JP5598368B2 - Lead acid battery and negative electrode active material thereof - Google Patents

Lead acid battery and negative electrode active material thereof Download PDF

Info

Publication number
JP5598368B2
JP5598368B2 JP2011031893A JP2011031893A JP5598368B2 JP 5598368 B2 JP5598368 B2 JP 5598368B2 JP 2011031893 A JP2011031893 A JP 2011031893A JP 2011031893 A JP2011031893 A JP 2011031893A JP 5598368 B2 JP5598368 B2 JP 5598368B2
Authority
JP
Japan
Prior art keywords
mass
negative electrode
carbon black
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011031893A
Other languages
Japanese (ja)
Other versions
JP2012174342A (en
Inventor
あや 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2011031893A priority Critical patent/JP5598368B2/en
Publication of JP2012174342A publication Critical patent/JP2012174342A/en
Application granted granted Critical
Publication of JP5598368B2 publication Critical patent/JP5598368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明は鉛蓄電池の負極活物質に関する。   The present invention relates to a negative electrode active material for a lead-acid battery.

近年、自動車は燃費改善や排出ガスの削減が強く求められるようになり、鉛蓄電池はアイドリングストップに代表されるような不完全充電状態(PSOC:Partial State of Charge)で頻繁に充放電が繰り返されるといった、従来よりも過酷な条件で使用される機会が増加している。また、太陽光発電や風力発電などの自然エネルギーを蓄電池に貯蔵する場合も同様に、PSOC条件下での使用が繰り返される。PSOC条件下では、負極のサルフェーションにより鉛蓄電池が早期に寿命を迎えることがある。サルフェーションは還元困難な硫酸鉛が負極活物質に蓄積するため、鉛蓄電池の容量が低下する現象である。サルフェーションを抑制するため、カーボンブラックからなる導電性のネットワークを負極活物質中に設け、硫酸鉛を還元する際の電流経路とすることが知られている。   In recent years, there has been a strong demand for automobiles to improve fuel economy and reduce exhaust emissions, and lead-acid batteries are frequently charged and discharged repeatedly in an incompletely charged state (PSOC: Partial State of Charge) as represented by idling stop. The opportunity to be used under severer conditions than before is increasing. Similarly, when natural energy such as solar power generation or wind power generation is stored in a storage battery, use under PSOC conditions is repeated. Under PSOC conditions, lead-acid batteries may reach the end of their life due to negative electrode sulfation. Sulfation is a phenomenon in which the capacity of lead-acid batteries decreases because lead sulfate, which is difficult to reduce, accumulates in the negative electrode active material. In order to suppress sulfation, it is known that a conductive network made of carbon black is provided in the negative electrode active material to provide a current path for reducing lead sulfate.

しかしながらカーボンブラックの粒子は負極活物質細孔径よりも細かいので、充電時に水素ガスが発生する際等に負極活物質から流出し失効する。カーボンブラックを負極活物質に固定するため、特許文献1(特開2007-328979)は、繊維径が10μm、繊維長が2mmのポリプロピレン繊維をカーボンブラックと共に、負極活物質に添加することを開示している。そして繊維径は1〜50μmが好ましく、繊維長は4mm以下が好ましいとしている。しかしながら発明者は、径が1μm以上の繊維ではサルフェーションの抑制効果が限られていることを確認した(図1,図3,図5)。   However, since the carbon black particles are finer than the pore diameter of the negative electrode active material, the hydrogen black gas flows out of the negative electrode active material when hydrogen gas is generated at the time of charging. In order to fix carbon black to the negative electrode active material, Patent Document 1 (Japanese Patent Laid-Open No. 2007-328979) discloses that polypropylene fiber having a fiber diameter of 10 μm and a fiber length of 2 mm is added to the negative electrode active material together with carbon black. ing. The fiber diameter is preferably 1 to 50 μm, and the fiber length is preferably 4 mm or less. However, the inventor has confirmed that the suppression effect of sulfation is limited for fibers having a diameter of 1 μm or more (FIGS. 1, 3 and 5).

特許文献2(特開平6-140043)はカーボンウィスカーあるいはグラファイトウィスカーを、カーボンブラックと共に負極活物質に添加することを開示している。カーボンウィスカー及びグラファイトウィスカーは導電性で、カーボンブラックと共に導電性のネットワークを構成する。しかしながらカーボンウィスカー及びグラファイトウィスカーは極めて高価な材料である。   Patent Document 2 (Japanese Patent Laid-Open No. 6-140043) discloses that carbon whiskers or graphite whiskers are added to the negative electrode active material together with carbon black. Carbon whiskers and graphite whiskers are conductive and form a conductive network with carbon black. However, carbon whiskers and graphite whiskers are extremely expensive materials.

特開2007-328979JP2007-328979 特開平6-140043JP-A-6-140043

この発明の課題は、高価なカーボンウィスカーあるいはグラファイトウィスカーを用いず、かつ効果的に負極活物質からのカーボンブラックの流出を抑制することにある。   An object of the present invention is to suppress the outflow of carbon black from the negative electrode active material without using expensive carbon whiskers or graphite whiskers.

この発明は、0.1質量%以上のカーボンブラックと平均繊維径が0.9μm以下であり、且つ、平均繊維長が5μm以上であり、且つ、0.05質量%以上の非導電性繊維物質とを含有する(ただし、非導電性繊維物質にカーボンブラックを担持させて導電性添加剤を形成させたものを除く)鉛蓄電池の負極活物質にある。
また、この発明は、上記の負極活物質を保持する負極板と、正極板と、電解液とを備える、鉛蓄電池にある。
The present invention, carbon black of 0.1 weight%, average fiber diameter of not more than 0.9 .mu.m, and is the average fiber length of 5μm or more and containing a non-conductive fiber material of 0.05 mass% or more, the However, it is in the negative electrode active material of a lead storage battery (except for the case where carbon black is supported on a non-conductive fiber material to form a conductive additive) .
Moreover, this invention exists in a lead acid battery provided with the negative electrode plate holding said negative electrode active material, a positive electrode plate, and electrolyte solution.

この発明では、負極活物質の細孔に非導電性繊維物質を分散させて、カーボンブラックの流出を抑制する。非導電性繊維物質はカーボンブラックの流出を抑制する安価な材料で良く、細孔中にネットを構成することにより、カーボンブラックの流出を抑制する。以上のように、この発明での非導電性繊維物質は、カーボンウィスカー、グラファイトウィスカーのように、それ自体が導電性の経路となるものではない。また非導電性繊維物質は繊維径が0.9μm以下の小径の繊維なので、少量でも細孔からのカーボンブラックの流出を抑制できる。この結果、硫酸鉛の還元を容易にして、PSOC下での鉛蓄電池の寿命性能を向上させ、またカーボンブラックの流出による電解液の汚染を抑制する。   In the present invention, the non-conductive fiber material is dispersed in the pores of the negative electrode active material to suppress the outflow of carbon black. The non-conductive fiber substance may be an inexpensive material that suppresses the outflow of carbon black, and suppresses the outflow of carbon black by forming a net in the pores. As described above, the non-conductive fiber material in the present invention does not itself become a conductive path like carbon whisker and graphite whisker. Further, since the non-conductive fiber material is a small fiber having a fiber diameter of 0.9 μm or less, the outflow of carbon black from the pores can be suppressed even with a small amount. As a result, the reduction of lead sulfate is facilitated, the life performance of the lead storage battery under PSOC is improved, and the contamination of the electrolyte due to the outflow of carbon black is suppressed.

非導電性繊維物質は負極活物質の細孔に存在してカーボンブラックの流出を防ぐ、一種のネットとして作用する。従ってその種類は任意であるが、好ましくは非導電性繊維物質をグラスファイバーとする。グラスファイバーでは、繊維径が0.9μm以下のものを工業的に入手できるので、実用的である。また好ましくは、非導電性繊維物質の平均繊維径を0.1μm以上0.9μm以下とする。前記のように非導電性繊維物質はカーボンブラックの流出を防ぐネットとして作用するので、繊維径が小さいほど有効で、平均繊維径が0.9μm以下で大きな効果が得られ、1.2μm以上では効果が小さい(図1,図3,図5)。この一方で、繊維径が0.1μm未満のものは紡糸が難しい。そこで平均繊維径を0.1μm以上0.9μm以下とすることが好ましい。特に好ましくは、負極活物質は非導電性繊維物質を0.05質量%以上1.0質量%以下含有する。図1に示すように、0.05質量%の非導電性繊維物質で既に充分な効果があり、過剰量の含有は好ましくないので1.0質量%以下が好ましい。非導電性繊維物質は負極活物質の細孔からカーボンブラックが流出することを抑制するネットとして作用するので、非導電性物質自体の流出を防ぐために負極活物質の平均細孔径(1〜2μm)よりも長さのある5μm以上の平均繊維長が好ましく、活物質ペーストの作りやすさ等の理由から、5mm以下の平均繊維長が好ましい。   The non-conductive fiber material acts as a kind of net that exists in the pores of the negative electrode active material and prevents the outflow of carbon black. Therefore, although the kind is arbitrary, Preferably a nonelectroconductive fiber substance is used as a glass fiber. A glass fiber having a fiber diameter of 0.9 μm or less is industrially available, and is practical. Preferably, the average fiber diameter of the non-conductive fiber material is 0.1 μm or more and 0.9 μm or less. As described above, the non-conductive fiber material acts as a net for preventing the carbon black from flowing out. Therefore, the smaller the fiber diameter, the more effective, and the larger the average fiber diameter is 0.9 μm or less, the more effective is 1.2 μm or more. Small (FIGS. 1, 3 and 5). On the other hand, spinning is difficult when the fiber diameter is less than 0.1 μm. Therefore, the average fiber diameter is preferably 0.1 μm or more and 0.9 μm or less. Particularly preferably, the negative electrode active material contains 0.05% by mass or more and 1.0% by mass or less of the non-conductive fiber material. As shown in FIG. 1, 0.05% by mass of the non-conductive fiber material already has a sufficient effect, and excessive content is not preferred, so 1.0% by mass or less is preferred. Since the non-conductive fiber material acts as a net that suppresses the outflow of carbon black from the pores of the negative electrode active material, the average pore size (1-2 μm) of the negative electrode active material to prevent the non-conductive material itself from flowing out An average fiber length of 5 μm or more is preferable, and an average fiber length of 5 mm or less is preferable for reasons such as ease of making an active material paste.

好ましくは、負極活物質はカーボンブラックを0.1質量%以上10質量%以下含有する。なおカーボンブラックの種類は、アセチレンブラック、ファーネスブラック、ケッチェンブラック等任意である。図2,図4,図6に示すように、カーボンブラックが0.1質量%よりも多くなると、非導電性物質によりカーボンの流出を抑える効果が高くなり、過剰に含有すると非導電性物質では抑えきれない電解液の汚染、負極活物質中の鉛粉含有量の減少等の弊害が生じるので、好ましくは10質量%以下含有させる。   Preferably, the negative electrode active material contains 0.1% by mass or more and 10% by mass or less of carbon black. The type of carbon black is arbitrary such as acetylene black, furnace black, and ketjen black. As shown in FIGS. 2, 4, and 6, when the amount of carbon black exceeds 0.1% by mass, the effect of suppressing the outflow of carbon is increased by the non-conductive substance, and when it is excessively contained, the non-conductive substance can be suppressed. Since there are adverse effects such as contamination of the electrolyte solution and a decrease in the content of lead powder in the negative electrode active material, the content is preferably 10% by mass or less.

最も好ましくは、非導電性繊維物質の平均繊維径を0.5μm以上0.9μm以下、含有量を0.05質量%以上0.8質量%以下、カーボンブラックの含有量を1.0質量%以上3質量%以下とする。平均繊維径が0.5μm以上0.9μm以下の非導電性繊維物質は工業的に入手が容易である。また図3と図5の比較から明らかなように、含有量を0.3質量%から0.8質量%へと増しても効果は余り増さないので、非導電性繊維物質の含有量は0.05質量%以上0.8質量%以下が好ましい。またカーボンブラックの効果は1.5質量%付近から飽和するので、含有量は1.0質量%以上3質量%以下が好ましい。   Most preferably, the non-conductive fiber material has an average fiber diameter of 0.5 to 0.9 μm, a content of 0.05 to 0.8% by mass, and a carbon black content of 1.0 to 3% by mass. Nonconductive fiber materials having an average fiber diameter of 0.5 μm or more and 0.9 μm or less are easily available industrially. Further, as is clear from the comparison between FIG. 3 and FIG. 5, the effect is not so increased even if the content is increased from 0.3% by mass to 0.8% by mass, so the content of the non-conductive fiber material is 0.05% by mass or more. 0.8 mass% or less is preferable. Further, since the effect of carbon black is saturated from around 1.5% by mass, the content is preferably 1.0% by mass or more and 3% by mass or less.

鉛蓄電池の寿命までのサイクル数と、グラスファイバー(0.05質量%含有)の繊維径との関係を示す特性図Characteristic diagram showing the relationship between the number of cycles until the life of a lead-acid battery and the fiber diameter of glass fiber (containing 0.05% by mass) 鉛蓄電池の寿命までのサイクル数と、カーボンブラックの含有量との関係を示す特性図で、グラスファイバーを0.05質量%含有A characteristic diagram showing the relationship between the number of cycles until the life of a lead-acid battery and the content of carbon black, containing 0.05% by mass of glass fiber 鉛蓄電池の寿命までのサイクル数と、グラスファイバー(0.3質量%含有)の繊維径との関係を示す特性図Characteristic diagram showing the relationship between the number of cycles until the life of a lead-acid battery and the fiber diameter of glass fiber (containing 0.3 mass%) 鉛蓄電池の寿命までのサイクル数と、カーボンブラックの含有量との関係を示す特性図で、グラスファイバーを0.3質量%含有A characteristic diagram showing the relationship between the number of cycles to the life of a lead-acid battery and the content of carbon black, containing 0.3% by mass of glass fiber 鉛蓄電池の寿命までのサイクル数と、グラスファイバー(0.8質量%含有)の繊維径との関係を示す特性図Characteristic diagram showing the relationship between the number of cycles to the life of a lead-acid battery and the fiber diameter of glass fiber (containing 0.8% by mass) 鉛蓄電池の寿命までのサイクル数と、カーボンブラックの含有量との関係を示す特性図で、グラスファイバーを0.8質量%含有A characteristic diagram showing the relationship between the number of cycles until the life of a lead-acid battery and the content of carbon black, containing 0.8% by mass of glass fiber 平均繊維径0.7μm,平均繊維長5μmのグラスファイバーを0.3質量%含有する際の、カーボンブラックの含有量と鉛蓄電池の寿命までのサイクル数との関係を示す特性図Characteristic diagram showing the relationship between the carbon black content and the number of cycles until the life of the lead-acid battery when containing 0.3% by mass of glass fiber with an average fiber diameter of 0.7μm and an average fiber length of 5μm

以下に、本発明の実施の態様を示す。本発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施の態様を適宜に変更できる。   Hereinafter, embodiments of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed according to common knowledge of the person skilled in the art and disclosure of prior art.

鉛蓄電池の試作
平均一次粒子径が35nmのアセチレンブラックをカーボンブラックとし、平均繊維径が0.5〜2.5μmで平均繊維長が5μm〜5mmのグラスファイバーを非導電性繊維物質として、鉛粉、リグニン、硫酸バリウムを加えて負極活物質を製造した。カーボンブラックの種類と粒子径は任意で、ファーネスブラック、オイルブラック、ケッチェンブラック等でも良く、平均一次粒子径は10nm以上100nm以下が好ましい。非導電性繊維物質の種類は任意で、グラスファイバー以外に合成樹脂繊維等でも良い。非導電性繊維物質は平均繊維径が小さいほど、カーボンブラックの流出を防止する効果が高いので、平均繊維径は0.1μm以上で0.9μm以下とし、0.5μm未満のものは製造が困難なので、好ましくは平均繊維径を0.5μm以上0.9μm以下とする。非導電性繊維物質が負極活物質から流出することを抑制するため、その平均繊維長は負極活物質の平均細孔径よりも長さのある5μm以上が好ましく、例えば5μm以上5mm以下とする。
Trial production of lead-acid battery Acetylene black with an average primary particle size of 35 nm is carbon black, glass fiber with an average fiber diameter of 0.5 to 2.5 μm and an average fiber length of 5 μm to 5 mm is used as a non-conductive fiber material, lead powder, lignin, Barium sulfate was added to produce a negative electrode active material. The type and particle size of carbon black are arbitrary and may be furnace black, oil black, ketjen black, etc. The average primary particle size is preferably 10 nm or more and 100 nm or less. The type of the non-conductive fiber material is arbitrary, and synthetic resin fibers other than glass fibers may be used. The smaller the average fiber diameter of the non-conductive fiber material, the higher the effect of preventing the outflow of carbon black. Therefore, the average fiber diameter should be 0.1 μm or more and 0.9 μm or less. The average fiber diameter is 0.5 μm or more and 0.9 μm or less. In order to prevent the nonconductive fiber material from flowing out of the negative electrode active material, the average fiber length is preferably 5 μm or more, for example, 5 μm or more and 5 mm or less, which is longer than the average pore diameter of the negative electrode active material.

上記のアセチレンブラック(以下単にカーボンブラックということがある)の含有量を0〜10質量%の範囲で変え、また非導電性繊維物質の含有量を0〜5質量%の範囲で変え、非導電性繊維物質の平均繊維長と平均繊維径とを変えて、負極活物質原料を製造した。負極活物質原料は、アセチレンブラックと非導電性繊維物質の他に、リグニンを0.2質量%、硫酸バリウムを0.5質量%含有し、残部が鉛粉で、合計を100質量%とする。ここではボールミル法による鉛粉を用いたが、鉛粉の製造方法は任意である。またリグニン及び硫酸バリウムの有無は任意で、平均繊維径が1μm以上の他の非導電性繊維物質、例えばアクリル樹脂繊維を添加しても良い。負極活物質原料にイオン交換水と希硫酸とを滴下しつつ混練し、鉛合金からなる負極格子に塗布して負極板とし、定法に従って熟成と乾燥とを施した。   The content of the above acetylene black (hereinafter sometimes simply referred to as carbon black) is changed in the range of 0 to 10% by mass, and the content of the nonconductive fiber material is changed in the range of 0 to 5% by mass to The negative electrode active material raw material was manufactured by changing the average fiber length and the average fiber diameter of the conductive fiber material. The negative electrode active material raw material contains 0.2% by mass of lignin and 0.5% by mass of barium sulfate in addition to acetylene black and a non-conductive fiber material, and the balance is lead powder with a total of 100% by mass. Here, the lead powder by the ball mill method was used, but the method for producing the lead powder is arbitrary. The presence or absence of lignin and barium sulfate is optional, and other non-conductive fiber materials having an average fiber diameter of 1 μm or more, such as acrylic resin fibers, may be added. Ion exchange water and dilute sulfuric acid were added dropwise to the negative electrode active material raw material and kneaded, applied to a negative electrode lattice made of a lead alloy to form a negative electrode plate, and subjected to aging and drying according to a conventional method.

正極活物質原料は、ボールミル法による鉛粉にイオン交換水と希硫酸とを滴下しつつ混練し、鉛合金からなる正極格子に塗布して正極板とし、熟成と乾燥とを施した。乾燥後の負極板を微孔性で袋状のポリエチレンセパレータに収容し、1枚の負極板を2枚の正極板で両側から挟んで電槽に挿入し、希硫酸を加えて電槽化成を行った。以上のようにして、実施例及び比較例の単セルから成る鉛蓄電池を試作した。   The raw material for the positive electrode active material was kneaded while dropping ion-exchanged water and dilute sulfuric acid into lead powder produced by a ball mill method, applied to a positive electrode grid made of a lead alloy to form a positive electrode plate, and subjected to aging and drying. The dried negative electrode plate is housed in a microporous, bag-like polyethylene separator, and one negative electrode plate is sandwiched between two positive electrode plates from both sides and inserted into a battery case, and dilute sulfuric acid is added to form a battery case. went. As described above, lead storage batteries made of single cells of the example and the comparative example were manufactured as a prototype.

試験法
同じ組成の鉛蓄電池を3個ずつ用い、25℃の水槽にセットして、1時間率電流(1CA)での移行放電を6分行った後に、1CAで18分間の放電と1CAで18分間の充電とから成るサイクル充放電を繰り返し、18分の放電中に鉛蓄電池の端子電圧が1.0V未満に低下すると寿命として、寿命に到るまでのサイクル数を求めた。そして試験後に、電解液中に流出したカーボンブラック量を測定した。結果は3個の鉛蓄電池の平均値で示し、非導電性繊維物質を含有しない鉛蓄電池が寿命に至るまでのサイクル数を100とする相対値により、寿命性能を示す。ここでの寿命性能はPSOC下での鉛蓄電池の耐久性を表す。なお試作の鉛蓄電池は液式であるが、制御弁式鉛蓄電池でも良い。カーボンブラックの流出量を、10%以上流出したものを×、流出量が10%未満のものを○と評価した。カーボンブラックの流出量が少ないことは、サルフェーションの抑制効果が持続していることの他に、電解液の汚染が少なく、液面レベルの視認性が高いことを意味する。
Test method Using three lead-acid batteries of the same composition, set them in a water bath at 25 ° C, perform a transition discharge at 1 hour rate current (1CA) for 6 minutes, then discharge at 1CA for 18 minutes and at 1CA for 18 minutes. The cycle charge and discharge consisting of charging for 1 minute was repeated, and when the terminal voltage of the lead storage battery decreased to less than 1.0 V during 18 minutes of discharge, the number of cycles until the end of the life was obtained. And the amount of carbon black which flowed out in electrolyte solution was measured after the test. The result is shown as an average value of three lead storage batteries, and the life performance is shown by a relative value where the number of cycles until the lead storage battery containing no non-conductive fiber material reaches the end of its life is 100. The life performance here represents the durability of the lead-acid battery under PSOC. The prototype lead-acid battery is a liquid type, but may be a control valve type lead-acid battery. The outflow amount of carbon black was evaluated as x when the outflow amount was 10% or more, and ○ when the outflow amount was less than 10%. The small amount of carbon black flowing out means that the effect of suppressing sulfation is sustained, and that the electrolyte is less contaminated and the liquid level is highly visible.

結果
平均一次粒子径が35nmのアセチレンブラック(含有量:0.05〜1.5質量%)と、平均繊維長が5μmのグラスファイバー(含有量:0.05質量%)とを用いた際の結果を、表1に示す。グラスファイバーの含有量を0.3質量%とし他は同様とした際の結果を表2に、グラスファイバーの含有量を0.8質量%とし他は同様とした際の結果を表3に示す。またグラスファイバーの含有量を0.05質量%とした際のグラスファイバーの平均繊維径の影響を図1に、アセチレンブラックの含有量の影響を図2に示す。同様に、グラスファイバーの含有量を0.3質量%とした際のグラスファイバーの平均繊維径の影響を図3に、アセチレンブラックの含有量の影響を図4に示し、グラスファイバーの含有量を0.8質量%とした際のグラスファイバーの平均繊維径の影響を図5に、アセチレンブラックの含有量の影響を図6に示す。アセチレンブラックを多量(15質量%)まで増加したときのアセチレンブラックの含有量の影響を図7に示し、グラスファイバーは平均繊維径が0.7μm、平均繊維長が5μmで、含有量は0.3質量%である。図1〜図7では、アセチレンブラックの含有量が同じで、グラスファイバー無添加の試料でのサイクル数を100とする相対値により、寿命性能を示す。
Results Table 1 shows the results when acetylene black having an average primary particle size of 35 nm (content: 0.05 to 1.5% by mass) and glass fiber having an average fiber length of 5 μm (content: 0.05% by mass) are used. Show. Table 2 shows the results when the glass fiber content is 0.3% by mass and others are the same, and Table 3 shows the results when the glass fiber content is 0.8% by mass and others are the same. FIG. 1 shows the influence of the average fiber diameter of the glass fiber when the glass fiber content is 0.05% by mass, and FIG. 2 shows the influence of the acetylene black content. Similarly, FIG. 3 shows the influence of the average fiber diameter of the glass fiber when the glass fiber content is 0.3 mass%, FIG. 4 shows the influence of the acetylene black content, and the glass fiber content is 0.8 mass. FIG. 5 shows the influence of the average fiber diameter of the glass fiber when the content is%, and FIG. 6 shows the influence of the content of acetylene black. FIG. 7 shows the effect of the content of acetylene black when the amount of acetylene black is increased to a large amount (15% by mass). The glass fiber has an average fiber diameter of 0.7 μm, an average fiber length of 5 μm, and a content of 0.3% by mass. It is. In FIGS. 1-7, life performance is shown by the relative value which makes content of acetylene black the same, and makes the cycle number 100 by the sample without glass fiber addition.

Figure 0005598368
Figure 0005598368

Figure 0005598368
Figure 0005598368

Figure 0005598368
Figure 0005598368

図1、図3、図5に示すように、グラスファイバーの平均繊維径が小さい程、寿命性能(サイクル数比)が向上し、平均繊維径が0.9μmでも寿命性能は充分に向上する。これに対して平均繊維径が1.2μm以上では、寿命性能は不十分である。平均繊維径が0.9μm以下で寿命性能が向上することは、グラスファイバーの含有量を0.05質量%から0.3質量%、0.8質量%へと変えても変わらない。以上のように、グラスファイバーの平均繊維径を0.9μm以下とすることにより高い寿命性能が得られ、平均繊維径が0.1μm未満のグラスファイバーは製造が困難なので、平均繊維径を0.1μm以上で0.9μm以下とし、好ましくは0.5μm以上で0.9μm以下とする。   As shown in FIGS. 1, 3, and 5, the life performance (cycle ratio) is improved as the average fiber diameter of the glass fiber is smaller, and the life performance is sufficiently improved even when the average fiber diameter is 0.9 μm. On the other hand, when the average fiber diameter is 1.2 μm or more, the life performance is insufficient. The improvement in the life performance when the average fiber diameter is 0.9 μm or less does not change even when the glass fiber content is changed from 0.05 mass% to 0.3 mass% and 0.8 mass%. As described above, high life performance can be obtained by setting the average fiber diameter of the glass fiber to 0.9 μm or less, and it is difficult to produce glass fibers having an average fiber diameter of less than 0.1 μm. 0.9 μm or less, preferably 0.5 μm or more and 0.9 μm or less.

グラスファイバーの含有量の効果を表1〜表3に示し、カーボンブラックの含有量が0.1質量%以上であれば、0.05質量%の含有で大きな効果が得られ、0.8質量%付近で効果が飽和する。従ってグラスファイバーの含有量は0.05質量%以上で1質量%以下とし、好ましくは0.05質量%以上で0.8質量%以下とする。   The effects of the glass fiber content are shown in Tables 1 to 3. If the carbon black content is 0.1% by mass or more, a large effect is obtained at 0.05% by mass, and the effect is saturated at around 0.8% by mass. To do. Accordingly, the glass fiber content is 0.05% by mass or more and 1% by mass or less, preferably 0.05% by mass or more and 0.8% by mass or less.

図2、図4、図6、図7はカーボンブラックの含有量の影響を示し、カーボンブラックの含有量を0.1質量%以上に増すと、サイクル中のカーボン流出をグラスファイバーが抑えることで、寿命性能は向上する。詳細は省略するが、カーボンブラックの効果は含有量が1.5質量%程度で飽和し、3質量%を越えると流出量が徐々に増加する。これらのことから、カーボンブラックの含有量は0.1質量%以上とし、好ましくは1.0質量%以上10質量%以下とし、特に好ましくは1.0質量%以上3質量%以下とする。   2, 4, 6, and 7 show the influence of the carbon black content. When the carbon black content is increased to 0.1% by mass or more, the glass fiber suppresses the outflow of carbon during the cycle. Performance is improved. Although details are omitted, the effect of carbon black is saturated when the content is about 1.5% by mass, and when it exceeds 3% by mass, the outflow amount gradually increases. For these reasons, the carbon black content is 0.1% by mass or more, preferably 1.0% by mass or more and 10% by mass or less, and particularly preferably 1.0% by mass or more and 3% by mass or less.

カーボンブラック流出量の評価結果(表1〜表3)を検討する。なお表1〜表3では、グラスファイバーを無添加で、アセチレンブラックの含有量が0.05質量%の試料でのサイクル数を100として寿命性能を示し、寿命性能のデータは図1〜図7に示したものである。カーボンブラックの流出は含有量が0.1質量%よりも多くなると問題となり、平均繊維径が0.9μm以下の非導電性繊維物質を0.05質量%以上含有することにより抑制でき、平均繊維径が1.2μm以上の非導電性繊維物質では、0.8質量%含有してもカーボンブラックの流出を抑制できない。   The evaluation results (Tables 1 to 3) of the carbon black outflow amount are examined. In Tables 1 to 3, the life performance is shown with the number of cycles in a sample having no glass fiber added and an acetylene black content of 0.05 mass% as 100, and the data on the life performance is shown in FIGS. It is a thing. The outflow of carbon black becomes a problem when the content exceeds 0.1% by mass, and can be suppressed by containing 0.05% by mass or more of a non-conductive fiber material having an average fiber diameter of 0.9 μm or less, and the average fiber diameter is 1.2 μm or more. This non-conductive fiber material cannot suppress the outflow of carbon black even if it is contained in an amount of 0.8% by mass.

カーボンブラックの含有量を0.3質量%に固定し、グラスファイバーの平均繊維径を0.7μm、含有量を0.3質量%に固定しながら、グラスファイバーの平均繊維長を50μm、500μm、5mmに変えた際の結果を表4に示す。結果は平均繊維長によらずほぼ同等である。   When the carbon fiber content is fixed at 0.3% by mass, the average fiber diameter of the glass fiber is fixed at 0.7 μm, and the content is fixed at 0.3% by mass, while the average fiber length of the glass fiber is changed to 50 μm, 500 μm, 5 mm Table 4 shows the results. The results are almost the same regardless of the average fiber length.

Figure 0005598368
Figure 0005598368

カーボンブラックの種類を、平均一次粒子径が39.5nmのケッチェンブラックに変えた際の結果を表5に示す。ケッチェンブラックでは、同量のアセチレンブラック(表2の試料45)よりも僅かに寿命性能が高いが、カーボン流出量の評価結果は同じである。以上のように、カーボンブラックの種類を変えても、ほぼ同等の結果が得られる。   Table 5 shows the results when the type of carbon black was changed to Ketjen Black having an average primary particle size of 39.5 nm. Ketjen black has slightly higher life performance than the same amount of acetylene black (sample 45 in Table 2), but the evaluation results of carbon outflow are the same. As described above, almost the same result can be obtained even if the type of carbon black is changed.

Figure 0005598368
Figure 0005598368

これ以外のデータを表6〜表9に示し、試料番号は表1〜表5と統一してある。またカーボンブラックの種類は特に記載が無い場合は、アセチレンブラックである。表6から、グラスファイバー含有無の場合、グラスファイバー含有の場合と比べ、同量のカーボンブラックを含有しても、カーボンブラックの流出を抑制できず、かつサイクル数の向上も小さいことが分かる。   The other data are shown in Tables 6 to 9, and the sample numbers are the same as those in Tables 1 to 5. The type of carbon black is acetylene black unless otherwise specified. From Table 6, it can be seen that when glass fiber is not contained, the outflow of carbon black cannot be suppressed and the improvement in the number of cycles is small even when the same amount of carbon black is contained as compared with the case where glass fiber is contained.

Figure 0005598368
Figure 0005598368

表7から、グラスファイバーの平均繊維径を0.7μmから2.5μmに変更すると、カーボンブラックの流出を抑制できず、かつサイクル数向上の効果も小さいことが分かる。さらにカーボンブラックを15質量%含有すると、10質量%の場合に比べ、サイクル数比が低下し、カーボンブラックの流出が著しくなることが分かる。   From Table 7, it can be seen that when the average fiber diameter of the glass fiber is changed from 0.7 μm to 2.5 μm, the outflow of carbon black cannot be suppressed and the effect of improving the cycle number is small. Further, it can be seen that when 15% by mass of carbon black is contained, the cycle number ratio is lowered and the outflow of carbon black becomes significant compared to the case of 10% by mass.

Figure 0005598368
Figure 0005598368

表8から、ケッチェンブラックを用いても、その含有量を15質量%とすると、大きなサイクル数比は得られず、かつカーボンブラックの流出が著しくなることが分かる。   From Table 8, it can be seen that even when ketjen black is used, if the content is 15% by mass, a large cycle number ratio cannot be obtained, and the outflow of carbon black becomes significant.

Figure 0005598368
Figure 0005598368

表9から、グラスファイバーの含有量を0.05質量%〜1.0質量%とすると、サイクル数比が向上し、カーボンブラックの流出も無いことが分かる。この場合も、カーボンブラックの含有量が適正で、グラスファイバーの平均繊維径と平均繊維長が適正であることが前提となることはいうまでもない。   From Table 9, it can be seen that when the glass fiber content is 0.05 mass% to 1.0 mass%, the cycle number ratio is improved and carbon black does not flow out. Also in this case, it is needless to say that the carbon black content is appropriate and the average fiber diameter and average fiber length of the glass fiber are appropriate.

Figure 0005598368
Figure 0005598368

実施例から、以下の効果が得られることが判明した。
1) 平均繊維径が0.9μm以下の非導電性繊維物質を、0.1質量%以上のカーボンブラックと共に、負極活物質に含有することにより、サルフェーションを抑制すると共に、カーボンブラックの流出を抑制できる。
2) 非導電性繊維物質の平均繊維径を1.2μm以上とすると、効果が小さい。
3) 平均繊維径が0.9μm以下の非導電性繊維物質の効果は、含有量が0.05質量%、0.3質量%、0.8質量%の何れでも得られる。
4) カーボンブラックの含有量を0.05質量%とすると、カーボンブラックの流出量は多くなく、非導電性繊維物質自体にサルフェーション抑制の効果はないため、平均繊維径が0.9μm以下の非導電性繊維物質を含有しても、サルフェーションは充分には抑制できない。
From the examples, it was found that the following effects can be obtained.
1) By containing a non-conductive fiber material having an average fiber diameter of 0.9 μm or less in the negative electrode active material together with 0.1% by mass or more of carbon black, sulfation can be suppressed and the outflow of carbon black can be suppressed.
2) The effect is small when the average fiber diameter of the non-conductive fiber material is 1.2 μm or more.
3) The effect of the non-conductive fiber material having an average fiber diameter of 0.9 μm or less can be obtained regardless of whether the content is 0.05 mass%, 0.3 mass%, or 0.8 mass%.
4) When the content of carbon black is 0.05 mass%, the outflow amount of carbon black is not large, and the nonconductive fiber material itself has no effect of suppressing sulfation, so the nonconductive fiber with an average fiber diameter of 0.9 μm or less Even if a substance is contained, sulfation cannot be sufficiently suppressed.

Claims (8)

0.1質量%以上のカーボンブラックと平均繊維径が0.9μm以下であり、平均繊維長が5μm以上であり、且つ、0.05質量%以上の非導電性繊維物質とを含有する(ただし、非導電性繊維物質にカーボンブラックを担持させて導電性添加剤を形成させたものを除く)鉛蓄電池の負極活物質。 And carbon black of more than 0.1 mass%, average fiber diameter of not more than 0.9 .mu.m, and an average fiber length of 5μm or more and a non-conductive fibers material at least 0.05% by weight, containing (however, non-conducting Negative active materials for lead-acid batteries, excluding those in which carbon black is supported on a conductive fiber material to form a conductive additive . 前記非導電性繊維物質はグラスファイバーであることを特徴とする、請求項1の鉛蓄電池の負極活物質。   The negative electrode active material for a lead-acid battery according to claim 1, wherein the non-conductive fiber material is a glass fiber. 前記非導電性繊維物質の平均繊維径が0.1μm以上0.9μm以下であることを特徴とする、請求項1または2の鉛蓄電池の負極活物質。   The negative electrode active material for a lead-acid battery according to claim 1 or 2, wherein the non-conductive fiber material has an average fiber diameter of 0.1 µm or more and 0.9 µm or less. 前記非導電性繊維物質を0.05質量%以上1質量%以下含有することを特徴とする、請求項1〜3のいずれかの鉛蓄電池の負極活物質。   The negative electrode active material for a lead-acid battery according to any one of claims 1 to 3, wherein the non-conductive fiber material is contained in an amount of 0.05% by mass to 1% by mass. 前記非導電性繊維物質の平均繊維長が5μm以上5mm以下であることを特徴とする、請求項1〜4のいずれかの鉛蓄電池の負極活物質。   5. The negative electrode active material for a lead-acid battery according to claim 1, wherein an average fiber length of the non-conductive fiber material is 5 μm or more and 5 mm or less. 前記カーボンブラックを0.1質量%以上10質量%以下含有することを特徴とする、請求項1〜5のいずれかの鉛蓄電池の負極活物質。   The negative electrode active material for a lead storage battery according to any one of claims 1 to 5, wherein the carbon black is contained in an amount of 0.1 mass% to 10 mass%. 前記非導電性繊維物質の平均繊維径が0.5μm以上0.9μm以下、含有量が0.05質量%以上0.8質量%以下、前記カーボンブラックの含有量が1.0質量%以上3質量%以下であることを特徴とする、請求項1〜6のいずれかの鉛蓄電池の負極活物質。   The non-conductive fiber material has an average fiber diameter of 0.5 to 0.9 μm, a content of 0.05 to 0.8% by mass, and a carbon black content of 1.0 to 3% by mass. The negative electrode active material of the lead storage battery according to any one of claims 1 to 6. 請求項1〜7のいずれかの負極活物質を保持する負極板と、正極板と、電解液とを備える、鉛蓄電池。   A lead acid battery comprising a negative electrode plate holding the negative electrode active material according to claim 1, a positive electrode plate, and an electrolytic solution.
JP2011031893A 2011-02-17 2011-02-17 Lead acid battery and negative electrode active material thereof Expired - Fee Related JP5598368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031893A JP5598368B2 (en) 2011-02-17 2011-02-17 Lead acid battery and negative electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031893A JP5598368B2 (en) 2011-02-17 2011-02-17 Lead acid battery and negative electrode active material thereof

Publications (2)

Publication Number Publication Date
JP2012174342A JP2012174342A (en) 2012-09-10
JP5598368B2 true JP5598368B2 (en) 2014-10-01

Family

ID=46977104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031893A Expired - Fee Related JP5598368B2 (en) 2011-02-17 2011-02-17 Lead acid battery and negative electrode active material thereof

Country Status (1)

Country Link
JP (1) JP5598368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499533B2 (en) 2012-03-27 2016-11-22 Shionogi & Co., Ltd. Aromatic 5-membered heterocyclic derivative having TRPV4-Inhibiting activity
JP6943118B2 (en) * 2017-09-28 2021-09-29 株式会社Gsユアサ Lead-acid battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835867A (en) * 1981-08-26 1983-03-02 Yuasa Battery Co Ltd Pasted lead storage battery
JPH067486B2 (en) * 1985-12-19 1994-01-26 湯浅電池株式会社 Sealed lead acid battery
JPS63152869A (en) * 1986-12-16 1988-06-25 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH06103978A (en) * 1992-09-24 1994-04-15 Shin Kobe Electric Mach Co Ltd Lead battery electrode plate
JP2000251896A (en) * 1999-02-25 2000-09-14 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture
JP4556506B2 (en) * 2004-06-16 2010-10-06 新神戸電機株式会社 Lead acid battery
US10177369B2 (en) * 2006-06-20 2019-01-08 Mitek Holdings, Inc. Method and apparatus for continuously mixing battery pastes
AR064292A1 (en) * 2006-12-12 2009-03-25 Commw Scient Ind Res Org ENHANCED ENERGY STORAGE DEVICE
JP5219360B2 (en) * 2006-12-14 2013-06-26 新神戸電機株式会社 Lead acid battery
JP5194729B2 (en) * 2007-04-06 2013-05-08 新神戸電機株式会社 Lead acid battery
US9450232B2 (en) * 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery

Also Published As

Publication number Publication date
JP2012174342A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP6635346B2 (en) Lead storage battery
JP5190562B1 (en) Lead-acid battery for energy storage
JP5857962B2 (en) Lead acid battery
JP6597308B2 (en) Retainer type lead acid battery
JP6032498B2 (en) Control valve type lead acid battery
CN108493400B (en) High-voltage positive plate and preparation method thereof
JP2015128053A (en) Lead storage battery
WO2013005733A1 (en) Flooded lead-acid battery
JP2013218894A (en) Lead acid battery
TWI545831B (en) Control valve type leaded battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
CN103413946B (en) A kind of formula of lead-acid storage battery negative pole diachylon
JP2006049025A (en) Control valve type lead-acid storage battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
Bača et al. Negative lead-acid battery electrodes doped with glass fibres
JP5656116B2 (en) Lead acid battery
JP5578123B2 (en) Liquid lead-acid battery
WO2019225161A1 (en) Lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP5549881B2 (en) Negative electrode plate for lead-acid battery and lead-acid battery using the same
JP2013048082A (en) Lead acid battery
JPS63152868A (en) Lead-acid battery
JP6766811B2 (en) Lead-acid battery
JP2005310688A (en) Control valve type lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5598368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees