JP4970348B2 - Negative electrode active material mixture for lead-acid batteries - Google Patents
Negative electrode active material mixture for lead-acid batteries Download PDFInfo
- Publication number
- JP4970348B2 JP4970348B2 JP2008140635A JP2008140635A JP4970348B2 JP 4970348 B2 JP4970348 B2 JP 4970348B2 JP 2008140635 A JP2008140635 A JP 2008140635A JP 2008140635 A JP2008140635 A JP 2008140635A JP 4970348 B2 JP4970348 B2 JP 4970348B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- material mixture
- electrode active
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、鉛蓄電池用負極活物質合剤及びそれを備えた鉛蓄電池用負極板に関する。 The present invention relates to a negative electrode active material mixture for a lead storage battery and a negative electrode plate for a lead storage battery including the same.
近年、地球環境問題に対する意識の高まりを背景に、地球温暖化の原因とされる二酸化炭素を排出しないクリーンな発電方式として、風力又は太陽光を使用する発電方式への関心が高まっている。しかし、これらの発電方式は、自然条件の影響を受け易く、風力及び太陽光発電の発電状態によって様々な充電状態(以下、PSOCと言う)で使用されるため、系統連係時に周波数変動及び電圧低下等のトラブルを引き起こす可能性がある。 In recent years, against the background of increasing awareness of global environmental problems, there is an increasing interest in power generation methods using wind power or sunlight as clean power generation methods that do not emit carbon dioxide, which is a cause of global warming. However, these power generation methods are easily affected by natural conditions and are used in various charging states (hereinafter referred to as PSOC) depending on the power generation state of wind power and solar power generation. May cause trouble.
系統に対して急激に発電電流が流れ込むことを防ぐために、風力及び太陽光発電に電力貯蔵用の蓄電設備が併設されることがある。該蓄電設備としては、安価であるとともに安定した性能からくる高い信頼性の故に、現在でも鉛蓄電池が主流を占めている。しかし、鉛蓄電池は、急速な充放電や様々なPSOCで使用されると、鉛蓄電池の負極は正極と比較して表面積が小さいため、電解液の拡散が律速となり、分極が増大する。そのため、従来の鉛蓄電池では大型化が必要となっている。また、鉛蓄電池は様々なPSOCで充放電を繰り返すと、溶解析出反応で負極に放電物質である硫酸鉛が生成され、該硫酸鉛の生成により導電性が低下し、分極が増大することになる。この問題を解決するため、鉛蓄電池用負極板の導電剤として粒状のカーボン粉末を添加することが提案されているが、これだけではPSOCで優れた充放電性能を発揮する鉛蓄電池は得られなかった。 In order to prevent the generation current from suddenly flowing into the system, a power storage facility for storing electric power may be provided alongside wind power and solar power generation. As the power storage equipment, lead storage batteries still dominate even today because of their high reliability due to their low cost and stable performance. However, when the lead storage battery is used for rapid charge / discharge and various PSOCs, the negative electrode of the lead storage battery has a smaller surface area than the positive electrode, so that the diffusion of the electrolyte is rate-determining and the polarization increases. Therefore, the conventional lead storage battery needs to be enlarged. In addition, when lead acid batteries are repeatedly charged and discharged with various PSOCs, lead sulfate as a discharge material is generated in the negative electrode by a dissolution and precipitation reaction, which leads to a decrease in conductivity and an increase in polarization. . In order to solve this problem, it has been proposed to add granular carbon powder as a conductive agent for a negative electrode plate for a lead storage battery, but this alone has not yielded a lead storage battery that exhibits excellent charge / discharge performance in PSOC. .
かかる問題を解決するために、負極活物質に対し、所定量の導電性カーボン及び活性炭を添加して得た活物質合剤ペーストを鉛蓄電池用負極に使用する試みがなされている(特許文献1)。該試みによれば、負極の分極を減少させると共に、放電開始直後の電池電圧を高く維持することができる。 In order to solve such a problem, an attempt has been made to use an active material mixture paste obtained by adding a predetermined amount of conductive carbon and activated carbon to a negative electrode active material for a negative electrode for a lead storage battery (Patent Document 1). ). According to this attempt, the negative electrode polarization can be reduced and the battery voltage immediately after the start of discharge can be kept high.
しかし、該試みでは、導電性カーボン及び活性炭の添加量を、負極活物質100質量部に対し合計8質量部以上にした負極活物質を用いた鉛蓄電池と、風力又は太陽光発電とを併設し、様々なPSOCで使用すると、負極での海綿状鉛の成長が阻害され、負極活物質粒子間の結合強度が低下する。従って、導電性低下を招いて高率放電性能が低下し、かつ活物質が脱落して電池寿命が短くなると言う問題が生ずる。このように負極内部に含めることができる導電性カーボン及び活性炭量には制限があり、それ故、負極の電気二重層容量増加にも限界があった。加えて、充放電による負極板の膨張及び収縮により、活物質中に電解液が通る通路ができ、活物質中の導電性カーボン及び活性炭、とりわけ、粒子径の小さい導電性カーボンが電解液に漏出しセパレータに侵入して短絡が生ずることがある。 However, in this trial, a lead-acid battery using a negative electrode active material in which the amount of conductive carbon and activated carbon added is 8 parts by mass or more in total with respect to 100 parts by mass of the negative electrode active material, and wind power or solar power generation are provided side by side. When used in various PSOCs, the growth of spongy lead on the negative electrode is inhibited, and the bond strength between the negative electrode active material particles is reduced. Therefore, there arises a problem that the high-rate discharge performance is lowered due to a decrease in conductivity, and the active material is dropped to shorten the battery life. Thus, there is a limit to the amount of conductive carbon and activated carbon that can be included in the negative electrode, and thus there is a limit to the increase in the electric double layer capacity of the negative electrode. In addition, the expansion and contraction of the negative electrode plate due to charge / discharge creates a passage for the electrolyte to pass through the active material, and conductive carbon and activated carbon in the active material, especially conductive carbon with a small particle diameter, leaks into the electrolyte. However, it may enter the separator and cause a short circuit.
一方、電池性能の低下の原因として、電池の充放電により、極板を構成する基板から活物質が脱落すると言う問題がある。該問題を解決すべく、打ち抜きによって活物質を充填すべき空隙を形成せしめた格子体の骨を機械的に捻り変形させた格子体を、極板を構成する基板として使用する試みがある(特許文献2)。 On the other hand, there is a problem that the active material is dropped from the substrate constituting the electrode plate due to the charging / discharging of the battery as a cause of the battery performance deterioration. In order to solve this problem, there is an attempt to use a lattice body obtained by mechanically twisting and deforming a lattice body in which a gap to be filled with an active material is formed by punching as a substrate constituting an electrode plate (patent) Reference 2).
しかし、捻り変形により格子の強度が低下し、ときには格子が破損してしまう等の問題を生ずる。従って、捻り変形を慎重に行う必要があり、製造に多大な労力と時間を必要としていた。 However, the strength of the lattice is reduced due to torsional deformation, and sometimes the lattice is damaged. Therefore, it is necessary to carefully perform torsional deformation, and much labor and time are required for manufacturing.
本発明は、著しく高い導電性を有し、それ故に、負極の電気二重層容量を増大させ得るばかりではなく、炭素材料の漏出による短絡を防止し得、従って、著しく長い電池寿命を付与し得るところの鉛蓄電池用負極活物質合剤、並びに、該負極活物質合剤の脱落を有効に防止し得、簡便かつ安価に製造し得る基板を備える鉛蓄電池用負極板を提供するものである。 The present invention has remarkably high conductivity and therefore can not only increase the electric double layer capacity of the negative electrode, but also prevent short circuit due to leakage of carbon material, and therefore can provide significantly longer battery life. The present invention provides a negative electrode active material mixture for a lead storage battery, and a negative electrode plate for a lead storage battery comprising a substrate that can effectively prevent the negative electrode active material mixture from falling off and can be manufactured easily and inexpensively.
本発明者は上記課題を解決すべく種々の検討を試みた。その結果、特許文献3記載の負極活物質合剤に導電性繊維を添加することに思い至った。導電性繊維を添加すると、該繊維表面がイオン化し、そして、活性炭、並びにカーボンブラック、グラファイト及び炭素繊維等の炭素材料と結合して、これらが該導電性繊維表面に担持される。従って、活性炭及びこれら炭素材料の添加量を増加しても負極における海綿状鉛の成長を阻害することなく、活物質間の導電性を著しく高め得るばかりではなく、電解液に漏出する炭素材料の量を大幅に減ずることができて、短絡を防止し得ることを見出した。加えて、活物質間の導電性を著しく高め得ることから、活性炭と、カーボンブラック、グラファイト、炭素繊維等の比較的導電性の高い炭素材料とを併用した際、これら導電性の高い炭素材料の量を減じても高い導電性を維持し得、従って、その分、活性炭量を増加することができ、負極の電気二重層容量の増加を図り得ることを見出した。加えて、導電性繊維は、負極活物質内に多数の導電性繊維の微細なマトリックスを形成するため、負極活物質の機械的強度を高め、かつ活性炭量を増加しても活性炭の移動及び凝集による負極活物質合剤の軟化を防止し得て、電池寿命の延長を図ることができる。 The present inventor has tried various studies to solve the above problems. As a result, they came up with adding conductive fibers to the negative electrode active material mixture described in Patent Document 3. When the conductive fiber is added, the fiber surface is ionized and bonded to activated carbon and carbon materials such as carbon black, graphite, and carbon fiber, and these are supported on the surface of the conductive fiber. Therefore, increasing the amount of activated carbon and the addition of these carbon materials not only inhibits the growth of spongy lead in the negative electrode, but can significantly increase the conductivity between the active materials, as well as the carbon materials that leak into the electrolyte. It has been found that the amount can be greatly reduced and short circuit can be prevented. In addition, since the conductivity between the active materials can be remarkably increased, when using activated carbon and a carbon material having a relatively high conductivity such as carbon black, graphite, carbon fiber, etc., these carbon materials having a high conductivity are used. It has been found that high conductivity can be maintained even when the amount is reduced, and accordingly, the amount of activated carbon can be increased correspondingly, and the electric double layer capacity of the negative electrode can be increased. In addition, since the conductive fibers form a fine matrix of a large number of conductive fibers in the negative electrode active material, the mechanical strength of the negative electrode active material is increased, and even if the amount of activated carbon is increased, the activated carbon moves and aggregates. Softening of the negative electrode active material mixture due to can be prevented, and the battery life can be extended.
また、本発明者は、負極板を構成する基板として、所定の構造を有する基板を使用すれば、上記活物質合剤中に含まれる導電性繊維と基板との絡み合いを改善することができ、負極活物質合剤と基板との密着性をより高め得て負極活物質合剤の基板からの脱落を防止して、電池寿命を長くし得ることをも見出した。 Further, the present inventor can improve the entanglement between the conductive fibers and the substrate contained in the active material mixture, if a substrate having a predetermined structure is used as the substrate constituting the negative electrode plate, It has also been found that the adhesion between the negative electrode active material mixture and the substrate can be further improved to prevent the negative electrode active material mixture from falling off the substrate, thereby extending the battery life.
即ち、本発明は、
(1)(A)負極活物質 100質量部、
(B)耐硫酸性を有する導電性繊維(成分(C)及び(D)を除く) 1〜2質量部、
(C)活性炭 1〜5質量部、及び
(D)1種類以上の炭素材料(成分(C)を除く) 各1〜5質量部
(ここで、成分(C)と成分(D)との合計量が2〜10質量部である)
を含む鉛蓄電池用負極活物質合剤である。
That is, the present invention
(1) (A) 100 parts by mass of negative electrode active material,
(B) sulfuric acid resistant conductive fiber (excluding components (C) and (D)) 1-2 parts by weight,
(C) 1-5 parts by mass of activated carbon, and
(D) 1 or more types of carbon materials (excluding component (C)) 1 to 5 parts by mass each
(Here, the total amount of component (C) and component (D) is 2 to 10 parts by mass)
Is a negative electrode active material mixture for lead storage batteries.
好ましい態様として、
(2)成分(C)と成分(D)との合計量が8〜10質量部であるところの上記(1)記載の鉛蓄電池用負極活物質合剤、
(3)成分(C)と成分(D)との合計量が8質量部を超え10質量部以下であるところの上記(1)記載の鉛蓄電池用負極活物質合剤、
(4)成分(B)が、金属繊維及び金属で被覆された繊維より成る群から選ばれるところの上記(1)〜(3)のいずれか一つに記載の鉛蓄電池用負極活物質合剤、
(5)金属繊維が鉛繊維及びスズ繊維であるところの上記(4)記載の鉛蓄電池用負極活物質合剤、
(6)金属で被覆された繊維がSnO2で被覆されたガラス繊維であるところの上記(4)記載の鉛蓄電池用負極活物質合剤、
(7)成分(D)が、カーボンブラック、グラファイト及び炭素繊維より成る群から選ばれるところの上記(1)〜(6)のいずれか一つに記載の鉛蓄電池用負極活物質合剤、
(8)成分(D)が、カーボンブラックであるところの上記(1)〜(6)のいずれか一つに記載の鉛蓄電池用負極活物質合剤、
(9)上記(1)〜(8)のいずれか一つに記載の鉛蓄電池用負極活物質合剤を備えた鉛蓄電池用負極板、
(10)鉛蓄電池用負極板を構成する基板が、複数の多角形の活物質合剤充填用空間を有し、かつ該空間を成す多角形の辺の全部又は一部に突出部を有するところの上記(9)記載の鉛蓄電池用負極板、
(11)多角形の活物質合剤充填用空間が、三角形、長方形、正方形、五角形又は六角形であるところの上記(10)記載の鉛蓄電池用負極板、
(12)多角形の活物質合剤充填用空間が、略正六角形であるところの上記(10)記載の鉛蓄電池用負極板、
(13)突出部が、活物質合剤充填用空間を成す多角形の辺の全部に設けられているところの上記(9)〜(12)のいずれか一つに記載の鉛蓄電池用負極板
を挙げることができる。
As a preferred embodiment,
(2) The negative electrode active material mixture for lead-acid batteries according to (1) above, wherein the total amount of component (C) and component (D) is 8 to 10 parts by mass,
(3) The total amount of component (C) and component (D) is more than 8 parts by weight and 10 parts by weight or less, the negative electrode active material mixture for lead-acid batteries according to (1) above,
(4) The negative electrode active material mixture for lead-acid batteries according to any one of (1) to (3) above, wherein component (B) is selected from the group consisting of metal fibers and fibers coated with metal ,
(5) The negative electrode active material mixture for lead-acid batteries according to (4) above, wherein the metal fibers are lead fibers and tin fibers,
(6) The negative electrode active material mixture for a lead storage battery according to (4) above, wherein the fiber coated with metal is a glass fiber coated with SnO 2 ,
(7) The negative electrode active material mixture for a lead storage battery according to any one of (1) to (6) above, wherein the component (D) is selected from the group consisting of carbon black, graphite, and carbon fiber,
(8) The negative electrode active material mixture for a lead storage battery according to any one of (1) to (6) above, wherein the component (D) is carbon black,
(9) A negative electrode plate for a lead storage battery comprising the negative electrode active material mixture for a lead storage battery according to any one of (1) to (8) above,
(10) The substrate constituting the lead-acid battery negative electrode plate has a plurality of polygonal active material mixture filling spaces, and has protrusions on all or part of the polygonal sides forming the spaces. The negative electrode plate for a lead storage battery according to (9) above,
(11) The negative electrode plate for a lead storage battery according to the above (10), wherein the polygonal active material mixture filling space is a triangle, rectangle, square, pentagon or hexagon,
(12) The negative electrode plate for a lead storage battery according to the above (10), wherein the polygonal active material mixture filling space is substantially a regular hexagon.
(13) The negative electrode plate for a lead storage battery according to any one of the above (9) to (12), wherein the protrusions are provided on all of the sides of the polygon forming the space for filling the active material mixture. Can be mentioned.
本発明の鉛蓄電池用負極活物質合剤は、著しく高い導電性を有し、それ故に、負極の電気二重層容量を増大させ得るばかりではなく、炭素材料の漏出による短絡を防止し得、従って、著しく長い電池寿命を付与し得る。また、該負極活物質合剤を備える本発明の負極板は、該負極活物質合剤の脱落を有効に防止し得るばかりではなく、簡便かつ安価に製造し得る。 The negative electrode active material mixture for a lead storage battery of the present invention has remarkably high conductivity, and therefore can not only increase the electric double layer capacity of the negative electrode, but also prevent a short circuit due to leakage of the carbon material. , Can provide a significantly longer battery life. Moreover, the negative electrode plate of the present invention provided with the negative electrode active material mixture can not only effectively prevent the negative electrode active material mixture from falling off, but also can be produced simply and inexpensively.
本発明の成分(B)耐硫酸性を有する導電性繊維は、活物質合剤の導電性を高めるとともに、活物質を支持する支持体として使用される。該導電性繊維の直径の上限は、好ましくは100μm、より好ましくは60μmであり、下限は、好ましくは10μm、より好ましくは20μmである。上記上限を超えては、効果の著しい増大が認められず、上記下限未満では、導電性を十分に高めることができないばかりか、活物質の支持体としても十分に作用しない。また、該導電性繊維の長さの上限は、好ましくは10mm、より好ましくは5mmであり、下限は、好ましくは1mm、より好ましくは3mmである。上記上限を超えては、活物質合剤調製中に導電性繊維が切断されて短くなり、繊維長に見合う十分な効果が得られない。上記下限未満では、導電性を十分に高めることができないばかりか、活物質の支持体としても十分に作用しない。該導電性繊維の直径及び長さは、例えば、20μm及び3mm程度が好ましい。成分(B)耐硫酸性を有する導電性繊維としては、好ましくは、金属繊維及び金属で被覆された繊維が挙げられる。金属繊維としては、例えば、鉛繊維、スズ繊維等が挙げられる。金属で被覆された繊維としては、例えば、SnO2で被覆されたガラス繊維等が挙げられる。 The conductive fiber having component (B) sulfuric acid resistance of the present invention increases the conductivity of the active material mixture and is used as a support for supporting the active material. The upper limit of the diameter of the conductive fiber is preferably 100 μm, more preferably 60 μm, and the lower limit is preferably 10 μm, more preferably 20 μm. If the above upper limit is exceeded, no significant increase in the effect is observed, and if it is less than the above lower limit, the conductivity cannot be sufficiently increased, and it does not sufficiently act as a support for the active material. Further, the upper limit of the length of the conductive fibers is preferably 10 mm, more preferably 5 mm, and the lower limit is preferably 1 mm, more preferably 3 mm. When the above upper limit is exceeded, the conductive fiber is cut and shortened during the preparation of the active material mixture, and a sufficient effect corresponding to the fiber length cannot be obtained. If it is less than the said minimum, not only cannot it fully improve electroconductivity but it does not fully act as a support body of an active material. The diameter and length of the conductive fiber are preferably about 20 μm and 3 mm, for example. The conductive fiber having component (B) sulfuric acid resistance preferably includes metal fiber and metal-coated fiber. Examples of metal fibers include lead fibers and tin fibers. Examples of the fiber coated with metal include glass fiber coated with SnO 2 .
上記導電性繊維の配合量の上限は、成分(A)負極活物質100質量部に対して、2質量部であり、下限は1質量部である。上記上限を超えては、効果の著しい増大が認められず、その分、全体として活物質の割合が減少して電池寿命が低下する。一方、上記下限未満では、活性炭及び炭素材料を良好に担持することができず、電池寿命を高めることができない。 The upper limit of the amount of the conductive fiber is 2 parts by mass with respect to 100 parts by mass of the component (A) negative electrode active material, and the lower limit is 1 part by mass. If the above upper limit is exceeded, no significant increase in the effect is recognized, and the proportion of the active material is reduced as a whole, and the battery life is reduced. On the other hand, if it is less than the said minimum, activated carbon and a carbon material cannot be carry | supported favorably and battery life cannot be improved.
成分(C)活性炭は、負極の電気二重層容量を増加するために使用される。活性炭としては、比較的比表面積の大きいものが使用される。本発明において使用される活性炭の比表面積の上限は、好ましくは2500m2/g、より好ましくは2400m2/gであり、下限は、好ましくは1000m2/g、より好ましくは1600m2/gである。上記上限を超えては、効果が飽和し、電気二重層容量を顕著に増加させることはできず、一方、上記下限未満では、負極の電気二重層容量の増加を達成することができない。該活性炭の粒子径の上限は、好ましくは50μm、より好ましくは40μmであり、下限は、好ましくは3μm、より好ましくは10μmである。上記範囲外では、負極の電気二重層容量を十分に増加することができない。該活性炭としては、例えば、ヤシガラ、石油ピッチ、石油コークス、コールタールピッチ、フェノール樹脂等から製造されたものが使用され、粒状又は繊維状のいずれであってもよい。 Component (C) activated carbon is used to increase the electric double layer capacity of the negative electrode. As the activated carbon, one having a relatively large specific surface area is used. The upper limit of the specific surface area of the activated carbon used in the present invention is preferably 2500 m 2 / g, more preferably 2400 m 2 / g, and the lower limit is preferably 1000 m 2 / g, more preferably 1600 m 2 / g. . Beyond the above upper limit, the effect is saturated and the electric double layer capacity cannot be increased remarkably. On the other hand, below the lower limit, an increase in the electric double layer capacity of the negative electrode cannot be achieved. The upper limit of the particle diameter of the activated carbon is preferably 50 μm, more preferably 40 μm, and the lower limit is preferably 3 μm, more preferably 10 μm. Outside the above range, the electric double layer capacity of the negative electrode cannot be increased sufficiently. As this activated carbon, what was manufactured from coconut husk, petroleum pitch, petroleum coke, coal tar pitch, a phenol resin, etc. is used, for example, any of granular or fibrous form may be used.
上記活性炭の配合量の上限は、成分(A)負極活物質100質量部に対して、5質量部であり、下限は1質量部であり、好ましくは3質量部である。上記上限を超えては、効果の著しい増大が認められず、その分、全体として活物質の割合が減少して電池寿命が低下する。一方、上記下限未満では、負極の電気二重層容量を増大させることができず、電池寿命を高めることができない。 The upper limit of the amount of the activated carbon is 5 parts by mass with respect to 100 parts by mass of the component (A) negative electrode active material, and the lower limit is 1 part by mass, preferably 3 parts by mass. If the above upper limit is exceeded, no significant increase in the effect is recognized, and the proportion of the active material is reduced as a whole, and the battery life is reduced. On the other hand, below the lower limit, the electric double layer capacity of the negative electrode cannot be increased, and the battery life cannot be increased.
成分(D)炭素材料は、活物質合剤の導電性を高めるために使用される。従って、比較的導電性の高い炭素材料、好ましくは、アセチレンブラック、ファーネスブラック、サーマルブラック、チャンネルブラック、ケッチェンブラック等のカーボンブラック、粉状又は繊維状グラファイト、及びピッチ系又はPAN系炭素繊維等炭素繊維等が使用される。この中でも、カーボンブラックが特に好ましく使用される。これらは単独で使用してもよく、また二種以上併用してもよい。 Component (D) carbon material is used to increase the conductivity of the active material mixture. Therefore, carbon materials having relatively high conductivity, preferably carbon black such as acetylene black, furnace black, thermal black, channel black, ketjen black, powdery or fibrous graphite, and pitch-based or PAN-based carbon fiber, etc. Carbon fiber or the like is used. Among these, carbon black is particularly preferably used. These may be used alone or in combination of two or more.
上記炭素材料の配合量の上限は、成分(A)負極活物質100質量部に対して、5質量部であり、下限は1質量部であり、好ましくは3質量部である。上記上限を超えては、効果の著しい増大が認められず、その分、全体として活物質の割合が減少して電池寿命が低下する。一方、上記下限未満では、活物質合剤の導電性を高めることができず、電池寿命を高めることができない。 The upper limit of the amount of the carbon material is 5 parts by mass with respect to 100 parts by mass of the component (A) negative electrode active material, and the lower limit is 1 part by mass, preferably 3 parts by mass. If the above upper limit is exceeded, no significant increase in the effect is recognized, and the proportion of the active material is reduced as a whole, and the battery life is reduced. On the other hand, if it is less than the said minimum, the electroconductivity of an active material mixture cannot be raised and a battery life cannot be raised.
成分(C)と成分(D)との配合量の合計は、その上限が、成分(A)負極活物質100質量部に対して、10質量部である。下限は、成分(A)負極活物質100質量部に対して、2質量部であり、好ましくは8質量部であり、より好ましくは8質量部を超える量である。上記上限を超えては、効果の著しい増大が認められず、その分、全体として活物質の割合が減少して電池寿命が低下する。一方、上記下限未満では、電池寿命を高めることができない。 The upper limit of the total amount of component (C) and component (D) is 10 parts by mass with respect to 100 parts by mass of component (A) negative electrode active material. The lower limit is 2 parts by mass, preferably 8 parts by mass, and more preferably more than 8 parts by mass with respect to 100 parts by mass of the component (A) negative electrode active material. If the above upper limit is exceeded, no significant increase in the effect is recognized, and the proportion of the active material is reduced as a whole, and the battery life is reduced. On the other hand, if it is less than the above lower limit, the battery life cannot be increased.
成分(A) 負極活物質としては、鉛蓄電池の負極活物質として公知の物質、即ち、鉛粉、酸化鉛を使用することができる。これらは単独で使用してもよく、また併用してもよい。 As the component (A) negative electrode active material, materials known as a negative electrode active material of a lead storage battery, that is, lead powder and lead oxide can be used. These may be used alone or in combination.
本発明の鉛蓄電池用負極活物質合剤には、上記の各成分のほか、防縮剤として天然又は合成リグニン及び硫酸バリウムを含めることができる。リグニンは、負極活物質100質量部に対して、好ましくは0.1〜0.5質量部含めることができる。また、硫酸バリウムは、負極活物質100質量部に対して、好ましくは0.5〜3.0質量部含めることができる。これらを含めることにより、負極活物質の凝集を抑えて、充放電の繰り返しによる性能の低下を抑制することができる。 In addition to the above components, the negative electrode active material mixture for lead-acid batteries of the present invention can contain natural or synthetic lignin and barium sulfate as a shrinkage-preventing agent. Lignin can be included preferably in an amount of 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the negative electrode active material. Moreover, barium sulfate can be preferably included in an amount of 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the negative electrode active material. By including these, aggregation of a negative electrode active material can be suppressed and the performance fall by repetition of charging / discharging can be suppressed.
本発明の鉛蓄電池用負極活物質合剤は、通常、公知の方法に従って、鉛蓄電池用負極板を構成する基板に塗布ないし充填される。鉛蓄電池用負極板を構成する基板としては、公知のものを使用することができる。好ましくは、複数の多角形の活物質合剤充填用空間を有し、かつ該空間を成す多角形の辺の全部又は一部に突出部を有する基板が使用される。該突出部は、活物質合剤充填用空間を成す多角形の辺の全部に設けられていることが好ましい。該突出部が、活物質合剤に含まれる成分、とりわけ、成分(B)導電性繊維と絡まって活物質合剤の基板からの脱落を効果的に防止することができる。また、活物質合剤充填用空間を成す多角形は、特に制限はなく、好ましくは、三角形、長方形、正方形、五角形又は六角形であり得る。より好ましくは略正六角形の活物質合剤充填用空間が設けられる。該基板の多角形の空間は、好ましくは打ち抜きにより製造することができる。打ち抜きに際して、意図的にパリが形成されるように打ち抜くと、容易に突出部を形成せしめることができる。 The negative electrode active material mixture for a lead storage battery of the present invention is usually applied or filled into a substrate constituting the negative electrode plate for a lead storage battery according to a known method. A well-known thing can be used as a board | substrate which comprises the negative electrode plate for lead acid batteries. Preferably, a substrate having a plurality of polygonal active material mixture filling spaces and having protrusions on all or part of the sides of the polygons forming the spaces is used. The protrusions are preferably provided on all of the polygonal sides forming the space for filling the active material mixture. The protrusion can effectively prevent the active material mixture from falling off the substrate by being entangled with the components contained in the active material mixture, in particular, the component (B) conductive fibers. The polygon forming the active material mixture filling space is not particularly limited, and may preferably be a triangle, a rectangle, a square, a pentagon or a hexagon. More preferably, a substantially regular hexagonal active material mixture filling space is provided. The polygonal space of the substrate can preferably be produced by stamping. When punching out so that Paris is intentionally formed at the time of punching, the projecting portion can be easily formed.
このようにして得られた本発明の鉛蓄電池用負極板は、公知の方法に従って、鉛蓄電池へと組み立てられ得る。 The negative electrode plate for a lead storage battery of the present invention thus obtained can be assembled into a lead storage battery according to a known method.
実施例及び比較例で使用した物質及びその他の電池材料、並びに試験方法は下記の通りである。 Substances and other battery materials used in Examples and Comparative Examples, and test methods are as follows.
物質
<成分(A)>
鉛粉:粒子径2〜20μm、平均粒子径7.5μm
<成分(B)>
鉛繊維:直径20〜60μm、長さ3〜5mm
<成分(C)>
活性炭:粒子径3〜50μm、比表面積2400 m2/g
<成分(D)>
カーボンブラック:粒子径20〜100μm
<その他の成分>
硫酸バリウム
リグニン:日本製紙ケミカル株式会社製、バニレックスN(商標)
硫酸電解液:硫酸ナトリウム20グラムを水1リットルに溶解して製造した。比重は1.20である。
material
<Ingredient (A)>
Lead powder: particle size 2-20μm, average particle size 7.5μm
<Ingredient (B)>
Lead fiber: Diameter 20-60μm, length 3-5mm
<Ingredient (C)>
Activated carbon: particle size 3-50μm, specific surface area 2400 m 2 / g
<Ingredient (D)>
Carbon black: particle size 20-100μm
<Other ingredients>
Barium sulfate lignin: Nippon Paper Chemical Co., Ltd., Vanillex N (trademark)
Sulfuric acid electrolyte: manufactured by dissolving 20 grams of sodium sulfate in 1 liter of water. The specific gravity is 1.20.
電池材料
<基板>
負極基板として、図1及び2に示した基板(a)及び基板(b)を使用した。いずれの基板も略正六角形の活物質合剤充填用空間(1)を有している。基板(b)においては、空間を成す六角形の辺の全部に図2に示した突出部(2)を有している。基板(a)は該突出部を有していない。基板(a)及び(b)の寸法はいずれも、電極部が40.0×75mmであり、耳部が4×12.0mmであり、電極部及び耳部の厚さがいずれも2.0mmである。また、基板(b)の突出部を含めた厚さは3.0mmである。正六角形の穴の部分は直径6〜12mmである。
正極板の寸法は、電極部が40.0×73.0mmであり、耳部が4×12.0mmであり、電極部の厚さが4.0mmであり、かつ耳部の厚さが3.8mmである。
負極基板及び正極基板の材質は、いずれも鉛‐カルシウム合金である。
<リテーナーマットセパレーター>
日本板硝子株式会社製、FM920N(商標)、平均直径1μm以下の微細なガラス短繊維100質量部にシリカ微粉末10質量部を添加し、抄紙してマット状にしたものである。該リテーナーマットセパレーターは、20kPa加圧時の厚さが0.8mmである。
<電槽>
ABS樹脂製であり、寸法は65.0mm×150mm×85.0mm である。
Battery material
<Board>
As the negative substrate, the substrates (a) and (b) shown in FIGS. 1 and 2 were used. Each of the substrates has a substantially regular hexagonal active material mixture filling space (1). The substrate (b) has the protruding portions (2) shown in FIG. 2 on all of the hexagonal sides forming the space. The substrate (a) does not have the protrusion. As for the dimensions of the substrates (a) and (b), the electrode part is 40.0 × 75 mm, the ear part is 4 × 12.0 mm, and the electrode part and the ear part are both 2.0 mm in thickness. The thickness of the substrate (b) including the protruding portion is 3.0 mm. The regular hexagonal hole has a diameter of 6 to 12 mm.
The dimensions of the positive electrode plate are 40.0 × 73.0 mm for the electrode portion, 4 × 12.0 mm for the ear portion, 4.0 mm for the electrode portion, and 3.8 mm for the ear portion.
The negative electrode substrate and the positive electrode substrate are both made of lead-calcium alloy.
<Retainer mat separator>
Made by Nippon Sheet Glass Co., Ltd., FM920N (trademark), 10 parts by mass of silica fine powder is added to 100 parts by mass of fine glass short fibers having an average diameter of 1 μm or less, and paper is made into a mat shape. The retainer mat separator has a thickness of 0.8 mm when pressurized to 20 kPa.
<Battery>
Made of ABS resin, the dimensions are 65.0mm x 150mm x 85.0mm.
試験方法
<充放電サイクル寿命試験>
充電量/放電量が104%となるように放電電流0.13CA及び充電電流0.14CAとして実施した。該試験は25℃環境温度で実施した。該試験において放電電圧が0Vとなった時点でのサイクル数を電池寿命とした。
Test method
<Charge / discharge cycle life test>
The discharge current was 0.13 CA and the charge current was 0.14 CA so that the charge amount / discharge amount was 104%. The test was conducted at an ambient temperature of 25 ° C. The battery life was defined as the number of cycles when the discharge voltage reached 0 V in the test.
(実施例1〜9)
表1に示した配合量(質量部)で各成分を混合した。次いで、イオン交換水及び希硫酸(比重:1.4)を、鉛粉100質量部に対して、夫々、15質量部及び6質量部添加して混合し、負極活物質合剤ペーストを製造した。該ペーストを、表1に示した種類の各負極基板に充填し、次いで、40℃、湿度95%で24時間熟成した後、乾燥して未化成の負極板を製造した。
(Examples 1 to 9)
Each component was mixed in the blending amount (parts by mass) shown in Table 1. Next, 15 parts by mass and 6 parts by mass of ion-exchanged water and dilute sulfuric acid (specific gravity: 1.4) were added and mixed with 100 parts by mass of lead powder, respectively, to produce a negative electrode active material mixture paste. The paste was filled in each negative electrode substrate of the type shown in Table 1, and then aged for 24 hours at 40 ° C. and 95% humidity, and then dried to produce an unformed negative electrode plate.
一方、正極活物質としての酸化鉛100質量部に対して、イオン交換水及び希硫酸(比重:1.27)を夫々、10質量部及び10質量部添加して混合し、正極活物質ペーストを製造した。該ペーストを正極基板に充填し、次いで、40℃、湿度95%で24時間熟成した後、乾燥して未化成の正極板を製造した。 On the other hand, with respect to 100 parts by mass of lead oxide as the positive electrode active material, 10 parts by mass and 10 parts by mass of ion-exchanged water and dilute sulfuric acid (specific gravity: 1.27) were added and mixed to produce a positive electrode active material paste. . The paste was filled in a positive electrode substrate, then aged at 40 ° C. and 95% humidity for 24 hours, and then dried to produce an unchemically formed positive electrode plate.
このようにして製造された負極板4枚と正極板3 枚とをリテーナーマットセパレーターを介して積層し、かつ同極性の耳列を溶接して、実施例毎に極板群を組み立てた。各極板群を夫々、ABS樹脂製の電槽に収納して密閉し、次いで、硫酸電解液(比重:1.20)50.0ccを注入した。これを40℃において、理論容量の200%過充電して電槽化成を実施し、電圧2Vの密閉型鉛蓄電池を製造した。各電池の電解液の比重は1.260であった。また、化成後に実施した各電池の容量試験において、5時間率容量は7Ahであった。 The four negative electrode plates and the three positive electrode plates thus manufactured were laminated via a retainer mat separator, and the same polarity ear rows were welded to assemble an electrode plate group for each example. Each electrode plate group was housed in an ABS resin battery case and sealed, and then 50.0 cc of sulfuric acid electrolyte (specific gravity: 1.20) was injected. This was overcharged at 40 ° C by 200% of its theoretical capacity to form a battery case, and a sealed lead-acid battery with a voltage of 2V was manufactured. The specific gravity of the electrolyte of each battery was 1.260. Further, in the capacity test of each battery conducted after the chemical conversion, the 5-hour rate capacity was 7 Ah.
(比較例1〜9)
表2に示した配合量(質量部)及び負極板の種類を使用した以外は、上記の実施例と同一にして実施した。
(Comparative Examples 1 to 9)
The same procedure as in the above example was performed except that the blending amount (part by mass) and the type of the negative electrode plate shown in Table 2 were used.
上記のようにして製造した、実施例及び比較例の各密閉型鉛蓄電池を使用して、充放電サイクル寿命試験を実施した。結果を表1及び表2に示した。表1及び表2において、各成分、硫酸バリウム及びリグニンの単位はいずれも質量部である。 A charge / discharge cycle life test was conducted using each of the sealed lead-acid batteries of Examples and Comparative Examples produced as described above. The results are shown in Tables 1 and 2. In Tables 1 and 2, the units of each component, barium sulfate and lignin are all parts by mass.
実施例1は、負極基板として突出部を備えていない従来の基板を使用したものである。電池寿命は比較的短いものの、従来の活物質合剤を使用した比較例1に比べて、より長い電池寿命を示した。実施例2は、負極板として突出部を備えた基板を使用したものである。実施例1と比較して、活物質の脱落量を低減することができ、著しく良好な電池寿命を示した。実施例3は、実施例2に対して、成分(B)鉛繊維の配合量を増やしたものである。更に、電池寿命が増大した。これは、鉛繊維量の増加により、成分(C)活性炭及び成分(D)カーボンブラックの鉛繊維への担持がより進んだためと考えられる。実施例4及び5は、活性炭とカーボンブラックとの合計量を実施例3と同一にして、夫々、活性炭とカーボンブラックの配合量を最大にしたものである。これらの実施例から活性炭の配合量を増加すると、更に、電池寿命を増大させ得ることが分かった。実施例6は、実施例3と鉛繊維の配合量を同じにして、活性炭とカーボンブラックの配合量を最小にしたものである。電池寿命は低下したものの、鉛蓄電池として十分に満足のいくものであった。実施例7は、実施例3と鉛繊維の配合量を同じにして、活性炭とカーボンブラックの配合量を最大にしたものである。鉛蓄電池として十分に満足のいく電池寿命を示した。実施例8は、実施例3に対して、カーボンブラックの配合量を増加したものである。実施例9は、実施例3に対して、活性炭の配合量を増加したものである。いずれも、実施例3と比較して、寿命が15〜20サイクル増加した。 Example 1 uses a conventional substrate having no protrusion as a negative electrode substrate. Although the battery life was relatively short, the battery life was longer than that of Comparative Example 1 using a conventional active material mixture. In Example 2, a substrate provided with a protrusion as a negative electrode plate is used. Compared with Example 1, it was possible to reduce the amount of active material falling off, and the battery life was extremely good. In Example 3, the amount of the component (B) lead fiber is increased with respect to Example 2. In addition, battery life has increased. This is thought to be due to the fact that component (C) activated carbon and component (D) carbon black are more supported on lead fibers due to the increase in the amount of lead fibers. In Examples 4 and 5, the total amount of activated carbon and carbon black was made the same as in Example 3, and the blending amount of activated carbon and carbon black was maximized, respectively. From these examples, it was found that increasing the amount of activated carbon can further increase the battery life. In Example 6, the blending amount of lead fibers is the same as in Example 3, and the blending amount of activated carbon and carbon black is minimized. Although the battery life was reduced, it was sufficiently satisfactory as a lead-acid battery. In Example 7, the blending amount of lead fibers is the same as in Example 3, and the blending amount of activated carbon and carbon black is maximized. The battery life was sufficiently satisfactory as a lead-acid battery. Example 8 is obtained by increasing the amount of carbon black added to Example 3. Example 9 is obtained by increasing the blending amount of activated carbon with respect to Example 3. In all cases, the life increased by 15 to 20 cycles as compared with Example 3.
一方、比較例1及び2は、いずれも成分(b)鉛繊維を含まないものである。負極基板の種類に関係なく電池寿命は著しく悪いものであった。充放電サイクル寿命試験の後、これらの電池を解体したところ負極板中のカーボンブラックが流出しセパレータに付着していた。このように、鉛繊維を含まないものでは多量のカーボンブラックの流出が認められた。比較例3は、実施例4に対してカーボンブラックを配合しなかったものである。また、比較例4は、実施例5に対して活性炭を配合しなかったものである。いずれの比較例においても、電池寿命は著しく悪いものであった。比較例5は、活性炭及びカーボンブラックの配合量を、本発明の範囲を超えて増加させたものである。電池寿命は著しく悪いものであった。これは、これら成分を必要以上に増やしても効果が飽和して所期の効果が得られず、その分、全体として活物質量が減少して生じたものと考えられる。比較例6は、実施例3に対して、鉛繊維の配合量を本発明の範囲を超えて増加させたものである。電池寿命は著しく悪いものであった。これは、鉛繊維を必要以上に増やしても効果が飽和して所期の効果が得られず、その分、全体として活物質量が減少して生じたものと考えられる。比較例7及び8は、活性炭とカーボンブラックとの合計量は本発明の範囲内にあるが、いずれかの成分が本発明の範囲を超えたものである。いずれにおいても、電池寿命は著しく悪いものであった。比較例9は、活性炭とカーボンブラックとの合計量は本発明の範囲内にあるが、いずれの成分の配合量も本発明の範囲未満のものである。電池寿命は著しく悪いものであった。 On the other hand, Comparative Examples 1 and 2 do not contain any component (b) lead fiber. Regardless of the type of the negative electrode substrate, the battery life was extremely bad. When these batteries were disassembled after the charge / discharge cycle life test, carbon black in the negative electrode plate flowed out and adhered to the separator. As described above, a large amount of carbon black was found to flow out without the lead fiber. In Comparative Example 3, no carbon black was added to Example 4. In Comparative Example 4, activated carbon was not added to Example 5. In any of the comparative examples, the battery life was extremely bad. In Comparative Example 5, the amounts of activated carbon and carbon black are increased beyond the scope of the present invention. The battery life was extremely bad. It is considered that this is because the effect is saturated and the desired effect cannot be obtained even if these components are increased more than necessary, and the amount of the active material is reduced as a whole. In Comparative Example 6, the amount of lead fibers added to Example 3 is increased beyond the scope of the present invention. The battery life was extremely bad. It is considered that this is because the effect is saturated and the desired effect cannot be obtained even if the lead fiber is increased more than necessary, and the amount of the active material is reduced as a whole. In Comparative Examples 7 and 8, the total amount of activated carbon and carbon black is within the scope of the present invention, but any component exceeds the scope of the present invention. In any case, the battery life was extremely bad. In Comparative Example 9, the total amount of activated carbon and carbon black is within the range of the present invention, but the amount of any component is less than the range of the present invention. The battery life was extremely bad.
本発明の鉛蓄電池用負極活物質合剤は、負極の電気二重層容量を増大させ得るばかりではなく、鉛蓄電池に著しく長い電池寿命を付与し得る。従って、本発明の鉛蓄電池用負極活物質合剤を備えた鉛蓄電池は、風力発電及び太陽光発電の蓄電設備に有効に使用し得る。 The negative electrode active material mixture for a lead storage battery of the present invention can not only increase the electric double layer capacity of the negative electrode, but also can impart a remarkably long battery life to the lead storage battery. Therefore, the lead storage battery provided with the negative electrode active material mixture for the lead storage battery of the present invention can be effectively used for power storage facilities for wind power generation and solar power generation.
1 活物質合剤充填用空間
2 突出部
1 Active material mixture filling space 2 Projection
Claims (7)
(B)耐硫酸性を有する導電性繊維(成分(C)及び(D)を除く) 1〜2質量部、
(C)活性炭 1〜5質量部、及び
(D)1種類以上の炭素材料(成分(C)を除く) 各1〜5質量部
(ここで、成分(C)と成分(D)との合計量が2〜10質量部である)
を含む鉛蓄電池用負極活物質合剤。 (A) 100 parts by mass of the negative electrode active material,
(B) sulfuric acid resistant conductive fiber (excluding components (C) and (D)) 1-2 parts by weight,
(C) 1-5 parts by mass of activated carbon, and
(D) 1 or more types of carbon materials (excluding component (C)) 1 to 5 parts by mass each
(Here, the total amount of component (C) and component (D) is 2 to 10 parts by mass)
A negative electrode active material mixture for lead-acid batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008140635A JP4970348B2 (en) | 2008-05-29 | 2008-05-29 | Negative electrode active material mixture for lead-acid batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008140635A JP4970348B2 (en) | 2008-05-29 | 2008-05-29 | Negative electrode active material mixture for lead-acid batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009289576A JP2009289576A (en) | 2009-12-10 |
JP4970348B2 true JP4970348B2 (en) | 2012-07-04 |
Family
ID=41458598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008140635A Expired - Fee Related JP4970348B2 (en) | 2008-05-29 | 2008-05-29 | Negative electrode active material mixture for lead-acid batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4970348B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201136010A (en) * | 2010-01-21 | 2011-10-16 | Gs Yuasa Int Ltd | Negative electrode plate using in lead storage cell, fabricating method thereof, and lead storage cell |
JP5618254B2 (en) * | 2010-10-18 | 2014-11-05 | 株式会社Gsユアサ | Lead acid battery |
JP5578123B2 (en) * | 2011-03-29 | 2014-08-27 | 株式会社Gsユアサ | Liquid lead-acid battery |
TR201908697T4 (en) * | 2012-09-28 | 2019-07-22 | Cabot Corp | Method for making active ingredient compositions containing high surface area carbonaceous materials. |
US10014520B2 (en) * | 2012-10-31 | 2018-07-03 | Exide Technologies Gmbh | Composition that enhances deep cycle performance of valve-regulated lead-acid batteries filled with gel electrolyte |
JP6070126B2 (en) * | 2012-12-04 | 2017-02-01 | 株式会社Gsユアサ | Negative electrode for lead acid battery |
CN107240686B (en) * | 2017-06-08 | 2020-02-18 | 界首市南都华宇电源有限公司 | High-performance large-current start-stop battery lead paste and start-stop battery |
KR102105993B1 (en) * | 2018-10-23 | 2020-05-04 | 주식회사 한국아트라스비엑스 | Method for manufacturing negative electrode plate using micro metal fiber additive for lead acid battery |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS48101523A (en) * | 1972-04-10 | 1973-12-20 | ||
JPS58117645A (en) * | 1981-12-29 | 1983-07-13 | Shin Kobe Electric Mach Co Ltd | Expanded grid for lead storage battery and device used in manufacturing it |
JPS60172164A (en) * | 1984-02-16 | 1985-09-05 | Yuasa Battery Co Ltd | Plate for lead-acid battery |
JPS63152868A (en) * | 1986-12-16 | 1988-06-25 | Matsushita Electric Ind Co Ltd | Lead-acid battery |
JPH0757736A (en) * | 1993-08-17 | 1995-03-03 | Obara Kinzoku Kogyo Kk | Plate latticed body for lead-acid battery |
JPH06283176A (en) * | 1993-03-29 | 1994-10-07 | Japan Storage Battery Co Ltd | Sealed lead-acid battery |
JP3185508B2 (en) * | 1993-12-29 | 2001-07-11 | 日本電池株式会社 | Sealed lead-acid battery |
JPH11329476A (en) * | 1998-05-07 | 1999-11-30 | Japan Storage Battery Co Ltd | Sealed lead-acid battery |
JP2001043849A (en) * | 1999-08-02 | 2001-02-16 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
JP2001332264A (en) * | 2000-05-25 | 2001-11-30 | Shin Kobe Electric Mach Co Ltd | Lead battery with miniature control valve |
JP5017746B2 (en) * | 2001-04-18 | 2012-09-05 | パナソニック株式会社 | Control valve type lead acid battery |
JP4364460B2 (en) * | 2001-08-07 | 2009-11-18 | 古河電池株式会社 | Negative electrode for lead acid battery |
JP2005050632A (en) * | 2003-07-28 | 2005-02-24 | Shin Kobe Electric Mach Co Ltd | Control valve type lead storage battery |
-
2008
- 2008-05-29 JP JP2008140635A patent/JP4970348B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009289576A (en) | 2009-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4970348B2 (en) | Negative electrode active material mixture for lead-acid batteries | |
US6617072B2 (en) | Positive active electrode composition with graphite additive | |
KR101828602B1 (en) | Improved energy storage device | |
CN102593529B (en) | Variable-polarity lead-acid battery and using method thereof | |
JP6400016B2 (en) | Composition for enhancing deep cycle performance of sealed lead-acid battery filled with gel electrolyte | |
CN102569818A (en) | Positive plate for high-intensity grid of lead acid storage battery | |
JP5182467B2 (en) | Control valve type lead storage battery manufacturing method | |
TWI545831B (en) | Control valve type leaded battery | |
CN201956418U (en) | Reinforced type plate grid positive plate of lead-acid battery | |
JP3936157B2 (en) | Manufacturing method for sealed lead-acid batteries | |
Bača et al. | Negative lead-acid battery electrodes doped with glass fibres | |
JP2016177909A (en) | Control valve type lead-acid battery | |
CN101707250A (en) | Positive plate of lead-acid accumulator | |
JP2011210640A (en) | Positive active material for lead-acid battery and positive electrode plate for lead-acid battery formed by filling the same | |
KR102424570B1 (en) | Method for manufacturing electrode plate of lead acid battery with improved adhesion between active materials by adding aqueous SBR-CMC | |
CN105810927B (en) | Lead-carbon battery negative electrode material | |
KR102225190B1 (en) | Manufacturing method of positive electrode active material for lead acid battery using Water based binder | |
JP2010067583A (en) | Control valve type lead-acid storage battery | |
JP2004327299A (en) | Sealed lead-acid storage battery | |
JP5598368B2 (en) | Lead acid battery and negative electrode active material thereof | |
JP2010257673A (en) | Lead storage battery | |
JP4984430B2 (en) | Method for producing paste active material for negative electrode | |
KR20210034314A (en) | Manufacturing method of positive electrode active material for lead acid battery using porous titanium | |
KR102225186B1 (en) | Method for manufacturing anode active material for lead-acid battery using hollow spiral carbon fiber | |
KR102305189B1 (en) | Method for manufacturing anode active material for lead-acid battery using schwarzite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120404 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |