JP3987998B2 - Unformed positive electrode plate for lead acid battery - Google Patents
Unformed positive electrode plate for lead acid battery Download PDFInfo
- Publication number
- JP3987998B2 JP3987998B2 JP03435997A JP3435997A JP3987998B2 JP 3987998 B2 JP3987998 B2 JP 3987998B2 JP 03435997 A JP03435997 A JP 03435997A JP 3435997 A JP3435997 A JP 3435997A JP 3987998 B2 JP3987998 B2 JP 3987998B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- positive electrode
- electrode plate
- active material
- lattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は鉛−カルシウム系合金格子を用いた鉛蓄電池の改良およびその製造方法に関するものである。
【0002】
【従来の技術】
現在、鉛蓄電池は自動車用や産業用をはじめとしてあらゆる分野で用いられている。その中で自動車用電池は最も需要が高く、軽量化、コストダウン化、メンテナンスフリー化、長寿命化、品質の安定化が求められている。
【0003】
現在、鉛蓄電池に用いられている格子合金は鉛−アンチモン系と鉛−カルシウム−錫系(以後、鉛−カルシウム系と呼ぶ)に大別でき、鉛蓄電池の特性はこれらの格子合金によって著しく異なることが知られている。すなわち、鉛−アンチモン系合金の正極格子を用いた鉛蓄電池は深い充放電サイクルに優れた特性を示すが、自己放電が大きい欠点がある。一方、鉛−カルシウム系合金の正極格子を用いた鉛蓄電池は自己放電が少ない、使用中の減液が少ないため補水の必要がないなどのメンテナンスフリー特性に優れているものの、深い充放電サイクルを繰り返すと早期に電池容量が低下することがあるという欠点がある。
【0004】
鉛−カルシウム系合金の正極格子を用いた鉛蓄電池の早期容量低下は、深い放電を繰り返したときに、格子と活物質との界面が優先的に放電して不働態層を形成するために起ることが知られている。また、この現象はアンチモンが1.2%以下の鉛−アンチモン合金製格子を用いた場合にも見られることが知られており、すなわち実質的にアンチモンを含まない鉛合金製格子特有の現象である。また、正極にエキスパンド格子を用いた場合には、鋳造格子を用いた場合に比べて、早期容量低下は一層起こりやすいことが知られている。
【0005】
従来、鉛蓄電池はつぎのように製造されている。すなわち、鉛合金製格子に、酸化度(一酸化鉛の重量%)60〜95%の鉛粉を希硫酸でペースト状に練ったものを充填し、熟成および乾燥を施して未化成極板とする。これらを用いて組み立てた電池を正極活物質の理論電気量比200〜400%の電気量で電槽化成して充電済み電池とする。
【0006】
【発明が解決しようとする課題】
鉛−カルシウム系合金を正極格子として用いたとき、上述した熟成工程を改良し、たとえば、高温高湿熟成を施すことにより未化活物質中に四塩基性硫酸鉛を生成させる方法などが提案されている。しかし、この方法によれば格子と活物質との界面の接合性が向上し早期容量低下は抑制されるが、これまでの三塩基性硫酸鉛に比べて四塩基性硫酸鉛はその結晶が大きく化成性に劣るために充分な初期性能が得られないという欠点がある。
【0007】
【課題を解決するための手段】
そこで、三塩基性硫酸鉛を主体とする活物質を備え、鉛合金製正極格子の表面部の活物質は四塩基性硫酸鉛を含むことを特徴とする鉛蓄電池用未化成正極板の発明により、上記課題を解決するものである。
【0009】
【発明の実施の形態】
本発明による鉛蓄電池は、鉛合金製正極格子の表面近傍に四塩基性硫酸鉛を含む活物質層を、その他の部分には三塩基性硫酸鉛を主体とする活物質層を有する未化成正極板を用いる。その製造法としては、鉛合金製正極格子を希硫酸中に浸した後に、この格子に鉛酸化物および希硫酸を均一に練合して得られた鉛蓄電池用正極ペーストを充填し、熟成を施すことによって、前記構成の未化成正極板を得、これを用いて鉛蓄電池を組み立てる。このようにすることにより、正極に鉛−カルシウム系合金格子を用いた鉛蓄電池の早期容量低下を抑制し、充放電サイクル寿命性能に優れた鉛蓄電池を提供することができる。
【0010】
【実施例】
以下、本発明を実施例に基づいて説明する。
【0011】
まず、ボールミル式鉛粉を水と希硫酸とで均一に混練して正極ペーストを作製した。なお、この正極ペースト中の硫酸根量は鉛粉重量比で5%とした。これらのペーストを常法によって通常のPb−Ca−Sn合金を用いた鋳造格子に充填した。
【0012】
一方、本発明により希硫酸に上記格子を浸したのち、上記正極ペーストを充填した極板も作製した。ここで格子を浸した希硫酸には比重1.40(20℃)のものを用いた。
【0013】
上記2種類の極板を40℃、50℃、60℃および70℃の異なる温度の熟成室中で24時間熟成を施した。なお、熟成室中の相対湿度はいずれの温度においても100%とした。熟成後の極板を50℃乾燥室中(相対湿度25%)で3日間乾燥し、表1に示す8種類の未化成正極板を得た。
【0014】
ここで用いた、極板の大きさは高さ110mm、幅108mm、厚さ2.0mmで、既化活物質密度は約3.5g/cm3 となるようにした。
【0015】
【表1】
これらの未化成正極板4枚/セルと、Pb−Ca−Sn合金格子を用いた通常の未化成負極板5枚/セルとを用いて、JISD5301に規定される自動車用鉛蓄電池36B20(5時間率容量:28Ah)を組み立てた。ついで、これらの電池に電槽化成を施し、5hR放電試験を繰り返し行った。5hR放電試験は5.6Aで終止電圧10.5Vまで放電して放電容量を調べ、5.6Aで放電電気量の135%まで充電する充放電サイクルを繰り返した。試験温度は25℃とした。
【0016】
図1にこれらの電池の5hR放電容量の推移を示す。従来の処方による正極板を用いた電池では、熟成温度が60℃以下であれば(NO.1〜3)充分な初期容量を示すものの比較的早期に容量が低下し、70℃で熟成したもの(NO.4)は初期容量が小さいものの優れた寿命性能を示した。一方、格子を希硫酸に浸した後ペースト充填を施した正極板では、熟成温度が50および60℃のもの(NO.6および7)は充分な初期容量を有しており、かつ優れた寿命性能を示した。ただし、40℃(NO.1,5)および70℃(NO.4,8)の熟成を施したものは、格子の希硫酸処理の有無にかかわらずそれぞれ同様の容量推移を示した。
【0017】
このように充放電サイクル中の容量推移が大きく異なった原因を調査するために、これらの未化成正極板の断面を観察・調査した。これらの未化成正極板の観察結果の概要を図2(a)〜(e)に示す。図2は本実施例に用いた正極板中の活物質組成の分布を示した概略図である。
【0018】
正極格子を希硫酸浸せきせずにペーストを充填した極板のうち、熟成温度が60℃以下の極板(NO.1〜3)は図2(a)に示すように活物質全体の組成が主に3PbO・PbSO4 ・H2 Oとt−PbOからなっていた。また、70℃で熟成した極板(NO.4)は図2(b)に示すように活物質全体の組成が主に4PbO・PbSO4 とt−PbOからなっていた。
【0019】
一方、正極格子を希硫酸に浸せきした後ペーストを充填した極板では、熟成温度が40℃のもの(NO.5)は図2(c)に示すように格子近傍の活物質層はPbO・PbSO4 と3PbO・PbSO4 ・H2 Oとt−PbOからなり、他の部分は3PbO・PbSO4 ・H2 Oとt−PbOからなっていた。熟成温度を50および60℃とした極板(NO.6,7)では図2(d)に示すように格子近傍の活物質層は4PbO・PbSO4 と3PbO・PbSO4 ・H2 Oとt−PbOからなり、他の部分は3PbO・PbSO4 ・H2 Oとt−PbOからなっていた。熟成温度を70℃とした極板(NO.8)では図2(e)に示すように格子近傍の活物質層は4PbO・PbSO4 とPbO・PbSO4 とt−PbOからなり、他の部分は4PbO・PbSO4 とt−PbOからなっていた。
【0020】
上記観察結果を表2にまとめる。なお、表2においてPbO・PbSO4 、3PbO・PbSO4 ・H2 Oおよび4PbO・PbSO4 の略号としてそれぞれ1BS、3BSおよび4BSを用いた。
【0021】
【表2】
これらの観察結果と電池の寿命性能との関係から次のことがわかった。
【0022】
充分な初期容量を有するが早期に容量が低下した極板(NO.1〜3,5)の特徴は格子近傍およびその他大部分の活物質が両者ともに3PbO・PbSO4 ・H2 O(3BS:三塩基性硫酸鉛)からなることであり、初期容量は小さいが長寿命であった極板(NO.4,8)の特徴は格子近傍およびその他大部分の活物質が両者ともに4PbO・PbSO4 (4BS:四塩基性硫酸鉛)からなることであった。一方、充分な初期容量を有しかつ長寿命であった極板(NO.6,7)の特徴は格子近傍の活物質が4PbO・PbSO4 (4BS:四塩基性硫酸鉛)からなり、その他大部分の活物質は3PbO・PbSO4 ・H2 O(3BS:三塩基性硫酸鉛)からなることであった。なお、PbO・PbSO4 (1BS:一塩基性硫酸鉛)およびt−PbOの存在はあまり電池性能に影響しないようであった。
【0023】
これらのことから、本発明により鉛合金製正極格子の表面近傍に四塩基性硫酸鉛を含む活物質層を有し、その他の活物質層は三塩基性硫酸鉛を主体とする未化成正極板を用いた鉛蓄電池(NO.6,7)の初期容量および寿命性能がともに優れたのは次の理由によるものと考えられる。すなわち、未化成活物質の大部分が化成性に優れる三塩基性硫酸鉛からなるために充分な初期性能が得られ、格子と活物質との界面は四塩基性硫酸鉛によって良好に接合されて早期容量低下が起こりにくかったものと考えられる。
【0024】
なお、四塩基性硫酸鉛が生成した熟成温度は格子近傍部では50℃以上であったのに対し、その他の部分では70℃であった。このように、四塩基性硫酸鉛の生成温度がその生成部位によって異なったのは、ペースト中の硫酸量の違いに起因しているものと考えられる。すなわち、格子をあらかじめ希硫酸に浸せきした後にペーストを充填した場合、格子近傍の硫酸量が比較的多くなり、そのことが他の部分よりも四塩基性硫酸鉛の生成温度を低くしたものと考えられる。
【0025】
【発明の効果】
以上、実施例で述べたように、本発明による鉛蓄電池用未化成正極板を用いれば、鉛蓄電池の早期容量低下を防止することができ、寿命性能の改善および品質の安定化がはかれ、その工業的価値は甚だ大なるものである。
【図面の簡単な説明】
【図1】5hR放電容量の推移を示すグラフ
【図2】正極板中の活物質組成の分布を示す概略図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a lead-acid battery using a lead-calcium alloy lattice and a method for manufacturing the same.
[0002]
[Prior art]
Currently, lead-acid batteries are used in various fields including automobiles and industrial use. Among them, the battery for automobiles has the highest demand, and there is a demand for weight reduction, cost reduction, maintenance-free, long life, and quality stabilization.
[0003]
Currently, the lattice alloys used in lead-acid batteries can be broadly classified into lead-antimony and lead-calcium-tin (hereinafter referred to as lead-calcium), and the characteristics of lead-acid batteries differ significantly depending on these lattice alloys. It is known. That is, a lead-acid battery using a positive electrode lattice of a lead-antimony alloy exhibits excellent characteristics in a deep charge / discharge cycle, but has a drawback of large self-discharge. On the other hand, lead-acid batteries using lead-calcium alloy positive electrode grids have excellent self-discharge and less maintenance, such as no need for water replenishment due to less liquid reduction during use. When it repeats, there exists a fault that battery capacity may fall early.
[0004]
The early decrease in capacity of lead-acid batteries using a lead-calcium alloy positive electrode grid occurs because the interface between the grid and the active material preferentially discharges and forms a passive layer when deep discharge is repeated. It is known that This phenomenon is also known to be observed when using a lead-antimony alloy lattice with an antimony content of 1.2% or less, that is, a phenomenon peculiar to a lead alloy lattice substantially free of antimony. is there. In addition, it is known that when an expanded lattice is used for the positive electrode, early capacity reduction is more likely to occur than when a cast lattice is used.
[0005]
Conventionally, lead acid batteries are manufactured as follows. That is, a lead alloy grid is filled with a paste of 60 to 95% of the degree of oxidation (weight% of lead monoxide) paste-diluted with dilute sulfuric acid, and then subjected to aging and drying to produce an unformed electrode plate. To do. A battery assembled using these is formed into a charged battery by forming a battery case with a quantity of electricity of 200 to 400% of the theoretical quantity of electricity of the positive electrode active material.
[0006]
[Problems to be solved by the invention]
When a lead-calcium alloy is used as a positive electrode lattice, a method for improving the above-described aging process, for example, a method for producing tetrabasic lead sulfate in an unactivated active material by aging at high temperature and high humidity has been proposed. ing. However, according to this method, the bondability at the interface between the lattice and the active material is improved and early capacity reduction is suppressed, but tetrabasic lead sulfate has larger crystals than conventional tribasic lead sulfate. There is a drawback that sufficient initial performance cannot be obtained due to poor chemical conversion.
[0007]
[Means for Solving the Problems]
Accordingly, according to the invention of an unformed positive electrode plate for a lead storage battery, comprising an active material mainly composed of tribasic lead sulfate, wherein the active material on the surface portion of the lead alloy positive electrode lattice contains tetrabasic lead sulfate. The above-mentioned problems are solved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The lead acid battery according to the present invention has an active material layer containing tetrabasic lead sulfate in the vicinity of the surface of a lead alloy positive electrode grid, and an unformed positive electrode having an active material layer mainly composed of tribasic lead sulfate in the other portions. Use a plate. As a manufacturing method, after immersing a lead alloy positive electrode grid in dilute sulfuric acid, the grid is filled with a positive paste for a lead storage battery obtained by uniformly kneading lead oxide and dilute sulfuric acid, and aging is performed. By applying, an unformed positive electrode plate having the above-described structure is obtained, and a lead-acid battery is assembled using this. By doing in this way, the early capacity | capacitance fall of the lead storage battery which used the lead-calcium-type alloy grid for the positive electrode is suppressed, and the lead storage battery excellent in the charge / discharge cycle life performance can be provided.
[0010]
【Example】
Hereinafter, the present invention will be described based on examples.
[0011]
First, ball mill type lead powder was uniformly kneaded with water and dilute sulfuric acid to prepare a positive electrode paste. The amount of sulfate radical in this positive electrode paste was 5% in terms of the weight ratio of lead powder. These pastes were filled into a cast lattice using a normal Pb—Ca—Sn alloy by a conventional method.
[0012]
On the other hand, after immersing the lattice in dilute sulfuric acid according to the present invention, an electrode plate filled with the positive electrode paste was also produced. Here, a dilute sulfuric acid immersed in the lattice was used with a specific gravity of 1.40 (20 ° C.).
[0013]
The two types of electrode plates were aged for 24 hours in aging chambers at different temperatures of 40 ° C., 50 ° C., 60 ° C. and 70 ° C. The relative humidity in the aging room was 100% at any temperature. The aged electrode plate was dried in a 50 ° C. drying room (
[0014]
The electrode plate used here had a height of 110 mm, a width of 108 mm, and a thickness of 2.0 mm, and the density of the activated active material was about 3.5 g / cm 3 .
[0015]
[Table 1]
Using these 4 unformed positive electrode plates / cell and 5 ordinary unformed negative electrode plates / cell using a Pb—Ca—Sn alloy lattice, an automotive lead storage battery 36B20 (5 hours) defined in JIS D5301 Rate capacity: 28 Ah). Then, these batteries were subjected to battery case formation, and the 5 hR discharge test was repeated. In the 5hR discharge test, the discharge capacity was examined by discharging to a final voltage of 10.5 V at 5.6 A, and a charge / discharge cycle in which charging was performed to 135% of the amount of discharged electricity at 5.6 A was repeated. The test temperature was 25 ° C.
[0016]
FIG. 1 shows the transition of the 5hR discharge capacity of these batteries. In the battery using the positive electrode plate according to the conventional formulation, if the aging temperature is 60 ° C. or less (NO. 1 to 3), the battery shows a sufficient initial capacity, but the capacity decreases relatively early and is aged at 70 ° C. (NO.4) showed excellent life performance although the initial capacity was small. On the other hand, in the positive electrode plate in which the lattice is immersed in dilute sulfuric acid and then paste-filled, those having an aging temperature of 50 and 60 ° C. (NO. 6 and 7) have a sufficient initial capacity and have an excellent lifetime. Showed performance. However, those subjected to aging at 40 ° C. (NO. 1, 5) and 70 ° C. (NO. 4, 8) showed similar capacity transitions regardless of the presence or absence of dilute sulfuric acid treatment of the lattice.
[0017]
Thus, in order to investigate the cause of the large difference in capacity transition during the charge / discharge cycle, the cross sections of these unformed positive plates were observed and investigated. Outlines of observation results of these unformed positive electrode plates are shown in FIGS. FIG. 2 is a schematic view showing the distribution of the active material composition in the positive electrode plate used in this example.
[0018]
Among electrode plates filled with paste without immersing the positive electrode grid in dilute sulfuric acid, electrode plates having an aging temperature of 60 ° C. or lower (NO. 1 to 3) have a composition of the entire active material as shown in FIG. It consisted mainly 3PbO · PbSO 4 · H 2 O and t-PbO. Further, the electrode plate (NO. 4) aged at 70 ° C. was mainly composed of 4PbO.PbSO 4 and t-PbO as shown in FIG. 2 (b).
[0019]
On the other hand, in the electrode plate in which the positive electrode lattice is immersed in dilute sulfuric acid and then filled with paste, the active material layer in the vicinity of the lattice is PbO.multidot. As shown in FIG. PbSO consists of 4 and 3PbO · PbSO 4 · H 2 O and t-PbO, the other part consisted of 3PbO · PbSO 4 · H 2 O and t-PbO. Aging temperature of 50 and 60 ° C. and the plate (NO.6,7) in the active material layer of the lattice near as illustrated in FIG. 2 (d) 4PbO · PbSO 4 and 3PbO · PbSO 4 · H 2 O and t consists of -PbO, the other part consisted of 3PbO · PbSO 4 · H 2 O and t-PbO. In the electrode plate (NO. 8) having an aging temperature of 70 ° C., the active material layer near the lattice is composed of 4PbO.PbSO 4 , PbO.PbSO 4 and t-PbO as shown in FIG. Consisted of 4PbO · PbSO 4 and t-PbO.
[0020]
The observation results are summarized in Table 2. Incidentally, each of the Table 2 as abbreviations for PbO · PbSO 4, 3PbO · PbSO 4 · H 2 O and 4PbO · PbSO 4 using 1BS, the 3BS and 4BS.
[0021]
[Table 2]
The following was found from the relationship between these observation results and the battery life performance.
[0022]
Sufficient features grid near and most other active material Both 3PbO · PbSO 4 · H 2 O in has an initial capacity electrode plate capacitance early drops (NO.1~3,5) (3BS: The characteristic feature of the electrode plate (NO.4, 8), which has a small initial capacity but a long life, is that the active material in the vicinity of the lattice and most of the other active materials are both 4PbO · PbSO 4. (4BS: tetrabasic lead sulfate). On the other hand, the electrode plate (NO. 6, 7) having a sufficient initial capacity and long life is characterized in that the active material in the vicinity of the lattice is made of 4PbO · PbSO 4 (4BS: tetrabasic lead sulfate). most of the active material 3PbO · PbSO 4 · H 2 O : was to consist of (3BS tribasic lead sulfate). The presence of PbO.PbSO 4 (1BS: monobasic lead sulfate) and t-PbO did not seem to affect the battery performance so much.
[0023]
Therefore, according to the present invention, an unformed positive electrode plate having an active material layer containing tetrabasic lead sulfate in the vicinity of the surface of the lead alloy positive electrode grid according to the present invention, and the other active material layer mainly composed of tribasic lead sulfate. The reason why both the initial capacity and the life performance of the lead-acid battery (NO. 6, 7) using NO is excellent is considered to be as follows. That is, since most of the non-chemically active material is composed of tribasic lead sulfate having excellent chemical conversion properties, sufficient initial performance is obtained, and the interface between the lattice and the active material is well bonded by tetrabasic lead sulfate. It seems that early capacity decline was difficult to occur.
[0024]
The aging temperature at which tetrabasic lead sulfate was generated was 50 ° C. or higher in the vicinity of the lattice, whereas it was 70 ° C. in the other portions. Thus, it is thought that the production | generation temperature of tetrabasic lead sulfate varied with the production | generation site | parts originates in the difference in the amount of sulfuric acids in a paste. In other words, when the paste is filled after diluting sulfuric acid with dilute sulfuric acid in advance, the amount of sulfuric acid in the vicinity of the lattice becomes relatively large, which is considered to have lowered the production temperature of tetrabasic lead sulfate than other parts. It is done.
[0025]
【The invention's effect】
As described above, as described in the examples, if the unformed positive electrode plate for a lead storage battery according to the present invention is used, it is possible to prevent an early capacity decrease of the lead storage battery, and to improve the life performance and stabilize the quality, Its industrial value is tremendous.
[Brief description of the drawings]
FIG. 1 is a graph showing the transition of 5 hR discharge capacity. FIG. 2 is a schematic diagram showing the distribution of active material composition in a positive electrode plate.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03435997A JP3987998B2 (en) | 1997-02-03 | 1997-02-03 | Unformed positive electrode plate for lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03435997A JP3987998B2 (en) | 1997-02-03 | 1997-02-03 | Unformed positive electrode plate for lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10223211A JPH10223211A (en) | 1998-08-21 |
JP3987998B2 true JP3987998B2 (en) | 2007-10-10 |
Family
ID=12411978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03435997A Expired - Fee Related JP3987998B2 (en) | 1997-02-03 | 1997-02-03 | Unformed positive electrode plate for lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3987998B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4984786B2 (en) * | 2006-09-22 | 2012-07-25 | 新神戸電機株式会社 | Lead acid battery |
JP5938254B2 (en) * | 2012-03-30 | 2016-06-22 | 古河電池株式会社 | Negative electrode plate for lead acid battery, method for producing the same and lead acid battery |
KR20210080541A (en) * | 2018-11-15 | 2021-06-30 | 어드밴스드 배터리 컨셉츠, 엘엘씨 | Active materials useful for balancing power and energy density in battery assemblies |
-
1997
- 1997-02-03 JP JP03435997A patent/JP3987998B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10223211A (en) | 1998-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4364460B2 (en) | Negative electrode for lead acid battery | |
JP5712927B2 (en) | Lead acid battery | |
JP2001229920A (en) | Method of manufacturing sealed lead acid battery | |
JP2003123760A (en) | Negative electrode for lead-acid battery | |
JP2003142085A (en) | Lead-acid battery | |
JP3987998B2 (en) | Unformed positive electrode plate for lead acid battery | |
JP5017746B2 (en) | Control valve type lead acid battery | |
JP4186197B2 (en) | Positive electrode plate for lead acid battery | |
JP3764978B2 (en) | Manufacturing method of lead acid battery | |
JP2008071717A (en) | Method of chemical conversion of lead-acid battery | |
JPH10247491A (en) | Lead-acid battery and its manufacture | |
JPH0554881A (en) | Lead-acid battery positive electrode plate and manufacture thereof | |
JP2004327299A (en) | Sealed lead-acid storage battery | |
JPH10302783A (en) | Sealed lead-acid battery and manufacture thereof | |
JP2002075379A (en) | Lead-acid battery | |
JPH11339788A (en) | Lead-acid battery | |
JP4470381B2 (en) | Lead acid battery | |
JPH11126604A (en) | Sealed lead-acid battery and manufacture thereof | |
JP2001210320A (en) | Lead-acid storage battery and its manufacturing method | |
JP2006107984A (en) | Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate | |
JP2002198085A (en) | Lead storage battery | |
JP4066496B2 (en) | Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate | |
JP2773312B2 (en) | Manufacturing method of positive electrode plate for lead-acid battery | |
JP4376514B2 (en) | Positive electrode for lead acid battery and method for producing the same | |
JPH0837001A (en) | Positive electrode plate for lead-acid battery and manufacture of the electrode plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050427 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070703 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 4 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120727 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |