JP5017746B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP5017746B2
JP5017746B2 JP2001119274A JP2001119274A JP5017746B2 JP 5017746 B2 JP5017746 B2 JP 5017746B2 JP 2001119274 A JP2001119274 A JP 2001119274A JP 2001119274 A JP2001119274 A JP 2001119274A JP 5017746 B2 JP5017746 B2 JP 5017746B2
Authority
JP
Japan
Prior art keywords
negative electrode
mass
electrode plate
amount
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001119274A
Other languages
Japanese (ja)
Other versions
JP2002313332A (en
Inventor
一宏 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001119274A priority Critical patent/JP5017746B2/en
Publication of JP2002313332A publication Critical patent/JP2002313332A/en
Application granted granted Critical
Publication of JP5017746B2 publication Critical patent/JP5017746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、制御弁式鉛蓄電池に関するものである。
【0002】
【従来の技術】
従来、鉛蓄電池の負極板には、その特性の向上を目的として添加剤が混入されている。多孔性を維持し低温での効率放電特性を向上し、充放電サイクルの繰り返しによる活物質の収縮を防止することを目的として、リグニンや硫酸バリウム、充電の受け入れ性の向上を目的とした導電性添加剤としてのカーボンが負極活物質に添加されている。
【0003】
近年、密閉形鉛蓄電池市場では、ハイブリッド電気自動車用途としての需要が拡大してきている。そのため、電池の充電効率を向上させ、ブレーキやアクセルオフ時のエネルギーを回生エネルギーとして電池に蓄える技術が電池設計の一つの要点となっている。
【0004】
しかし、回生充電は、大電流での急速充電であり、従来の密閉形鉛蓄電池では、放電生成物である硫酸鉛の結晶形態が、充電によって容易に元に戻すことができない不活性な硫酸鉛へと変化しやすく、急速充電効率が低いといった問題がある。
【0005】
この急速充電効率の向上を目的として負極板の有効面積を増大させる方法もあるが、極板群体積をVcm3とし、負極有効面積をScm2とした場合に、Scm2/Vcm3が3cm-1を超えて大きくなり、とりわけ5cm-1以上になると負極板面積の増大効果は薄れてくる。
【0006】
【発明が解決しようとする課題】
そこで、本発明では、特に極板群体積当たりの負極有効面積の比率が3cm-1以上となった構成においても回生充電時のような急速充電時における充電受入性を向上することを目的とする。
【0007】
【課題を解決するための手段】
前記した課題を解決するために本発明の請求項1に記載の発明は、制御弁式鉛蓄電池の負極活物質に硫酸バリウムを負極活物質に対して2.1質量%〜7質量%かつカーボンを負極活物質に対して0.5質量%〜2.5質量%添加し、極板群体積をVcm 3 とし、負極有効面積をScm 2 とした場合にScm 2 /Vcm 3 を3.0cm -1 〜15.0cm -1 したことを示すものである。
【0008】
また、本発明の請求項2に記載の発明は、請求項1の制御弁式鉛蓄電池において硫酸バリウムの含有量を2.1質量%〜5質量%かつカーボンの添加量を0.5質量%〜2.0質量%としたことを示すものである。
【0010】
【発明の実施の形態】
本発明による制御弁式鉛蓄電池は、実質上Sbを含有しないPb,Pb−Sn,Pb−Ca合金の集電体に活物質を塗布して充填した負極板が使用される。負極の活物質は一酸化鉛と金属鉛粉との混合物である鉛粉を水もしくは水と希硫酸で混練したペーストを乾燥もしくは熟成乾燥したものを用いる。
【0011】
本発明においては負極活物質中に負極活物質質量に対して2.1質量%〜7質量%、特に好ましくは2.1質量%〜5質量%の硫酸バリウムを、および0.5質量%〜2.5質量%、特に好ましくは0.5質量%〜2.0質量%のカーボンを添加した負極活物質を用いる。そしてこの負極活物質を備えた負極板と定法に従って得た正極板およびセパレータとを用いて極板群を構成し、この極板群を用いて本発明の制御弁式鉛蓄電池を得ることができる。
【0012】
負極活物質中に含まれる硫酸バリウム量およびカーボン量を前記した値とすることにより、回生充電の受け入れ効率を改善することができる。さらに極板群体積Vcm3に対する負極有効面積である負極板表面積Scm2の比率Scm2/Vcm3が3cm-1以上の構成の極板群に対して前記した硫酸バリウム量およびカーボン量を適用することになる。ここで極板群体積としては負極板と正極板とがセパレータを介して積層された構成の極板群においては、負極板の片面の面積と電槽収納時の極板群の厚みとの積が適用される。また、正極板と負極板が円形,楕円もしくは長円上に捲回された極板群の場合には、底面積と負極板高さとの積で与えられる。負極有効面積としては、負極板の両面の面積と負極板の枚数の積で与えられる。極板群体積Vcm3当たりの負極有効面積Scm2の比率Scm2/Vcm3が3cm-1以上と大きくなると、負極有効面積を増加することによる回生充電効率の向上が限界に達するので、このような領域でさらに回生充電効率を向上させる場合には前記した負極活物質中に硫酸バリウム量とカーボン量を添加する必要がある。しかしながら前記したような硫酸バリウム量とカーボン量との組み合わせは活物質ペーストと負極集電体との粘着力の低下や活物質ペースト自体の流動性の低下が著しい。従って極板群体積に対する負極有効面積の比率が15cm-1を超えて大きくする場合には活物質ペーストをごく薄く均一に充填することが必要となるが、前記したような活物質ペーストの性状の変化によりペーストを薄く均一に、かつ密着性良く集電体に塗着することが非常に困難となり、製造工程での活物質の脱落や厚み不良や充填量不良が多く発生するために格子に塗着することが困難となり、負極板の製造工程での不良が多くなるといった課題が発生する。従って、極板群体積Vcm3に対する負極有効面積Scm2の比率Scm2/Vcm3は3.0cm-1〜15.0cm-1が本発明の効果を得る上で最も好ましい。
【0013】
【実施例】
次に本発明の実施例および比較例の試験電池を作製し、回生充電をシュミレートした急速充電時の充電受入性を評価した。
【0014】
試験電池に用いる正極板はPb−2.0質量%Sn合金の圧延箔からなる集電体に一酸化鉛を主体とした鉛粉を水および希硫酸で混練して得たペーストを塗布して作製した。一方、負極板はPb−1.0質量%Sn合金の圧延箔からなる集電体に一酸化鉛を主体とした鉛粉と希硫酸および表1に示す量の硫酸バリウムおよびカーボンを添加するとともに、リグニンを負極活物質に対し0.3質量%に相当する量を添加して得たペーストを塗着して作製した。
【0015】
なお、負極に用いるペースト中の硫酸バリウムの添加量が化成後の活物質質量に対して5.0質量%を超えて多く、もしくは、カーボンの添加量が化成後の活物質質量に対して2.0質量%を超えて多くなると、ペーストの粘着力の低下、流動性の低下が著しく、ペーストを集電体に塗着することが困難となり、負極板の製造工程での不良が多くなるといった問題が発生する。そのため、製造上、カーボンの添加量は2.0質量%以下、硫酸バリウムの添加量は5.0質量%以下とすることが好ましい。
【0016】
前記した正極板とガラスマットセパレータおよび種々の添加量のカーボンおよび硫酸バリウムを含有する活物質を備えた負極板を用いて極板群を作製した。なお、正極および負極の活物質充填量を変化させることにより種々の厚みの極板を準備し、種々の厚みのセパレータとを組み合わせることにより、極板群体積Vcm3に対する負極有効面積Scm2の比率Scm2/Vcm3を1.0cm-1〜5.0cm-1まで変化させた。
【0017】
これらの上記した極板とガラス繊維を主体としたセパレータを介して構成した極板群を電槽内に挿入し、電槽蓋を接着した。その後、5g/リットルの硫酸ナトリウムを含有する希硫酸電解液を注液後、電槽化成することにより単セルで構成される制御弁式鉛蓄電池(以下、試験電池と云う)を得た。これらの試験電池の構成を表1,表2および表3に示す。
【0018】
【表1】

Figure 0005017746
【0019】
【表2】
Figure 0005017746
【0020】
【表3】
Figure 0005017746
【0021】
表1〜表3に示した試験電池の充電受入性を評価するために急速充電試験を行った。この急速充電試験方法を以下に示す。
▲1▼最大電流が0.4CAの電流で、最大電池電圧を2.5Vとした定電圧充電により、電池を満充電状態とする。
▲2▼電池温度の調整として25℃の雰囲気下に12時間、静置する。
▲3▼0.2CA放電により充電状態(以下、SOC。満充電状態がSOC=100%に相当)を調整し、SOCを80%とする。
▲4▼25℃の雰囲気下に30分間放置する。
▲5▼最大電流を5CA、最大電池電圧を2.5Vとなる定電圧充電を20秒間行い、充電電流の積算により充電電気量(C,Ah)を算出する。
▲6▼上記で求められた充電電気量の充電最大電流5CA×20秒間に相当する最大充電電気量(C0,Ah)に対する比率((C/C0)×100)を急速充電特性(%)として求めた。すなわち、急速充電特性100%は20秒間、最大電流(5CA)で充電されたことを示す。また充電受入性が0%と云うのは全く充電が行われなかったことを示す。
【0022】
それぞれの試験電池での急速充電特性を図1,図2および図3に示す。
【0023】
これらの結果により、硫酸バリウムの添加量が2.0質量%以下ではカーボンの添加量の増加による急速充電特性向上は小さく、また、カーボンの添加量が0.3質量%では、硫酸バリウムの添加量の増加による急速充電特性向上が小さい。それに対し、カーボンの添加量を0.5質量%以上とし、さらに硫酸バリウムの添加量を2.1質量%以上とすることにより、急速充電特性を改善することができる。カーボンおよび硫酸バリウムの添加量の上限に関してはそれぞれ2.5質量%および7質量%にすることが好ましい。添加量をこれらの値以上に増加させても急速充電特性はさらに向上することはない。また、ペーストの性状の変化により、集電体に均一に密着性良く塗着することが困難となるので、このような製造上の課題を発生させないために、カーボン添加量は負極活物質に対して0.5質量%〜2.0質量%、硫酸バリウム添加量は負極活物質量に対して2.1質量%〜5質量%の範囲が特に好ましい。
【0024】
また図1〜図3からわかるように、単純にカーボン添加量を増加させただけでは、活物質間の導電性の向上にはなるものの、急速充電にとって必要な、活物質の反応性は変わらず、急速充電特性は向上されない。また、硫酸バリウム添加量のみを増加させた場合では、活物質は一般的に云われるように微細化されて、反応性は向上するものの、活物質の有効面積である表面積の増加により、活物質を取り巻く導電性の添加剤が少ない状態では、活物質同士の十分な導電性が得られず、急速充電特性の向上は得られないのではないかと推測される。
【0025】
また、極板群体積Vcm3に対する負極有効面積Scm2の比率Scm2/Vcm3値に関しては、例えば硫酸バリウム添加量5質量%,カーボン添加量0.3質量%である電池A4,B4およびC4を比較すれば、Scm2/Vcm3値が1.0cm-1〜3.0cm-1に増加するにつれて急速充電特性は向上しているが、このScm2/Vcm3値が3.0cm-1〜5.0cm-1に増加しても殆ど急速充電特性の改善は認められない。このようなカーボン量と硫酸バリウム量の組み合わせではScm2/Vcm3値が3.0cm-1以上の領域に負極板の表面積を増加させても急速充電特性はもはや増加することはない。
【0026】
一方、本発明のカーボン量および硫酸バリウム量の範囲であればScm2/Vcm3値を3.0cm-1以上の領域であってもScm2/Vcm3値の増加による急速充電特性の改善効果を得ることができる。従って、本発明は特にScm2/Vcm3値が3.0cm-1以上とした場合に適用すれば極めて顕著な効果を得ることができる。
【0027】
【発明の効果】
以上のように本発明の構成によれば回生充電において急速充電が行われても極めて優れた充電受入性を備えた制御弁式鉛蓄電池を提供することができ、従って工業上、極めて有用である。
【図面の簡単な説明】
【図1】極板群体積Vcm3と負極有効面積Scm2の比率Scm2/Vcm3=1.0cm-1での急速充電特性を示す図
【図2】極板群体積Vcm3と負極有効面積Scm2の比率Scm2/Vcm3=3.0cm-1での急速充電特性を示す図
【図3】極板群体積Vcm3と負極有効面積Scm2の比率Scm2/Vcm3=5.0cm-1での急速充電特性を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valve-regulated lead-acid battery.
[0002]
[Prior art]
Conventionally, an additive is mixed in the negative electrode plate of a lead storage battery for the purpose of improving its characteristics. Conductivity aimed at improving the acceptability of lignin, barium sulfate, and charge for the purpose of maintaining the porosity and improving the efficient discharge characteristics at low temperature and preventing the shrinkage of the active material due to repeated charge and discharge cycles Carbon as an additive is added to the negative electrode active material.
[0003]
In recent years, the demand for hybrid electric vehicle applications has been expanding in the sealed lead-acid battery market. Therefore, a technology for improving the charging efficiency of the battery and storing the energy at the time of brake or accelerator off in the battery as regenerative energy is one of the main points of the battery design.
[0004]
However, regenerative charging is rapid charging with a large current, and in conventional sealed lead-acid batteries, the crystalline form of lead sulfate, which is a discharge product, is inactive lead sulfate that cannot be easily restored by charging. There is a problem that it is easy to change and the quick charging efficiency is low.
[0005]
There is also a method of increasing the effective area of the negative electrode plate for the purpose of improving the rapid charging efficiency, but when the electrode plate group volume is Vcm 3 and the negative electrode effective area is Scm 2 , Scm 2 / Vcm 3 is 3 cm −. The effect of increasing the area of the negative electrode plate is diminished when it exceeds 1 and, in particular, 5 cm -1 or more.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention aims to improve the charge acceptability at the time of rapid charging such as at the time of regenerative charging even in the configuration in which the ratio of the negative electrode effective area per electrode plate group volume is 3 cm −1 or more. .
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention is characterized in that barium sulfate is used as a negative electrode active material of a control valve type lead-acid battery and is 2.1% by mass to 7% by mass with respect to the negative electrode active material. Is added to the negative electrode active material by 0.5 mass% to 2.5 mass% , the electrode plate group volume is Vcm 3 , and the negative electrode effective area is Scm 2 , Scm 2 / Vcm 3 is 3.0 cm −. 1 to 15.0 cm -1 is indicated.
[0008]
The invention according to claim 2 of the present invention is the control valve type lead-acid battery according to claim 1, wherein the barium sulfate content is 2.1 mass% to 5 mass% and the carbon addition amount is 0.5 mass%. It shows that it was set to -2.0 mass%.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the control valve type lead-acid battery according to the present invention, a negative electrode plate in which an active material is applied and filled on a current collector of Pb, Pb-Sn, Pb-Ca alloy substantially not containing Sb is used. The negative electrode active material is a dry or aged dry paste prepared by kneading lead powder, which is a mixture of lead monoxide and metal lead powder, with water or water and dilute sulfuric acid.
[0011]
In the present invention, the negative electrode active material contains 2.1% by mass to 7% by mass, particularly preferably 2.1% by mass to 5% by mass of barium sulfate, and 0.5% by mass to 0.5% by mass with respect to the mass of the negative electrode active material. A negative electrode active material added with 2.5% by mass, particularly preferably 0.5% by mass to 2.0% by mass of carbon is used. And the negative electrode plate provided with this negative electrode active material, the positive electrode plate obtained according to the usual method, and the separator can be used to form an electrode plate group, and the control valve type lead-acid battery of the present invention can be obtained using this electrode plate group. .
[0012]
By setting the amount of barium sulfate and the amount of carbon contained in the negative electrode active material to the above-described values, the efficiency of receiving regenerative charging can be improved. Further, the above-described barium sulfate amount and carbon amount are applied to the electrode plate group having a configuration in which the ratio Scm 2 / Vcm 3 of the negative electrode plate surface area Scm 2 , which is the negative electrode effective area with respect to the electrode plate volume Vcm 3 , is 3 cm −1 or more. It will be . Here, as the electrode plate group volume, in the electrode plate group in which the negative electrode plate and the positive electrode plate are laminated via the separator, the product of the area of one side of the negative electrode plate and the thickness of the electrode plate group when the battery case is accommodated. Applies. In the case of an electrode plate group in which the positive electrode plate and the negative electrode plate are wound on a circle, an ellipse, or an ellipse, it is given by the product of the bottom area and the negative electrode plate height. The negative electrode effective area is given by the product of the area of both surfaces of the negative electrode plate and the number of negative electrode plates. When the ratio Scm 2 / Vcm 3 of the negative electrode effective area Scm 2 per electrode group volume Vcm 3 increases to 3 cm −1 or more, the improvement of the regenerative charging efficiency by increasing the negative electrode effective area reaches the limit. In order to further improve the regenerative charging efficiency in such a region, it is necessary to add an amount of barium sulfate and an amount of carbon to the negative electrode active material. However, the combination of the amount of barium sulfate and the amount of carbon as described above significantly reduces the adhesion between the active material paste and the negative electrode current collector and the fluidity of the active material paste itself. Therefore, when the ratio of the negative electrode effective area to the electrode plate group volume exceeds 15 cm −1 , it is necessary to fill the active material paste very thinly and uniformly. Due to the change, it becomes very difficult to apply the paste to the current collector thinly, uniformly and with good adhesion, and the active material will fall off in the manufacturing process, resulting in many thickness defects and poor filling amounts. It becomes difficult to wear, and the problem that the defect in the manufacturing process of a negative electrode plate increases will generate | occur | produce. Therefore, the ratio Scm 2 / Vcm 3 of the negative electrode effective area Scm 2 against the electrode plate group volume Vcm 3 is most preferable in terms of 3.0cm -1 ~15.0cm -1 to obtain the effects of the present invention.
[0013]
【Example】
Next, test batteries of Examples and Comparative Examples of the present invention were prepared, and charge acceptability at the time of rapid charging in which regenerative charging was simulated was evaluated.
[0014]
The positive electrode plate used for the test battery was obtained by applying a paste obtained by kneading lead powder mainly composed of lead monoxide with water and dilute sulfuric acid to a current collector made of a rolled foil of Pb-2.0 mass% Sn alloy. Produced. On the other hand, the negative electrode plate is obtained by adding lead powder mainly composed of lead monoxide and dilute sulfuric acid and the amounts of barium sulfate and carbon shown in Table 1 to a current collector made of a rolled foil of Pb-1.0 mass% Sn alloy. A paste obtained by adding lignin in an amount corresponding to 0.3% by mass with respect to the negative electrode active material was applied.
[0015]
In addition, the addition amount of barium sulfate in the paste used for the negative electrode exceeds 5.0% by mass with respect to the active material mass after chemical conversion, or the addition amount of carbon is 2 with respect to the active material mass after chemical conversion. When the amount exceeds 0.0% by mass, the adhesive strength and fluidity of the paste are significantly reduced, making it difficult to apply the paste to the current collector, and increasing the number of defects in the negative electrode plate manufacturing process. A problem occurs. Therefore, it is preferable that the amount of carbon added is 2.0% by mass or less and the amount of barium sulfate added is 5.0% by mass or less in production.
[0016]
An electrode plate group was prepared using the above-described positive electrode plate, glass mat separator, and negative electrode plate provided with an active material containing various addition amounts of carbon and barium sulfate. The ratio of the negative electrode effective area Scm 2 to the electrode plate group volume Vcm 3 by preparing electrode plates of various thicknesses by changing the active material filling amount of the positive electrode and the negative electrode and combining with separators of various thicknesses. the scm 2 / Vcm 3 was changed to 1.0cm -1 ~5.0cm -1.
[0017]
The electrode plate group constituted through the above-described electrode plate and a separator mainly composed of glass fiber was inserted into the battery case, and the battery case lid was adhered. Thereafter, a dilute sulfuric acid electrolyte solution containing 5 g / liter of sodium sulfate was injected, and then a battery cell was formed to obtain a control valve type lead storage battery (hereinafter referred to as a test battery) composed of a single cell. Tables 1, 2 and 3 show the configurations of these test batteries.
[0018]
[Table 1]
Figure 0005017746
[0019]
[Table 2]
Figure 0005017746
[0020]
[Table 3]
Figure 0005017746
[0021]
A quick charge test was conducted to evaluate the charge acceptance of the test batteries shown in Tables 1 to 3. This rapid charge test method is shown below.
(1) The battery is fully charged by constant voltage charging with a maximum current of 0.4 CA and a maximum battery voltage of 2.5V.
(2) As the battery temperature is adjusted, it is allowed to stand in an atmosphere of 25 ° C. for 12 hours.
(3) The state of charge (hereinafter referred to as SOC; the fully charged state corresponds to SOC = 100%) is adjusted by 0.2 CA discharge, and the SOC is set to 80%.
(4) Leave in an atmosphere at 25 ° C. for 30 minutes.
(5) Constant voltage charging with a maximum current of 5 CA and a maximum battery voltage of 2.5 V is performed for 20 seconds, and the charge electricity amount (C, Ah) is calculated by integrating the charging current.
(6) The ratio ((C / C 0 ) × 100) of the charging charge obtained above to the maximum charging charge (C 0 , Ah) corresponding to the maximum charging current of 5 CA × 20 seconds is expressed as a rapid charge characteristic (% ). That is, 100% of the quick charge characteristic indicates that the battery is charged with the maximum current (5 CA) for 20 seconds. A charge acceptability of 0% indicates that no charge was performed.
[0022]
The quick charge characteristics of each test battery are shown in FIGS.
[0023]
From these results, when the addition amount of barium sulfate is 2.0% by mass or less, the rapid charge characteristic improvement due to the increase in the addition amount of carbon is small, and when the addition amount of carbon is 0.3% by mass, the addition of barium sulfate There is little improvement in quick charge characteristics due to the increase in quantity. On the other hand, when the amount of carbon added is 0.5% by mass or more and the amount of barium sulfate added is 2.1% by mass or more, the quick charge characteristics can be improved. With respect to the upper limits of the amounts of carbon and barium sulfate added, it is preferable to set them to 2.5% by mass and 7% by mass, respectively. Even if the addition amount is increased to more than these values, the rapid charge characteristics are not further improved. In addition, since it becomes difficult to uniformly apply the current collector to the current collector due to the change in the properties of the paste, the amount of carbon added is less than the amount of the negative electrode active material in order to prevent such manufacturing problems. 0.5% by mass to 2.0% by mass, and the amount of barium sulfate added is particularly preferably in the range of 2.1% by mass to 5% by mass with respect to the amount of the negative electrode active material.
[0024]
As can be seen from FIGS. 1 to 3, simply increasing the amount of carbon added improves the conductivity between the active materials, but the reactivity of the active materials necessary for rapid charging remains unchanged. The quick charge characteristics are not improved. In addition, when only the amount of barium sulfate added is increased, the active material is refined as is generally said and the reactivity is improved, but the active material is increased by increasing the surface area which is the active area of the active material. In a state where there are few conductive additives surrounding the material, it is presumed that sufficient conductivity between the active materials cannot be obtained, and quick charge characteristics cannot be improved.
[0025]
As for the negative electrode effective area Scm 2 ratio Scm 2 / Vcm 3 values for the electrode plate group volume Vcm 3, for example, barium sulfate addition amount 5 wt%, a carbon amount 0.3 wt% cell A4, B4 and C4 the comparison, Scm 2 / rapid charge characteristics as Vcm 3 value is increased 1.0cm -1 ~3.0cm -1 is improved, but the Scm 2 / Vcm 3 values 3.0 cm -1 Almost no improvement in quick charge characteristics is observed even when increased to ˜5.0 cm −1 . With such a combination of the amount of carbon and the amount of barium sulfate, even if the surface area of the negative electrode plate is increased in the region where the Scm 2 / Vcm 3 value is 3.0 cm −1 or more, the rapid charge characteristics no longer increase.
[0026]
On the other hand, within the range of the carbon amount and barium sulfate amount of the present invention, even if the Scm 2 / Vcm 3 value is in the region of 3.0 cm −1 or more, the effect of improving the rapid charge characteristics by increasing the Scm 2 / Vcm 3 value. Can be obtained. Therefore, if the present invention is applied particularly when the Scm 2 / Vcm 3 value is 3.0 cm −1 or more, a very remarkable effect can be obtained.
[0027]
【Effect of the invention】
As described above, according to the configuration of the present invention, it is possible to provide a control valve type lead-acid battery having an extremely excellent charge acceptability even when rapid charging is performed in regenerative charging, and thus is extremely useful industrially. .
[Brief description of the drawings]
[1] the ratio of the electrode plate group volume Vcm 3 and the negative electrode effective area Scm 2 Scm 2 / Vcm 3 = 1.0cm FIGS Figure 2 showing a quick charge characteristic at -1 electrode plate group volume Vcm 3 and the negative electrode effectively FIG. 3 is a graph showing rapid charge characteristics at a ratio Scm 2 / Vcm 3 = 3.0 cm −1 of area Scm 2. FIG. 3 is a ratio Scm 2 / Vcm 3 = 5 of electrode plate volume Vcm 3 and negative electrode effective area Scm 2 . Diagram showing fast charge characteristics at 0 cm -1

Claims (2)

負極活物質に硫酸バリウムを負極活物質に対して2.1質量%〜7質量%かつカーボンを負極活物質に対して0.5質量%〜2.5質量%添加し、極板群体積をVcm 3 とし、負極有効面積をScm 2 とした場合にScm 2 /Vcm 3 を3.0cm -1 〜15.0cm -1 したことを特徴とする制御弁式鉛蓄電池。Barium sulfate is added to the negative electrode active material in an amount of 2.1 to 7% by mass with respect to the negative electrode active material and carbon is added in an amount of 0.5 to 2.5% by mass with respect to the negative electrode active material. and Vcm 3, valve-regulated lead-acid battery, characterized in that the Scm 2 / Vcm 3 was 3.0cm -1 ~15.0cm -1 in the case where the negative electrode effective area and Scm 2. 前記硫酸バリウムの含有量を2.1質量%〜5質量%、前記カーボンの添加量を0.5質量%〜2.0質量%としたことを特徴とする請求項1に記載の制御弁式鉛蓄電池。  2. The control valve system according to claim 1, wherein the barium sulfate content is 2.1 mass% to 5 mass%, and the carbon addition amount is 0.5 mass% to 2.0 mass%. Lead acid battery.
JP2001119274A 2001-04-18 2001-04-18 Control valve type lead acid battery Expired - Lifetime JP5017746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119274A JP5017746B2 (en) 2001-04-18 2001-04-18 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119274A JP5017746B2 (en) 2001-04-18 2001-04-18 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2002313332A JP2002313332A (en) 2002-10-25
JP5017746B2 true JP5017746B2 (en) 2012-09-05

Family

ID=18969525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119274A Expired - Lifetime JP5017746B2 (en) 2001-04-18 2001-04-18 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP5017746B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317345A (en) * 2004-04-28 2005-11-10 Shin Kobe Electric Mach Co Ltd Lead-acid storage battery
JP2005317501A (en) * 2004-11-24 2005-11-10 Shin Kobe Electric Mach Co Ltd Engine drive system
JP4970348B2 (en) * 2008-05-29 2012-07-04 古河電池株式会社 Negative electrode active material mixture for lead-acid batteries
JP6056454B2 (en) * 2012-12-21 2017-01-11 株式会社Gsユアサ Lead acid battery
EP3035433B1 (en) 2014-12-18 2020-02-19 GS Yuasa International Ltd. Lead-acid battery
JP6665426B2 (en) * 2015-06-05 2020-03-13 日立化成株式会社 Lead storage battery
WO2017098666A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead storage battery
WO2017098665A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead acid storage battery
JP6791326B2 (en) * 2019-09-04 2020-11-25 昭和電工マテリアルズ株式会社 Lead-acid battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2729644B2 (en) * 1988-12-21 1998-03-18 昭和電工株式会社 Negative electrode for lead-acid battery
JP2001023621A (en) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for lead-acid battery

Also Published As

Publication number Publication date
JP2002313332A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP4983304B2 (en) Energy conversion device
JP4364460B2 (en) Negative electrode for lead acid battery
JP2007012596A (en) Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
Vangapally et al. Lead-acid batteries and lead–carbon hybrid systems: A review
JP2008243493A (en) Lead acid storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP4492024B2 (en) Lead acid battery
JP4635325B2 (en) Control valve type lead acid battery
JP5396216B2 (en) Lead acid battery
JP4433593B2 (en) Control valve type lead acid battery
JP3835093B2 (en) Sealed lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
CN107068983A (en) A kind of lead carbon battery, lead carbon battery negative plate and preparation method thereof
CN103413919B (en) Superbattery negative plate and manufacturing method thereof
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP2003346790A (en) Lead acid storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP3013623B2 (en) Sealed lead-acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2000149932A (en) Lead-acid battery and its manufacture
JP4239510B2 (en) Lead-acid battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5017746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term