JP4239510B2 - Lead-acid battery and manufacturing method thereof - Google Patents

Lead-acid battery and manufacturing method thereof Download PDF

Info

Publication number
JP4239510B2
JP4239510B2 JP2002225794A JP2002225794A JP4239510B2 JP 4239510 B2 JP4239510 B2 JP 4239510B2 JP 2002225794 A JP2002225794 A JP 2002225794A JP 2002225794 A JP2002225794 A JP 2002225794A JP 4239510 B2 JP4239510 B2 JP 4239510B2
Authority
JP
Japan
Prior art keywords
positive electrode
barium sulfate
active material
lead
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002225794A
Other languages
Japanese (ja)
Other versions
JP2004071210A (en
JP2004071210A5 (en
Inventor
哲志 梶川
靖之 吉原
亜矢子 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002225794A priority Critical patent/JP4239510B2/en
Publication of JP2004071210A publication Critical patent/JP2004071210A/en
Publication of JP2004071210A5 publication Critical patent/JP2004071210A5/ja
Application granted granted Critical
Publication of JP4239510B2 publication Critical patent/JP4239510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池およびその製造法に関し、特に正極板の改良に関するものである。
【0002】
【従来の技術】
鉛蓄電池は、現在、自動車用バッテリーとしてセルモータ駆動用や車内電気機器用電源として最も広く使われている。そして、近年、鉛蓄電池に硫酸バリウムを添加することにより、各種の電池特性を改善することが提案されている。
【0003】
例えば、特開2000−268797号公報に記載されているように長期間にわたってトリクル充電をされるようなスタンバイユースの密閉型鉛蓄電池において、負極板表面に硫酸バリウムを塗着したり、硫酸バリウムを分散した不織布を負極板とセパレータの間に設けることによって、硫酸バリウム粒子を硫酸鉛の結晶核にし、負極の硫酸鉛の粗大化を抑制することにより、高率放電特性の劣化を防止するものがある。
【0004】
一方、正極側においても特開平8−222224号公報に記載されているように、耐過充電寿命性能に優れた密閉型鉛蓄電池を提供するために正極活物質にバリウムを添加したものが提案されている。また、特開2000−353518号公報に記載されているように、早期容量劣化を防止するために、格子表面を硫酸バリウム含有層で被覆することによって、格子表面近くに存在させた硫酸バリウム粒子が格子周囲の活物質を軟化させて、活物質の膨張収縮の際に活物質と格子との隙間の発生を防ぐことによって格子と活物質との密着性を得るというものが提案されている。
【0005】
ところで近年、自動車用バッテリー以外に、電気自動車およびハイブリッド電気自動車(HEV)のモーター用電源として鉛蓄電池の採用が検討されている。
【0006】
このHEV用途では、減速時に回生エネルギーで充電し発進及び加速時に放電されるという繰り返し充放電が行われるため、鉛蓄電池にはハイレート電流によるパルス充放電の繰り返し特性や保存特性を含めた寿命特性が強く望まれる。しかしながら、HEV用途の電池、特に高密度に活物質を充填した正極板を使用した鉛蓄電池や電極積層群を高加圧状態で組み立てた密閉型鉛蓄電池では、高温環境下に長期間放置された場合、自己放電により正極の表面層に不活性な硫酸鉛の結晶が蓄積し、放置時間の長いものは表面層から内部の正極活物質層にまで緻密な硫酸鉛の結晶が形成され、その結果として、充電効率が下がり、高温保存後の容量回復性が低下するという問題があった。
【0007】
【発明が解決しようとする課題】
しかしながら、前述した従来の硫酸バリウムの添加方法では、上述の正極活物質の表面部における不活性な硫酸鉛の結晶の形成を抑制することは困難であった。
【0008】
従って、本発明はこの課題を解決するものであり、本発明の目的は、正極の表面部における硫酸鉛結晶の形成を抑制することによって、高温環境下における長期保存後の容量回復性を改善した鉛蓄電池を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明は、正極と負極とをセパレータを介して積層した鉛蓄電池において、前記正極活物質に総量で0.5質量%以上、5質量%以下の硫酸バリウムが含有されており、前記正極活物質の表面に前記硫酸バリウムが濃縮し、かつ内部に向かって傾斜して疎になっているとしたものであり、これにより、特に正極表面における硫酸鉛活物質粒子の粗大化を抑制でき、結果として高温環境下で長期保存後の容量回復性を改善した鉛蓄電池を提供できる。
【0010】
【発明の実施の形態】
本発明の請求項1に記載の発明は、正極活物質を格子体に保持した正極と負極とをセパレータを介して積層した鉛蓄電池において、前記正極活物質に総量で0.5質量%以上、5質量%以下の硫酸バリウムが含有されており、前記正極活物質の表面に前記硫酸バリウムが濃縮し、かつ内部に向かって傾斜して疎になっているとしたものであり、結晶の格子定数が硫酸鉛に類似した硫酸バリウムを用いることによって、二酸化鉛が硫酸鉛として析出する時に硫酸バリウム粒子が結晶核として作用し正極表面における硫酸鉛結晶の粗大化を抑制できる。
【0011】
また、前記表面に硫酸バリウムを濃させたのは、この部分で特に多く硫酸鉛が析出することに対応させたものである。活物質中に硫酸バリウムを添加して活物質層を密にした場合には活物質全体が軟化し、かえって寿命特性を低下させるからである。
【0012】
前記硫酸バリウムは総量で5質量%以上、5質量%以下が好ましい。0.5質量%より少なければ表面の硫酸鉛の蓄積に対して効果が少ない。逆に、5質量%より多ければ含有層の抵抗成分が増えて好ましくない。これは、硫酸バリウムの過剰な添加が極板の導電性を下げ、あるいは、活物質の砂状化を引き起こして正極板からの活物質脱落の原因になるからである。
【0013】
なお、硫酸バリウムの平均粒径は0.1μm〜1μmであれば結晶核としての効果が得られ、硫酸鉛の結晶粗大化を抑制できる。粒径が小さい場合には結晶核としての効果が得られないからであり、1μmより大きい場合には、均一な分散ができないからである。
【0014】
また、請求項2に記載の発明は、前記硫酸バリウムの含有は硫酸バリウムを外部からしみ込ませるようにして形成されるとしたものであり、浸漬、塗着等の方法で硫酸バリウムを含有させることができる。
【0015】
前記硫酸バリウムの含有は、硫酸バリウム粒子を正極活物質層表面に固着させたものあるいはその表面近傍に埋め込んだもの、または、鉛粉と硫酸バリウムからなるスラリー混合物を正極表面に塗着して形成したものでもよい。
【0016】
また、請求項3に記載の発明は、前記硫酸バリウムの含有が、硫酸バリウムを含有させたペースト紙が貼付されたものであるとしたものであり、硫酸バリウム層を正極表面に確実に保持でき、エキスパンド格子体の変形を防止して格子体の枠無し端部における活物質ペーストの脱落を防止するという作用も有する。
【0017】
ペースト紙はクラフトパルプと耐水強化剤からなる沙紙で、その片面に硫酸バリウム層が形成され、硫酸バリウムが含有された面を正極板の表面と接触するようにして貼り付けられる。また、両面に硫酸バリウム層を形成して、そのいずれかを正極板の表面に貼り付けてもよい。
【0018】
硫酸バリウムを保持するペースト紙の厚みは0.02mm〜0.1mmであることが好ましい。ペースト紙の厚みが薄すぎると硫酸バリウム層を保持するのに充分なペースト紙の強度が得られず、薄い紙に多量の硫酸バリウムを形成するのは浸漬、乾燥、搬送などの工程が煩雑になり、また搬送による脱落の恐れがあるので好ましくない。一方、ペースト紙が厚すぎると活物質量が相対的に減少して容量低下となるので好ましくない。
【0019】
また、請求項4に記載の発明は、正極と負極とをセパレータを介して積層した鉛蓄電池の製造方法において、正極格子体に活物質ペーストを充填後、水または硫酸溶液中で分散させた硫酸バリウムの懸濁液を前記正極活物質に塗工するか、もしくは硫酸バリウムを含有する正極活物質ペーストを前記正極活物質に塗工することにより、正極の表面部に硫酸バリウムを含有させるとしたものであり、これにより、活物質上に硫酸バリウム含有させることができる。
【0020】
また、請求項5に記載の発明は、正極と負極とをセパレータを介して積層した鉛蓄電池の製造方法において、水または硫酸溶液中で分散させた硫酸バリウムの懸濁液でペースト紙に塗工するか、もしくは硫酸バリウムを含有する正極活物質ペーストをペースト紙に塗工することにより、前記ペースト紙に硫酸バリウム層を形成した後に、前記ペースト紙を正極表面に貼付することにより正極の表面部に硫酸バリウム含有層を設けるとしたものであり、これにより、活物質層の上に硫酸バリウム含有層を形成して保持することができる。
【0021】
ペースト紙に硫酸バリウム含有物を充填する方法としては、硫酸バリウムの懸濁液で塗工または懸濁液に浸漬して得る方法、濡れたペースト紙に硫酸バリウム粉末を散布する方法、ペースト紙の表面に硫酸バリウムと鉛粉とのペーストを塗布して得る方法等があるがこれに限られない。
【0022】
【実施例】
以下、本発明の実施例を説明する。
【0023】
(実施例1)
まず、正極板について以下のように作製した。厚さ10mmの鉛−1.2質量%錫−0.08質量%カルシウム合金の圧延シートをエキスパンド加工して、エキスパンド格子体を作製した。次に、酸化度60〜80%酸化鉛を主体とする鉛粉に水と硫酸を加えて練合して正極活物質鉛ペーストを作製した。この鉛ペーストを前記格子体に片側約2mmの厚さに塗着後、次いで活物質層表面に平均粒径0.2μmの硫酸バリウム粉末(以下の本発明に使用)を散布して、片面7μmの硫酸バリウム含有層を形成した。この硫酸バリウム含有層に厚さ0.025mmのペースト紙を貼付して、熟成、乾燥、化成を行って正極板を作製した。なお、散布する硫酸バリウムの含有量は活物質に対して1質量%とした。
【0024】
負極板は以下のように製作した。鉛−0.8質量%錫−0.08質量%カルシウム合金の圧延シートをエキスパンド加工して、エキスパンド格子体を作製した。正極と同じ鉛粉に負極添加物を入れ、水と硫酸を加えて負極活物質鉛ペーストを作製した。この鉛ペーストをエキスパンド格子体に充填後、ペースト紙を負極表面に貼付し、熟成、乾燥、化成を行って負極板を作製した。
【0025】
この正極板と負極板を繊維径3〜5μmと0.5〜1.0μのガラス繊維を主体とするシート状に形成したガラスマットセパレータを介して交互に積層した極群を、電槽内に挿入し、電槽蓋を接着し、硫酸ナトリウムを10g/L含む比重1.30の希硫酸電解液を注液し、安全弁を装着して定格12V60Ahの密閉型鉛蓄電池を作製し、実施例電池1を得た。
【0026】
なお、以下の比較例及び実施例は、実施例1と同様の条件で作製したものである。
【0027】
(比較例1) 実施例1の正極において硫酸バリウムを含有していない電池を作製し、比較電池1を得た。
【0028】
(比較例2) 硫酸バリウムを鉛に対して0.1%含有するスラリーを正極格子に100μの厚さに塗布した従来品の電池を作製し、比較例電池2を得た。
【0029】
(比較例3) 活物質中に硫酸バリウムを0.1%添加した正極活物質ペーストを正極格子に片側約2mmの厚さに充填した従来品の電池を作製し、比較例電池3を得た。
【0030】
(実施例2) 硫酸バリウムを0.1%含有する正極活物質ペーストを正極格子に充填した後に、正極表面に硫酸バリウム粉末を散布した電池を作製し、実施例電池2を得た。
【0031】
(実施例3) 活物質中に硫酸バリウムを0.1%添加した正極活物質ペーストを正極格子に充填した後に、水に硫酸バリウムを分散した濃度15%の懸濁液を正極表面に塗工することによって、表面部に硫酸バリウムを含有させた電池を作製し、実施例電池3を得た。
【0032】
(実施例4) 活物質中に硫酸バリウムを0.1%添加した正極活物質ペーストを正極格子に充填した後に、正極表面を希硫酸中に硫酸バリウムを分散した濃度10%の懸濁液に浸漬することによって、表面部に硫酸バリウムを含有させた電池を作製し、実施例電池4を得た。
【0033】
(実施例5) 厚さ0.025mmのペースト紙を水に浸漬した後に、硫酸バリウムの粉末中を通すことによって、ペースト紙に硫酸バリウム層を形成し、これを正極表面に貼り付けた電池を作成し、実施例電池5を得た。なお、硫酸バリウムの含有量は、硫酸バリウム付ペースト紙の目付とペースト紙の目付(14g/m2)の差引きで硫酸バリウム量を確認した。
【0034】
性能評価は、それぞれ、25℃、12A(0.2C)で14.4Vまで充電後、0.05Cで4時間充電し、2.5Cの定電流で終止電圧9.9Vまで放電して初期容量を確認した後に、充電状態で60℃において1ヶ月間放置し、この放置後の電池を、前記と同様の充放電条件で放電容量を確認し、1/3CA容量および2.5CA容量の初期容量に対する容量比率を求めることによって判定した。
【0035】
実施例電池1〜5および比較例電池1〜3について(表1)に示す。
【0036】
なお、極板中の硫酸バリウムの含有量は、最終極板から活物質をはがし、粉末状態にして蛍光X線により分析して確認したものである。また、1質量%の硫酸バリウムを添加した硫酸バリウムが濃縮した部分の厚さはほぼ片面0.25mmであった。
【0037】
【表1】

Figure 0004239510
【0038】
(表1)より、正極表面に硫酸バリウムを密に含有させた実施例電池1〜5は、硫酸バリウムを含有しない比較例電池1、格子面に硫酸バリウムを塗布した比較例電池2、活物質に微量添加した比較例電池3に比べて2.5CA容量率が15〜18%ほど大きく、大幅な保存特性の向上がなされたことが分かる。
【0039】
また、ペースト紙に硫酸バリウムを含有させた実施例電池5においてもブランクに比べて容量回復性が向上することが分かる。
【0040】
また、硫酸バリウムの含有方法については、粉末散布による実施例電池2、懸濁液塗布による実施例電池3、極板浸漬による実施例電池4ではいずれも顕著な差はなかった。
【0041】
(実施例6〜11) 実施例2で用いた活物質ペーストを正極格子に充填後、(表2)に示すように、0.5%〜60%の硫酸バリウムを含有する鉛スラリーを正極に塗着して正極表面に硫酸バリウムを密に含有させた電池を作製し、実施例電池6〜11を得た。この鉛蓄電池の評価結果を(表2)に示す。なお、各実施例において、塗着した硫酸バリウム含有層の厚みはいずれも約0.25mmで、極板中の硫酸バリウムの含有率は0.055%〜6.6%であった。
【0042】
【表2】
Figure 0004239510
【0043】
(表2)より、実施例7〜10では2.5CA容量率が大きく、硫酸バリウム含有量が0.1質量%〜5質量%の範囲で容量回復性が向上したことが分かる。5質量%を越えた場合には2.5CA容量率が低下したが、これは表面に濃集した硫酸バリウムによって表面層の抵抗が増えたためと考えられる。また、0.5質量%より少ない場合に2.5CA容量率が下がるのは、硫酸鉛の結晶核として作用する硫酸バリウム粒子が不足することによると考えられる。
【0044】
以上のことから、硫酸バリウムを正極表面に濃縮させることによって保存後の容量回復率が向上することが分かった。これは、正極表面での緻密な硫酸鉛の形成が抑制されるためと考えられる。
【0045】
【発明の効果】
以上のように本発明によれば、正極にエキスパンド格子体を用いた鉛蓄電池において、正極活物質の表面に硫酸バリウムが濃縮し、かつ内部に向かって傾斜して疎になっているとしたことにより、特に正極表面における硫酸鉛活物質粒子の粗大化を抑制でき、結果として、高温環境下で長期放置後の容量回復性能を改善した鉛蓄電池を得ることが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-acid battery and a method for producing the same, and more particularly to improvement of a positive electrode plate.
[0002]
[Prior art]
Currently, lead-acid batteries are most widely used as a battery for automobiles and as a power source for driving a cell motor or in-vehicle electric equipment. In recent years, it has been proposed to improve various battery characteristics by adding barium sulfate to a lead-acid battery.
[0003]
For example, in a standby-use sealed lead-acid battery that is trickle-charged for a long period of time as described in Japanese Patent Application Laid-Open No. 2000-268797, barium sulfate is applied to the negative electrode plate surface, or barium sulfate is used. By providing a dispersed nonwoven fabric between the negative electrode plate and the separator, the barium sulfate particles are used as lead sulfate crystal nuclei and by suppressing the coarsening of lead sulfate in the negative electrode, the deterioration of the high rate discharge characteristics is prevented. is there.
[0004]
On the other hand, on the positive electrode side, as described in JP-A-8-222224, in order to provide a sealed lead-acid battery excellent in overcharge life resistance, a positive electrode active material added with barium has been proposed. ing. Further, as described in JP-A No. 2000-353518, in order to prevent early capacity deterioration, the barium sulfate particles that are present near the lattice surface are formed by coating the lattice surface with a barium sulfate-containing layer. It has been proposed that the active material around the lattice is softened to prevent the formation of a gap between the active material and the lattice during the expansion and contraction of the active material, thereby obtaining adhesion between the lattice and the active material.
[0005]
Recently, in addition to automobile batteries, the adoption of lead-acid batteries as electric power sources for motors of electric vehicles and hybrid electric vehicles (HEV) has been studied.
[0006]
In this HEV application, rechargeable charge / discharge is performed by charging with regenerative energy when decelerating and discharging when starting and accelerating. Therefore, lead storage batteries have life characteristics including repetition characteristics and storage characteristics of pulse charge / discharge by high-rate current. Strongly desired. However, batteries for HEV use, particularly lead-acid batteries using a positive electrode plate filled with an active material at a high density and sealed lead-acid batteries in which electrode stacks are assembled in a high pressure state, have been left in a high temperature environment for a long time. In this case, inactive lead sulfate crystals accumulate on the surface layer of the positive electrode due to self-discharge, and those with a long standing time form dense lead sulfate crystals from the surface layer to the internal positive electrode active material layer. As a result, there is a problem that charging efficiency is lowered and capacity recovery after storage at high temperature is lowered.
[0007]
[Problems to be solved by the invention]
However, with the conventional method of adding barium sulfate described above, it is difficult to suppress the formation of inactive lead sulfate crystals on the surface portion of the positive electrode active material.
[0008]
Accordingly, the present invention solves this problem, and the object of the present invention is to improve capacity recovery after long-term storage in a high temperature environment by suppressing the formation of lead sulfate crystals on the surface of the positive electrode. It is to provide a lead storage battery.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a lead-acid battery in which a positive electrode and a negative electrode are laminated via a separator, and the positive electrode active material contains 0.5% by mass or more and 5% by mass or less of barium sulfate in total. The barium sulfate is concentrated on the surface of the positive electrode active material, and is inclined and sparse toward the inside, whereby the lead sulfate active material particles on the positive electrode surface are particularly coarse. As a result, it is possible to provide a lead storage battery with improved capacity recovery after long-term storage in a high temperature environment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Invention of Claim 1 of this invention is the lead storage battery which laminated | stacked the positive electrode and negative electrode which hold | maintained the positive electrode active material in the grid | lattice via the separator, and 0.5 mass% or more in total in the said positive electrode active material, 5% by mass or less of barium sulfate is contained, the barium sulfate is concentrated on the surface of the positive electrode active material, and is inclined and sparse toward the inside. By using barium sulfate similar to lead sulfate, when lead dioxide is precipitated as lead sulfate, the barium sulfate particles act as crystal nuclei, and the coarsening of lead sulfate crystals on the positive electrode surface can be suppressed.
[0011]
Moreover, the reason is enrichment of barium sulfate on the surface, in particular those most lead sulphate in this portion is made to correspond to precipitate. This is because when the active material layer is made dense by adding barium sulfate to the active material, the entire active material is softened, and the life characteristics are deteriorated.
[0012]
The total amount of the barium sulfate is preferably 5% by mass or more and 5% by mass or less. If it is less than 0.5% by mass, the effect on the accumulation of lead sulfate on the surface is small. On the contrary, if it is more than 5% by mass, the resistance component of the containing layer increases, which is not preferable. This is because excessive addition of barium sulfate lowers the conductivity of the electrode plate or causes the active material to become sandy, causing the active material to fall off the positive electrode plate.
[0013]
In addition, if the average particle diameter of barium sulfate is 0.1 μm to 1 μm, an effect as a crystal nucleus is obtained, and the crystal coarsening of lead sulfate can be suppressed. This is because the effect as crystal nuclei cannot be obtained when the particle size is small, and uniform dispersion cannot be achieved when the particle size is larger than 1 μm.
[0014]
Further, in the invention described in claim 2, the barium sulfate content is formed by impregnating barium sulfate from the outside, and barium sulfate is contained by a method such as dipping or coating. Can do.
[0015]
The barium sulfate content is formed by sticking barium sulfate particles to the surface of the positive electrode active material layer or embedded in the vicinity of the surface, or by applying a slurry mixture of lead powder and barium sulfate to the surface of the positive electrode. You may have done.
[0016]
The invention according to claim 3 is that the barium sulfate is contained in a paste paper containing barium sulfate, and the barium sulfate layer can be reliably held on the surface of the positive electrode. Also, it has the effect of preventing deformation of the expanded lattice and preventing the active material paste from dropping off at the end of the lattice without the frame.
[0017]
The paste paper is sand paper made of kraft pulp and a water-resistant reinforcing agent. A barium sulfate layer is formed on one side of the paste paper, and the surface containing the barium sulfate is attached so as to be in contact with the surface of the positive electrode plate. Further, a barium sulfate layer may be formed on both surfaces, and either of them may be attached to the surface of the positive electrode plate.
[0018]
The thickness of the paste paper holding barium sulfate is preferably 0.02 mm to 0.1 mm. If the thickness of the paste paper is too thin, sufficient strength of the paste paper to hold the barium sulfate layer cannot be obtained, and forming a large amount of barium sulfate on a thin paper complicates the steps such as dipping, drying, and transporting. In addition, there is a risk of dropout due to conveyance, which is not preferable. On the other hand, if the paste paper is too thick, the amount of the active material is relatively reduced and the capacity is lowered, which is not preferable.
[0019]
According to a fourth aspect of the present invention, there is provided a method for producing a lead-acid battery in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and sulfuric acid dispersed in water or a sulfuric acid solution after filling the positive electrode grid with an active material paste. By coating the positive electrode active material with a suspension of barium or by applying a positive electrode active material paste containing barium sulfate to the positive electrode active material, the surface portion of the positive electrode was allowed to contain barium sulfate. Thereby, barium sulfate can be contained on the active material.
[0020]
According to a fifth aspect of the present invention, there is provided a method for manufacturing a lead-acid battery in which a positive electrode and a negative electrode are laminated via a separator, and the paste paper is coated with a suspension of barium sulfate dispersed in water or a sulfuric acid solution. Or by applying a positive electrode active material paste containing barium sulfate to a paste paper to form a barium sulfate layer on the paste paper, and then pasting the paste paper on the surface of the positive electrode. The barium sulfate-containing layer is provided on the active material layer, whereby the barium sulfate-containing layer can be formed and held on the active material layer.
[0021]
The paste paper is filled with barium sulfate-containing material by coating or immersing it in a suspension of barium sulfate, spraying barium sulfate powder on wet paste paper, Although there is a method of applying a paste of barium sulfate and lead powder on the surface, it is not limited to this.
[0022]
【Example】
Examples of the present invention will be described below.
[0023]
Example 1
First, the positive electrode plate was produced as follows. A rolled sheet of 10 mm thick lead-1.2 mass% tin-0.08 mass% calcium alloy was expanded to produce an expanded lattice. Next, water and sulfuric acid were added to a lead powder mainly composed of lead oxide having an oxidation degree of 60 to 80% and kneaded to prepare a positive electrode active material lead paste. After this lead paste is applied to the lattice body to a thickness of about 2 mm on one side, barium sulfate powder having an average particle size of 0.2 μm (used in the present invention below) is sprayed on the surface of the active material layer, and 7 μm on one side. A barium sulfate-containing layer was formed. A paste paper having a thickness of 0.025 mm was attached to the barium sulfate-containing layer, and aging, drying, and chemical conversion were performed to produce a positive electrode plate. In addition, content of barium sulfate to spread | spread was 1 mass% with respect to the active material .
[0024]
The negative electrode plate was manufactured as follows. A rolled sheet of lead-0.8 mass% tin-0.08 mass% calcium alloy was expanded to produce an expanded lattice. A negative electrode additive was put into the same lead powder as the positive electrode, and water and sulfuric acid were added to prepare a negative electrode active material lead paste. After this lead paste was filled into an expanded lattice, paste paper was pasted on the negative electrode surface, and aging, drying, and chemical conversion were performed to produce a negative electrode plate.
[0025]
A pole group in which the positive electrode plate and the negative electrode plate are alternately laminated via a glass mat separator formed in a sheet shape mainly composed of glass fibers having fiber diameters of 3 to 5 μm and 0.5 to 1.0 μm is placed in the battery case. Insert a battery case cover, inject a diluted sulfuric acid electrolyte with a specific gravity of 1.30 containing 10 g / L of sodium sulfate, and install a safety valve to produce a sealed lead-acid battery rated 12V60Ah. 1 was obtained.
[0026]
The following comparative examples and examples were produced under the same conditions as in Example 1.
[0027]
(Comparative example 1) The battery which does not contain barium sulfate in the positive electrode of Example 1 was produced, and the comparative battery 1 was obtained.
[0028]
(Comparative Example 2) A conventional battery in which a slurry containing 0.1% of barium sulfate with respect to lead was applied to a positive electrode grid to a thickness of 100 μm was produced, and Comparative Battery 2 was obtained.
[0029]
Comparative Example 3 A conventional battery in which a positive electrode active material paste in which 0.1% of barium sulfate was added to the active material was filled in a positive electrode grid to a thickness of about 2 mm on one side was produced, and a comparative battery 3 was obtained. .
[0030]
(Example 2) A positive electrode active material paste containing 0.1% of barium sulfate was filled in the positive electrode lattice, and then a battery in which barium sulfate powder was dispersed on the surface of the positive electrode was produced.
[0031]
(Example 3) A positive electrode active material paste in which 0.1% of barium sulfate was added to the active material was filled in the positive electrode grid, and then a 15% concentration suspension in which barium sulfate was dispersed in water was applied to the surface of the positive electrode. As a result, a battery having barium sulfate contained in the surface portion was produced, and Example Battery 3 was obtained.
[0032]
(Example 4) A positive electrode active material paste in which 0.1% of barium sulfate was added to the active material was filled in the positive electrode lattice, and then the positive electrode surface was made into a suspension having a concentration of 10% in which barium sulfate was dispersed in dilute sulfuric acid. By immersing, a battery containing barium sulfate in the surface portion was produced, and Example Battery 4 was obtained.
[0033]
Example 5 A battery in which a barium sulfate layer was formed on a paste paper by immersing a paste paper having a thickness of 0.025 mm in water and then passing through a barium sulfate powder, and the battery was attached to the surface of the positive electrode. Example battery 5 was obtained. The barium sulfate content was confirmed by subtracting the basis weight of the paste paper with barium sulfate and the basis weight of the paste paper (14 g / m 2 ).
[0034]
In the performance evaluation, after charging to 14.4 V at 25 ° C. and 12 A (0.2 C), charging was performed for 4 hours at 0.05 C, and then discharged to a final voltage of 9.9 V at a constant current of 2.5 C. After confirming the above, the battery is left in a charged state at 60 ° C. for one month, and the discharged battery is checked for discharge capacity under the same charge / discharge conditions as described above, and the initial capacities of 1/3 CA capacity and 2.5 CA capacity are confirmed. It was determined by determining the capacity ratio to
[0035]
It shows in Table 1 about Example batteries 1-5 and Comparative Examples batteries 1-3.
[0036]
The content of barium sulfate in the electrode plate was confirmed by peeling the active material from the final electrode plate, converting it to a powder state, and analyzing it with fluorescent X-rays. Moreover, the thickness of the portion where barium sulfate added with 1% by mass of barium sulfate was concentrated was approximately 0.25 mm on one side.
[0037]
[Table 1]
Figure 0004239510
[0038]
From Table 1, Example batteries 1 to 5 in which barium sulfate is densely contained on the positive electrode surface are Comparative Example battery 1 that does not contain barium sulfate, Comparative Example battery 2 in which barium sulfate is applied to the lattice plane, and active material It can be seen that the 2.5 CA capacity ratio was about 15 to 18% larger than that of Comparative Example Battery 3 added in a small amount, and that the storage characteristics were significantly improved.
[0039]
Moreover, it turns out that capacity | capacitance recoverability improves also in the Example battery 5 which made the paste paper contain barium sulfate compared with a blank.
[0040]
Moreover, about the containing method of barium sulfate, there was no remarkable difference in Example battery 2 by powder dispersion, Example battery 3 by suspension application, and Example battery 4 by electrode plate immersion.
[0041]
(Examples 6 to 11) After filling the positive electrode lattice with the active material paste used in Example 2, as shown in (Table 2), lead slurry containing 0.5% to 60% barium sulfate was used as the positive electrode. By coating, a battery in which barium sulfate was densely contained on the surface of the positive electrode was produced, and Example batteries 6 to 11 were obtained. The evaluation results of this lead storage battery are shown in (Table 2). In each example, the thickness of the coated barium sulfate-containing layer was about 0.25 mm, and the barium sulfate content in the electrode plate was 0.055% to 6.6%.
[0042]
[Table 2]
Figure 0004239510
[0043]
From Table 2, it can be seen that in Examples 7 to 10, the 2.5 CA capacity ratio was large, and the capacity recovery was improved when the barium sulfate content was in the range of 0.1 mass% to 5 mass%. When the amount exceeds 5% by mass, the 2.5 CA capacity ratio is decreased. This is considered to be because the resistance of the surface layer is increased by barium sulfate concentrated on the surface. In addition, when the amount is less than 0.5% by mass, the 2.5 CA capacity ratio is considered to decrease because of the lack of barium sulfate particles that act as lead sulfate crystal nuclei.
[0044]
From the above, it was found that the capacity recovery rate after storage was improved by concentrating barium sulfate on the positive electrode surface. This is presumably because the formation of dense lead sulfate on the positive electrode surface is suppressed.
[0045]
【The invention's effect】
As described above, according to the present invention, in the lead-acid battery using the expanded lattice body for the positive electrode, barium sulfate is concentrated on the surface of the positive electrode active material and is inclined and sparse toward the inside. Thus, it is possible to suppress the coarsening of the lead sulfate active material particles particularly on the surface of the positive electrode, and as a result, it is possible to obtain a lead storage battery having improved capacity recovery performance after being left for a long time in a high temperature environment.

Claims (5)

正極活物質を格子体に保持した正極と負極とをセパレータを介して積層した鉛蓄電池において、前記正極活物質に、正極活物質に対して0.5質量%以上、5質量%以下の硫酸バリウムが含有されており、前記硫酸バリウムの平均粒径は0.1μm〜1μmであり、前記正極活物質の表面に前記硫酸バリウムが濃縮し、前記正極活物質層の内部に向かって傾斜して疎になっていることを特徴とする鉛蓄電池。The lead acid battery which laminated | stacked the positive electrode and negative electrode which hold | maintained the positive electrode active material in the grid | lattice via the separator, In the said positive electrode active material, 0.5 mass% or more and 5 mass% or less barium sulfate with respect to a positive electrode active material There are contained, the average particle size of the barium sulfate is 0.1 to 1 m, wherein the barium sulfate is concentrated on the surface of the positive electrode active material layer, inclined toward the inside of the positive electrode active material layer Lead acid battery characterized by being sparse. 前記硫酸バリウムの含有は硫酸バリウムを外部からしみ込ませるようにして形成されたものであることを特徴とする請求項1記載の鉛蓄電池。  2. The lead acid battery according to claim 1, wherein the barium sulfate is contained so that barium sulfate is impregnated from the outside. 前記硫酸バリウムの含有が、硫酸バリウムを含有させたペースト紙が貼付されたものであることを特徴とする請求項1または2記載の鉛蓄電池。  The lead-acid battery according to claim 1 or 2, wherein the barium sulfate is contained in a paste paper containing barium sulfate. 正極活物質を格子体に保持した正極と負極とをセパレータを介して積層した鉛蓄電池の製造方法において、正極格子体に活物質ペーストを充填後、水または硫酸溶液中で分散させた平均粒径が0.1μm〜1μmの硫酸バリウムの懸濁液を前記正極活物質に塗工するか、もしくは平均粒径が0.1μm〜1μmの硫酸バリウムを含有する正極活物質ペーストを前記正極活物質に塗工することにより、正極の表面部に硫酸バリウムを含有させることを特徴とする鉛蓄電池の製造方法。In a method for manufacturing a lead-acid battery in which a positive electrode and a negative electrode each having a positive electrode active material held in a grid are stacked via a separator, an average particle size dispersed in water or a sulfuric acid solution after filling the positive electrode grid with an active material paste Is applied to the positive electrode active material with a suspension of barium sulfate of 0.1 μm to 1 μm , or a positive electrode active material paste containing barium sulfate having an average particle size of 0.1 μm to 1 μm is used as the positive electrode active material. A method for producing a lead-acid battery, characterized in that barium sulfate is contained in the surface portion of the positive electrode by coating. 正極活物質を格子体に保持した正極と負極とをセパレータを介して積層した鉛蓄電池の製造方法において、水または硫酸溶液中で分散させた平均粒径が0.1μm〜1μmの硫酸バリウムの懸濁液でペースト紙に塗工するか、もしくは平均粒径が0.1μm〜1μmの硫酸バリウムを含有する正極活物質ペーストをペースト紙に塗工することにより、前記ペースト紙に硫酸バリウム層を形成した後に、前記ペースト紙を正極表面に貼付することにより正極の表面部に硫酸バリウム含有層を設けることを特徴とする鉛蓄電池の製造方法。In a method for producing a lead-acid battery in which a positive electrode and a negative electrode each having a positive electrode active material held in a lattice are laminated via a separator, a suspension of barium sulfate having an average particle size of 0.1 μm to 1 μm dispersed in water or a sulfuric acid solution. A paste of barium sulfate is formed on the paste paper by coating the paste paper with a turbid liquid or by applying a positive electrode active material paste containing barium sulfate having an average particle size of 0.1 μm to 1 μm to the paste paper. Then, the paste paper is pasted on the surface of the positive electrode to provide a barium sulfate-containing layer on the surface of the positive electrode.
JP2002225794A 2002-08-02 2002-08-02 Lead-acid battery and manufacturing method thereof Expired - Fee Related JP4239510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225794A JP4239510B2 (en) 2002-08-02 2002-08-02 Lead-acid battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225794A JP4239510B2 (en) 2002-08-02 2002-08-02 Lead-acid battery and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004071210A JP2004071210A (en) 2004-03-04
JP2004071210A5 JP2004071210A5 (en) 2005-10-13
JP4239510B2 true JP4239510B2 (en) 2009-03-18

Family

ID=32013328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225794A Expired - Fee Related JP4239510B2 (en) 2002-08-02 2002-08-02 Lead-acid battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4239510B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261846A (en) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 Lead-carbon battery positive electrode and preparation and application thereof

Also Published As

Publication number Publication date
JP2004071210A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
EP2108201B1 (en) Improved energy storage device
JP5315256B2 (en) Optimized energy storage device
EP0352115B1 (en) Lead-acid battery
JP4053272B2 (en) Negative electrode for lead acid battery
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP6164266B2 (en) Lead acid battery
JP2847761B2 (en) Sealed lead-acid battery and method of manufacturing the same
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP6525167B2 (en) Lead storage battery
JP4635325B2 (en) Control valve type lead acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP5396216B2 (en) Lead acid battery
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
JP4239510B2 (en) Lead-acid battery and manufacturing method thereof
WO2011077640A1 (en) Valve-regulated lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP4857894B2 (en) Lead acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP4984786B2 (en) Lead acid battery
JP3511858B2 (en) Lead storage battery
JP2006079973A (en) Lead storage battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JPH10247491A (en) Lead-acid battery and its manufacture
JP2000149932A (en) Lead-acid battery and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees