明は、第
1又は2の発明において、負極板が、Sb、Sn、B
i、Zn、Se、Mn、Ca、Mg、Srの群から選ば
れた少なくとも1種を含む電解液中で化成されたことを
特徴とする鉛蓄電池である。第5の発明は、第1又は2
の発明において、負極板が、Sb、Sn、Bi、Zn、
Se、Mn、Ca、Mg、Srの群から選ばれた少なく
とも1種を含む電解液中に浸漬後、熟成されたことを特
徴とする鉛蓄電池である。第6の発明は、第1、2、
3、4又は5の発明において、電槽化成終了時の硫酸電
解液比重(20℃換算)が1.26以上、より好ましく
は1.28〜1.30であることを特徴とする鉛蓄電池
である。第7の発明は、第1、2、3、4、5又は6の
発明において、負極活物質密度が2.5〜3.8g/c
m3であることを特徴とする鉛蓄電池である。第8の発
明は、第1、2、3、4、5、6又は7の発明におい
て、グラファイトもしくはカーボンの比表面積が20〜
500m2/gであることを特徴とする鉛蓄電池であ
る。
A first invention for solving the above-mentioned problems is to provide a non-Sb system negative electrode grid and Ba in an amount of 0.1 to 0.1%.
3% by weight, 0.1% graphite or carbon
A negative electrode plate having a negative electrode active material containing 2.5% by weight,
The negative electrode active material is Sb, Sn, Bi, Zn, Se, M
A lead-acid battery containing at least one selected from the group consisting of n, Ca, Mg, and Sr. The second invention is
In the first invention, the negative electrode active material has Sb of 0.005.
~ 0.5 wt%, Sn 0.05-0.8 wt%, Bi
Is 0.008 to 0.5% by weight, and Zn is 0.004 to 0.
6 wt%, Se 0.005-0.3 wt%, Mn 0.005-0.5 wt%, Ca 0.006-0.6
Wt%, 0.005 to 0.7 wt% of Mg, and Sr of 0.
A lead storage battery comprising at least one selected from the group of 007 to 0.5% by weight. A third invention is the same as the first or second invention, wherein the negative electrode active material is Sb,
It is a lead acid battery manufactured from a lead alloy containing at least one selected from the group consisting of Sn, Bi, Zn, Se, Mn, Ca, Mg and Sr. 4th invention is the negative electrode plate in 1st or 2nd invention, Comprising: Sb, Sn, B
A lead storage battery characterized by being formed in an electrolytic solution containing at least one selected from the group consisting of i, Zn, Se, Mn, Ca, Mg and Sr. The fifth invention is the first or second invention.
In the invention, the negative electrode plate is Sb, Sn, Bi, Zn,
A lead-acid battery characterized by being aged after being immersed in an electrolytic solution containing at least one selected from the group of Se, Mn, Ca, Mg, and Sr. A sixth invention is the first, second,
In the invention of 3, 4 or 5, a sulfuric acid electrolyte specific gravity (at 20 ° C. conversion) at the end of battery case formation is 1.26 or more, more preferably 1.28 to 1.30. is there. A seventh invention is the first, second, third, fourth, fifth or sixth invention, wherein the negative electrode active material density is 2.5 to 3.8 g / c.
It is a lead acid battery characterized by being m3. An eighth invention is the first, second, third, fourth, fifth, sixth or seventh invention, wherein the specific surface area of graphite or carbon is 20 to
It is a lead-acid battery characterized by having a capacity of 500 m2 / g.

【0006】[0006]

【発明の実施の形態】第1の発明において、非Sb系負
極格子とは、不純物レベルの量を除いてSbを含まない
負極格子のことであり、Pb−Sn合金、Pb−Ca合金
等で形成され、鋳造式、エキスパンド式などがある。活
物質に含まれるBaには、放電で生成する硫酸鉛の結晶
が成長する核となり、放電容量の低下や活物質の収縮を
防ぎ、ハイレート性能を向上させる効果がある。グラフ
ァイトやカーボンは、水素過電圧をやや小さくし、導電
性を与えて化成を容易にするとともに、充電受け入れ性
を改善する効果がある反面、Baを吸着し、その効果を
低減させるが、負極活物質中にBaを0.1〜3重量
%、グラファイトもしくはカーボンを0.1〜2重量%
含ませるとともに、Sb、Sn、Bi、Zn、Se、M
n、Ca、Mg、Srの群から選ばれた少なくとも1種を
共存させることによる相乗効果により、耐高温性能を改
善し、ハイレート特性、寿命特性に優れた鉛蓄電池が提
供される。そのメカニズムは必ずしも明らかではない
が、Sb、Sn、Bi、Zn、Se、Mn、Ca、M
g、Srを添加することにより活物質が微細化するので
はないかと推察される。尚、Ba、Sb、Sn、Bi、
Zn、Se、Mn、Ca、Mg、Srは金属や化合物の
形態で負極活物質中の含ませることができ、化合物の場
合の含有量は単体換算の値である。第2の発明によれ
ば、それぞれの含有量の好適値がSbは0.005〜
0.5重量%、Snは0.05〜0.8重量%、Biは
0.008〜0.5重量%、Znは0.004〜0.6
重量%、Seは0.005〜0.3重量%、Mnは0.
005〜0.5重量%、Caは0.006〜0.6重量
%、Mgは0.005〜0.7重量%、Srは0.00
7〜0.5重量%であり、これによって耐高温性能を改
善し、ハイレート特性に優れた鉛蓄電池が提供される。
第3の発明によれば、負極活物質が、Sb、Sn、B
i、Zn、Se、Mn、Ca、Mg、Srの群から選ば
れた少なくとも1種を含む鉛合金から製作されるので、
これら元素が均質に含有され、耐高温性能を改善し、ハ
イレート特性に優れた鉛蓄電池が提供される。尚、鉛合
金や鉛合金から鉛粉を作る方法は公知である。第4の発
明によれば、負極板が、Sb、Sn、Bi、Zn、S
e、Mn、Ca、Mg、Srの群から選ばれた少なくと
も1種を含む電解液中で化成されることにより、これら
が負極活物質上析出するので、活物質微細化に効果的で
あり、もって耐高温性能を改善し、ハイレート特性に優
れた鉛蓄電池が提供される。なお、化成については、通
常の化成条件に従って行うことができる。第5の発明に
よれば、負極板が、Sb、Sn、Bi、Zn、Se、M
n、Ca、Mg、Srの群から選ばれた少なくとも1種を
含む電解液中に浸漬後、熟成されるので、熟成中に活物
質の微細化が起こるため、耐高温性能を改善し、ハイレ
ート特性に優れた鉛蓄電池が提供される。尚、電解液中
への浸漬時間については、負極板の大きさや電解液濃度
等を勘案して、適宜、設定することができ、また熟成に
ついては、当業者において周知慣用の条件で実施するこ
とができる。第6の発明によれば、電槽化成終了時の硫
酸電解液比重(20℃換算)が1.26以上、より好ま
しくは1.28〜1.30であるので、活物質の微細化
が進み、耐高温性能を改善し、ハイレート特性に優れた
鉛蓄電池が提供される。第7の発明によれば、負極活物
質密度が2.5〜3.8g/cm3であるので、従来のよ
うに3.9g/cm3以上の高密度なものに比べ、耐高温
性能を改善し、ハイレート特性に優れた鉛蓄電池が提供
される。第8の発明によれば、グラファイトもしくはカ
ーボンの比表面積が20〜500m2/gであるので、
従来のような比表面積が15m2/g程度のものに比
べ、耐高温性能を改善し、ハイレート特性に優れた鉛蓄
電池が提供される。
BEST MODE FOR CARRYING OUT THE INVENTION In the first invention, the non-Sb-based negative electrode lattice is a negative electrode lattice which does not contain Sb except for the amount of impurity level, and is made of Pb-Sn alloy, Pb-Ca alloy or the like. It is formed, and there are casting type, expanding type and so on. Ba contained in the active material serves as a nucleus for growing crystals of lead sulfate generated by discharge, and has an effect of preventing reduction in discharge capacity and contraction of the active material, and improving high rate performance. Graphite and carbon have an effect of slightly reducing hydrogen overvoltage, giving conductivity and facilitating chemical conversion, and improving charge acceptability. On the other hand, they adsorb Ba and reduce the effect, but the negative electrode active material 0.1 to 3% by weight of Ba and 0.1 to 2% by weight of graphite or carbon
Sb, Sn, Bi, Zn, Se, M
Provided is a lead-acid battery having improved high-temperature resistance performance and excellent high rate characteristics and life characteristics due to the synergistic effect of coexisting at least one selected from the group consisting of n, Ca, Mg, and Sr. Although the mechanism is not always clear, Sb, Sn, Bi, Zn, Se, Mn, Ca, M
It is speculated that the addition of g and Sr may make the active material finer. In addition, Ba, Sb, Sn, Bi,
Zn, Se, Mn, Ca, Mg, and Sr can be contained in the negative electrode active material in the form of a metal or a compound, and the content in the case of a compound is a value calculated as a simple substance. According to the second invention, the preferable value of each content is Sb of 0.005 to 0.005.
0.5 wt%, Sn 0.05-0.8 wt%, Bi 0.008-0.5 wt%, Zn 0.004-0.6
%, Se is 0.005 to 0.3% by weight, and Mn is 0.
005-0.5 wt%, Ca 0.006-0.6 wt%, Mg 0.005-0.7 wt%, Sr 0.00
7 to 0.5 wt%, which provides a lead-acid battery with improved high temperature resistance and excellent high rate characteristics.
According to the third invention, the negative electrode active material is Sb, Sn, B.
Since it is made from a lead alloy containing at least one selected from the group of i, Zn, Se, Mn, Ca, Mg, and Sr,
Provided is a lead storage battery in which these elements are uniformly contained, the high temperature resistance is improved, and the high rate characteristics are excellent. Incidentally, a method of producing lead powder from a lead alloy or a lead alloy is known. According to the fourth invention, the negative electrode plate is Sb, Sn, Bi, Zn, S.
e, Mn, Ca, Mg, and Sr are formed in an electrolytic solution containing at least one selected from the group, and these are deposited on the negative electrode active material, which is effective for making the active material finer. Therefore, a lead storage battery having improved high temperature resistance and excellent high rate characteristics is provided. The chemical conversion can be carried out under normal chemical conversion conditions. According to the fifth invention, the negative electrode plate is Sb, Sn, Bi, Zn, Se, M.
It is soaked in an electrolyte containing at least one selected from the group consisting of n, Ca, Mg, and Sr, and then aged, so that the active material becomes finer during the aging, improving the high temperature resistance performance and increasing the high rate. A lead storage battery having excellent characteristics is provided. Incidentally, the immersion time in the electrolytic solution can be appropriately set in consideration of the size of the negative electrode plate, the electrolytic solution concentration, etc., and the aging should be carried out under the conditions commonly known to those skilled in the art. You can According to the sixth aspect of the invention, the specific gravity of the sulfuric acid electrolyte (converted to 20 ° C.) at the end of battery case formation is 1.26 or more, more preferably 1.28 to 1.30, so that the active material becomes finer. A lead storage battery having improved high temperature resistance and excellent high rate characteristics is provided. According to the seventh invention, since the density of the negative electrode active material is 2.5 to 3.8 g / cm3, the high temperature resistance performance is improved as compared with the conventional one having a high density of 3.9 g / cm3 or more. Provided is a lead storage battery having excellent high rate characteristics. According to the eighth invention, since the specific surface area of graphite or carbon is 20 to 500 m2 / g,
Provided is a lead-acid battery having improved high temperature resistance and excellent high rate characteristics as compared with a conventional one having a specific surface area of about 15 m 2 / g.

【0007】[0007]

【実施例】まず、各種添加元素が耐高温性能、ハイレー
ト特性に及ぼす影響を調べるため、第1の試験を行っ
た。用いた負極格子は、0.06%Ca−1%Sn−P
bであり、リグニンを0.2重量%含む他は図1の構成
の負極活物質を充填して、1.7mm厚さの負極板を製
作した。また正極板は負極格子と同組成の格子に通常の
ペーストを充填して製作した。尚、添加物は金属粉末の
状態で鉛粉の混合し、定法に従って負極活物質ペースト
とした。この試験における負極活物質密度は3g/cm
3、カーボンの比表面積は100m2/gである。
EXAMPLES First, a first test was conducted in order to investigate the influence of various additive elements on the high temperature resistance performance and high rate characteristics. The negative electrode grid used is 0.06% Ca-1% Sn-P.
b, and a negative electrode plate having a thickness of 1.7 mm was manufactured by filling the negative electrode active material having the structure of FIG. 1 except that it contained 0.2% by weight of lignin. The positive electrode plate was manufactured by filling a grid having the same composition as the negative electrode grid with a normal paste. The additive was mixed with lead powder in the state of metal powder to prepare a negative electrode active material paste according to a conventional method. The negative electrode active material density in this test is 3 g / cm
3. The specific surface area of carbon is 100 m2 / g.

【0008】これらの負極板11枚と2.3mm厚さの
正極板10枚および微細ガラス繊維からなるガラスマッ
トセパレータとを用いて蓄電池を組み立てた後、所定の
注液、充電を行って液比重1. 32(20℃)、容量約
63Ah(3hR)−12Vのリテーナ式密閉鉛蓄電池
を製作した。
A storage battery was assembled using 11 of these negative plates, 10 of the positive plates having a thickness of 2.3 mm, and a glass mat separator made of fine glass fibers, and then the specific gravity was applied to the storage battery to charge it to obtain a liquid specific gravity. A retainer-type sealed lead-acid battery of 1.32 (20 ° C) and a capacity of about 63Ah (3hR) -12V was manufactured.

【0009】これらの蓄電池を、まず3CAでの初期容
量試験に供し、その後、50℃の水槽中で、放電深さ8
0%、定電流で放電量の110%を充電するパターンで
充放電を繰り返し、蓄電池の寿命性能を調べた。初期容
量試験における放電時間はほぼ同等であったが、平均電
圧には添加物の有無により差があった。平均電圧の相対
値と、寿命に達したサイクル数の相対値を図2に示す。
なお、ここで言う寿命とは、3CA容量が初期の70%
以下の容量に達したことを指す。また性能を3CA容量
で評価しているのは、3CAつまり大電流で放電した場
合の性能は負極板の性能で支配されており、評価に適し
ていることによる。この結果から明らかなように、電池
記号0に比べ、添加物を有する電池1〜9は、平均電圧
及びサイクル数において優れている。平均電圧が優れて
いるということは、添加物によりハイレート性能が改善
されたことを意味し、サイクル数が優れていることは、
耐高温性能が改善されたことを意味する。次に、添加物
の量が寿命性能やハイレート性能の及ぼす影響を調べる
ため、第2の試験を行った。負極活物質への添加は図3
に示す通りであり、他は第1の試験と同様の構成とした
(従って、図3における電池1と図1における電池1と
は同じ構成)。そして第1の試験と同様の試験に供し
た。試験結果を、図2の場合と同じく相対値で示す。こ
の結果から明らかなように、カーボン及びBaを1.5
重量%含む場合、Sbは0.005〜0.5重量%が効
果的である。同様な試験の結果、Snは0.05〜0.
8重量%、Biは0.008〜0.5重量%、Znは
0.004〜0.6重量%、Seは0.005〜0.3
重量%、Mnは0.005〜0.5重量%、Caは0.
006〜0.6重量%、Mgは0.005〜0.7重量
%、Srは0.007〜0.5重量%が好適であること
が分かった。次に、カーボン及びBaの量の好適範囲を
調べるため、第3の試験を行った。図5の構成の以外は
第1の試験と同様である(従って、図5の電池1は図1
及び図3の電池1と同じ構成)。そして第1の試験と同
様の試験に供した。試験結果を、図2、図4の場合と同
じく相対値で図6に示す。この結果から明らかなよう
に、本発明の実施例(*印)であるBaが0.1〜3重
量%、カーボンが0.1〜2重量%のものはハイレート
性能、耐高温性能が良好であることが分かる。この試験
ではSbが0.25%であったが、Sbが0.005〜
0.5重量%、Snが0.05〜0.8重量%、Biが
0.008〜0.5重量%、Znが.004〜0.6重
量%、Seが0.005〜0.3重量%、Mnが0.0
05〜0.5重量%、Caが0.006〜0.6重量
%、Mgが0.005〜0.7重量%、Srが0.00
7〜0.5重量%の範囲においても同様な傾向が見られ
た。本発明の効果は、非Sb系負極格子と、Baを0.
1〜3重量%、グラファイトもしくはカーボンを0.1
〜2重量%含む負極活物質とを有する負極板を備え、前
記負極活物質がSb、Sn、Bi、Zn、Se、Mn、
Ca、Mg、Srの群から選ばれた少なくとも1種を含む
ことにより奏されるが、その合計量が余り多くなると活
物質量が低下しエネルギー密度が低下するので、3%以
下とするのがよい。これらを負極活物質に含ませる方法
としては、Sb、Sn、Bi、Zn、Se、Mn、C
a、Mg、Srの群から選ばれた少なくとも1種を含む鉛
合金から鉛粉を製作する方法、負極板をSb、Sn、B
i、Zn、Se、Mn、Ca、Mg、Srの群から選ば
れた少なくとも1種を含む電解液中で化成する方法等が
あり、その効果をより高める方法としては、負極板をS
b、Sn、Bi、Zn、Se、Mn、Ca、Mg、Srの
群から選ばれた少なくとも1種を含む電解液中に浸漬
後、熟成したり、比重1.26以上、より好ましくは
1.28〜1.30(20℃換算)の硫酸電解液を用い
て電槽化成したりすることもできる。本発明の効果は、
負極活物質密度を2.5〜3.8g/cm3、グラファイ
トもしくはカーボンの比表面積が20〜500m2/g
とすることにより、一層大である。
These storage batteries were first subjected to an initial capacity test at 3 CA, and then, at a discharge depth of 8 in a water tank at 50 ° C.
The charging / discharging was repeated in a pattern of 0% and 110% of the discharge amount at a constant current, and the life performance of the storage battery was examined. The discharge time in the initial capacity test was almost the same, but the average voltage was different depending on the presence or absence of the additive. FIG. 2 shows the relative value of the average voltage and the relative value of the number of cycles that reached the end of life.
In addition, the life referred to here means that the capacity of 3 CA is 70% of the initial value.
Indicates that the following capacity has been reached. The reason why the performance is evaluated by the 3CA capacity is that the performance in the case of discharging at 3CA, that is, a large current is governed by the performance of the negative electrode plate and is suitable for the evaluation. As is clear from this result, the batteries 1 to 9 having the additive are superior in the average voltage and the number of cycles to the battery code 0. An excellent average voltage means that the additive has improved the high rate performance, and an excellent cycle number means that
This means that the high temperature resistance performance is improved. Next, a second test was conducted to investigate the influence of the amount of the additive on the life performance and the high rate performance. Figure 3 shows the addition to the negative electrode active material.
And the other configurations were the same as those of the first test (therefore, the battery 1 in FIG. 3 and the battery 1 in FIG. 1 have the same configuration). And it used for the test similar to a 1st test. The test results are shown by relative values as in the case of FIG. As is clear from this result, carbon and Ba are 1.5
When it is included by weight, 0.005 to 0.5% by weight of Sb is effective. As a result of a similar test, Sn was 0.05 to 0.
8 wt%, Bi 0.008 to 0.5 wt%, Zn 0.004 to 0.6 wt%, Se 0.005 to 0.3
% By weight, Mn is 0.005-0.5% by weight, Ca is 0.1.
It has been found that 006 to 0.6 wt%, Mg to 0.005 to 0.7 wt% and Sr to 0.007 to 0.5 wt% are suitable. Next, a third test was conducted in order to investigate the preferable range of the amounts of carbon and Ba. 5 is the same as the first test except for the configuration of FIG. 5 (therefore, the battery 1 of FIG.
And the same configuration as the battery 1 in FIG. 3). And it used for the test similar to a 1st test. The test results are shown in FIG. 6 as relative values as in the cases of FIGS. As is clear from these results, the examples (*) of the present invention having 0.1 to 3% by weight of Ba and 0.1 to 2% by weight of carbon have good high rate performance and high temperature resistance. I know there is. In this test, Sb was 0.25%, but Sb was 0.005-
0.5 wt%, Sn 0.05 to 0.8 wt%, Bi 0.008 to 0.5 wt%, Zn. 004 to 0.6% by weight, Se 0.005 to 0.3% by weight, Mn 0.0
05-0.5% by weight, Ca 0.006-0.6% by weight, Mg 0.005-0.7% by weight, Sr 0.00
A similar tendency was observed in the range of 7 to 0.5% by weight. The effect of the present invention is that the non-Sb-based negative electrode lattice and Ba are less than 0.
1-3% by weight, graphite or carbon 0.1
A negative electrode plate having a negative electrode active material of about 2% by weight, wherein the negative electrode active material is Sb, Sn, Bi, Zn, Se, Mn,
It is achieved by including at least one selected from the group consisting of Ca, Mg, and Sr. However, if the total amount is too large, the amount of active material decreases and the energy density decreases, so it should be 3% or less. Good. As a method of incorporating these into the negative electrode active material, Sb, Sn, Bi, Zn, Se, Mn, C
a method for producing lead powder from a lead alloy containing at least one selected from the group of Mg, Sr, and Sb, Sn, B for the negative electrode plate
There is a method of chemical formation in an electrolytic solution containing at least one selected from the group consisting of i, Zn, Se, Mn, Ca, Mg and Sr. As a method of further enhancing the effect, the negative electrode plate may be S.
After being immersed in an electrolytic solution containing at least one selected from the group consisting of b, Sn, Bi, Zn, Se, Mn, Ca, Mg, and Sr, it is aged or has a specific gravity of 1.26 or more, more preferably 1. It is also possible to form a battery case by using a sulfuric acid electrolytic solution of 28 to 1.30 (converted at 20 ° C.). The effect of the present invention is
Negative electrode active material density is 2.5 to 3.8 g / cm3, specific surface area of graphite or carbon is 20 to 500 m2 / g
And is even greater.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、耐
高温性能やハイレート特性に優れた鉛蓄電池を提供が可
能となり、今後ますます発展するであろう車社会への貢
献は大である。
As described above, according to the present invention, it becomes possible to provide a lead-acid battery excellent in high temperature resistance and high rate characteristics, and it will make a great contribution to the automobile society that will continue to develop in the future. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の試験の電池構成を示す図である。FIG. 1 is a diagram showing a battery configuration of a first test.

【図2】 第1の試験結果を示す図である。FIG. 2 is a diagram showing a first test result.

【図3】 第2の試験の電池構成を示す図である。FIG. 3 is a diagram showing a battery configuration of a second test.

【図4】 第2の試験結果を示す図である。FIG. 4 is a diagram showing a second test result.

【図5】 第3の試験の電池構成を示す図である。FIG. 5 is a diagram showing a battery configuration of a third test.

【図6】 第3の試験結果を示す図である。FIG. 6 is a diagram showing a third test result.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/62 H01M 4/62 B 4/73 4/73 A 10/06 10/06 Z ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 4/62 H01M 4/62 B 4/73 4/73 A 10/06 10/06 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】非Sb系負極格子と、Baを0.1〜3重
量%、グラファイトもしくはカーボンを0.1〜2.5
重量%含む負極活物質とを有する負極板を備え、前記負
極活物質がSb、Sn、Bi、Zn、Se、Mn、C
a、Mg、Srの群から選ばれた少なくとも1種を含むこ
とを特徴とする鉛蓄電池。
1. A non-Sb type negative electrode grid, 0.1 to 3% by weight of Ba, and 0.1 to 2.5 of graphite or carbon.
A negative electrode plate having a negative electrode active material in an amount of 1% by weight, wherein the negative electrode active material is Sb, Sn, Bi, Zn, Se, Mn, C.
A lead acid battery containing at least one selected from the group consisting of a, Mg and Sr.
【請求項2】前記負極活物質が、Sbが0.005〜
0.5重量%、Snが0.05〜0.8重量%、Biが
0.008〜0.5重量%、Znが0.004〜0.6
重量%、Seが0.005〜0.3重量%、Mnが0.
005〜0.5重量%、Caが0.006〜0.6重量
%、Mgが0.005〜0.7重量%、Srが0.00
7〜0.5重量%の群から選ばれた少なくとも1種を含
むことを特徴とする、請求項1記載の鉛蓄電池。
2. The negative electrode active material contains Sb of 0.005 to 0.005.
0.5 wt%, Sn 0.05-0.8 wt%, Bi 0.008-0.5 wt%, Zn 0.004-0.6
% By weight, Se 0.005 to 0.3% by weight, Mn 0.
005-0.5 wt%, Ca 0.006-0.6 wt%, Mg 0.005-0.7 wt%, Sr 0.00
The lead-acid battery according to claim 1, comprising at least one selected from the group of 7 to 0.5% by weight.
【請求項3】負極活物質が、Sb、Sn、Bi、Zn、
Se、Mn、Ca、Mg、Srの群から選ばれた少なく
とも1種を含む鉛合金から製作されたことを特徴とす
る、請求項1又は2記載の鉛蓄電池。
3. The negative electrode active material is Sb, Sn, Bi, Zn,
The lead acid battery according to claim 1 or 2, which is manufactured from a lead alloy containing at least one selected from the group of Se, Mn, Ca, Mg, and Sr.
【請求項4】負極板が、Sb、Sn、Bi、Zn、S
e、Mn、Ca、Mg、Srの群から選ばれた少なくと
も1種を含む電解液中で化成されたことを特徴とする、
請求項1又は2記載の鉛蓄電池。
4. The negative electrode plate is Sb, Sn, Bi, Zn, S
e, Mn, Ca, Mg, Sr formed in an electrolytic solution containing at least one selected from the group,
The lead-acid battery according to claim 1 or 2.
【請求項5】負極板が、Sb、Sn、Bi、Zn、S
e、Mn、Ca、Mg、Srの群から選ばれた少なくと
も1種を含む電解液中に浸漬後、熟成されたことを特徴
とする、請求項1又は2記載の鉛蓄電池。
5. The negative electrode plate is Sb, Sn, Bi, Zn, S
3. The lead storage battery according to claim 1, which is aged after being immersed in an electrolytic solution containing at least one selected from the group consisting of e, Mn, Ca, Mg, and Sr.
【請求項6】電槽化成終了時の硫酸電解液比重(20℃
換算)が1.26以上であることを特徴とする、請求項
1、2、3、4又は5記載の鉛蓄電池。
6. Specific gravity of sulfuric acid electrolyte (20 ° C. at the end of battery case formation)
The lead acid battery according to claim 1, 2, 3, 4, or 5, characterized in that the conversion) is 1.26 or more.
【請求項7】負極活物質密度が2.5〜3.8g/cm3
であることを特徴とする、請求項1、2、3、4、5又
は6記載の鉛蓄電池。
7. The negative electrode active material has a density of 2.5 to 3.8 g / cm3.
The lead-acid battery according to claim 1, 2, 3, 4, 5, or 6, characterized in that.
【請求項8】グラファイトもしくはカーボンの比表面積
が20〜500m2/gであることを特徴とする、請求
項1、2、3、4、5、6又は7記載の鉛蓄電池。
8. The lead-acid battery according to claim 1, wherein the specific surface area of graphite or carbon is 20 to 500 m 2 / g.
JP2001337351A 2001-11-02 2001-11-02 Lead-acid battery Pending JP2003142085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337351A JP2003142085A (en) 2001-11-02 2001-11-02 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337351A JP2003142085A (en) 2001-11-02 2001-11-02 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2003142085A true JP2003142085A (en) 2003-05-16

Family

ID=19152005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337351A Pending JP2003142085A (en) 2001-11-02 2001-11-02 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2003142085A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903932A (en) * 2012-10-18 2013-01-30 双登集团股份有限公司 Lead-acid storage battery positive electrode plate for electric automobile
JP2015128053A (en) * 2013-11-29 2015-07-09 株式会社Gsユアサ Lead storage battery
US20160240857A1 (en) * 2015-02-18 2016-08-18 Gs Yuasa International Ltd. Lead-acid battery
JP2016173911A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Control valve-type lead storage battery
US10084208B2 (en) 2014-12-18 2018-09-25 Gs Yuasa International Ltd. Lead-acid battery
WO2018199053A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery
US10608242B2 (en) 2015-03-30 2020-03-31 Gs Yuasa International Ltd. Lead-acid battery
US10622634B2 (en) 2015-05-29 2020-04-14 Gs Yuasa International Ltd. Lead-acid battery and method for producing lead-acid battery
CN112366289A (en) * 2020-11-09 2021-02-12 超威电源集团有限公司 Lead-acid storage battery positive electrode lead paste and preparation method thereof
CN112436144A (en) * 2020-11-06 2021-03-02 风帆有限责任公司 Preparation method of positive lead paste and positive plate of lead-acid storage battery
JP2021068549A (en) * 2019-10-21 2021-04-30 株式会社Gsユアサ Lead-acid battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216506B2 (en) * 1980-07-01 1987-04-13 Matsushita Electric Ind Co Ltd
JPH0676814A (en) * 1992-08-25 1994-03-18 Japan Storage Battery Co Ltd Negative electrode plate for sealed lead-acid battery
JPH08329948A (en) * 1995-06-01 1996-12-13 Japan Storage Battery Co Ltd Lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery
JPH1092462A (en) * 1996-09-12 1998-04-10 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH11354123A (en) * 1998-06-04 1999-12-24 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2001043849A (en) * 1999-08-02 2001-02-16 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216506B2 (en) * 1980-07-01 1987-04-13 Matsushita Electric Ind Co Ltd
JPH0676814A (en) * 1992-08-25 1994-03-18 Japan Storage Battery Co Ltd Negative electrode plate for sealed lead-acid battery
JPH08329948A (en) * 1995-06-01 1996-12-13 Japan Storage Battery Co Ltd Lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery
JPH1092462A (en) * 1996-09-12 1998-04-10 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH11354123A (en) * 1998-06-04 1999-12-24 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2001043849A (en) * 1999-08-02 2001-02-16 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903932A (en) * 2012-10-18 2013-01-30 双登集团股份有限公司 Lead-acid storage battery positive electrode plate for electric automobile
JP2015128053A (en) * 2013-11-29 2015-07-09 株式会社Gsユアサ Lead storage battery
US10084208B2 (en) 2014-12-18 2018-09-25 Gs Yuasa International Ltd. Lead-acid battery
US20160240857A1 (en) * 2015-02-18 2016-08-18 Gs Yuasa International Ltd. Lead-acid battery
JP2016173911A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Control valve-type lead storage battery
US10608242B2 (en) 2015-03-30 2020-03-31 Gs Yuasa International Ltd. Lead-acid battery
US10622634B2 (en) 2015-05-29 2020-04-14 Gs Yuasa International Ltd. Lead-acid battery and method for producing lead-acid battery
JPWO2018199053A1 (en) * 2017-04-28 2020-03-12 株式会社Gsユアサ Lead storage battery
WO2018199053A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery
JP7099448B2 (en) 2017-04-28 2022-07-12 株式会社Gsユアサ Lead-acid battery
JP2021068549A (en) * 2019-10-21 2021-04-30 株式会社Gsユアサ Lead-acid battery
JP7375457B2 (en) 2019-10-21 2023-11-08 株式会社Gsユアサ lead acid battery
CN112436144A (en) * 2020-11-06 2021-03-02 风帆有限责任公司 Preparation method of positive lead paste and positive plate of lead-acid storage battery
CN112366289A (en) * 2020-11-09 2021-02-12 超威电源集团有限公司 Lead-acid storage battery positive electrode lead paste and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4148175B2 (en) Lead alloy and lead storage battery using the same
WO2010058240A1 (en) Low water loss battery
JP2003142085A (en) Lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2003051334A (en) Sealed lead-acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP4509660B2 (en) Lead acid battery
US4086392A (en) Method for reducing the float current of maintenance-free battery
JP2016119294A (en) Lead-acid battery
JP4904658B2 (en) Method for producing lead-acid battery
JP3505972B2 (en) Lead-acid battery and method of manufacturing lead-acid battery
US6596436B1 (en) Nickel positive electrode plate for alkaline storage batteries and method for producing the same
JP2004327299A (en) Sealed lead-acid storage battery
CN1292580A (en) Alkaline storage battery and manufacturing method thereof
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JPH09180717A (en) Nickel electrode for alkaline storage battery
JP4026259B2 (en) Sealed lead acid battery
JP4364054B2 (en) Lead acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JPH08329948A (en) Lead-acid battery
JP4503358B2 (en) Lead acid battery
JP2773312B2 (en) Manufacturing method of positive electrode plate for lead-acid battery
JP3745583B2 (en) Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828