JP2013218894A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2013218894A
JP2013218894A JP2012088800A JP2012088800A JP2013218894A JP 2013218894 A JP2013218894 A JP 2013218894A JP 2012088800 A JP2012088800 A JP 2012088800A JP 2012088800 A JP2012088800 A JP 2012088800A JP 2013218894 A JP2013218894 A JP 2013218894A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
lead
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012088800A
Other languages
Japanese (ja)
Inventor
Kiyoshi Koyama
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012088800A priority Critical patent/JP2013218894A/en
Publication of JP2013218894A publication Critical patent/JP2013218894A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead acid battery suppressed in decrease of initial capacity.SOLUTION: A lead acid battery includes a negative electrode plate in which a negative electrode active material paste is filled in a grid body, the negative electrode active material paste containing: lead powder comprising a lead oxide and metallic lead; carbon powder; and a lignin sulfonic acid. In the lignin sulfonic acid, 80% or more of positive ions, which can be disassociated from an ionizable functional group in an acidic or alkaline aqueous solution, are substituted with protons.

Description

この発明は、フォークリフト等の電動車用として好適な鉛蓄電池に関するものである。   The present invention relates to a lead storage battery suitable for an electric vehicle such as a forklift.

鉛蓄電池は安価かつ高性能な電池として、フォークリフト等をはじめとする電動車の動力源として広く使用されている。鉛蓄電池の負極板は、活物質の主原料である酸化鉛と金属鉛との混合物からなる鉛粉に、リグニン(リグニンスルホン酸)、硫酸バリウム、カーボン粉末等を混合し、希硫酸で練り上げた負極活物質ペーストを格子体に充填することにより製造される。   Lead acid batteries are widely used as power sources for electric vehicles such as forklifts as inexpensive and high-performance batteries. The negative electrode plate of the lead-acid battery was mixed with lignin (lignin sulfonic acid), barium sulfate, carbon powder, etc., mixed with lead powder consisting of a mixture of lead oxide and metal lead, the main raw material of the active material, and kneaded with dilute sulfuric acid It is manufactured by filling a negative electrode active material paste into a lattice.

近年、フォークリフトの無充電での稼働時間をより延長したいとの要請が強まり、その結果、電池にかかる負荷が大きくなっている。   In recent years, there has been an increasing demand for extending the operating time of a forklift without charging, and as a result, the load on the battery has increased.

ところが、電動車用鉛蓄電池には、放電深度(DOD)が深くなると使用期間(サイクル寿命)が短くなるという特質がある。これには、いくつかの要因のうち、特に負極板に不活性な硫酸鉛が蓄積することが関与している。   However, the lead-acid battery for electric vehicles has a characteristic that the use period (cycle life) is shortened when the depth of discharge (DOD) is deepened. This involves the accumulation of inactive lead sulfate among several factors, particularly in the negative electrode plate.

すなわち、負極板のDODが電池の公称容量の60%を越えるような深い放電を繰り返すと、放電時に生じる硫酸鉛が、充電によっても負極活物質の主成分である金属鉛に充分には還元されずに蓄積する。そして、この状態が続くと、もはや充電しても金属鉛に還元されない不活性な結晶形態を持つ硫酸鉛に変化してしまう。   In other words, when repeated deep discharges in which the DOD of the negative electrode plate exceeds 60% of the nominal capacity of the battery, lead sulfate generated during the discharge is sufficiently reduced to lead metal, which is the main component of the negative electrode active material, even by charging. Without accumulating. And if this state continues, it will change to lead sulfate having an inactive crystal form that is no longer reduced to metallic lead even when charged.

また、深い放電を繰り返すと鉛蓄電池中の電解液(希硫酸)の比重が電池の上から下に向かってより高くなる、いわゆる成層化現象が起こるが、これも負極板の硫酸鉛蓄積と不活性化とを加速させ、電動車用鉛蓄電池の寿命を短くする原因の一つとなっている。   Moreover, when deep discharge is repeated, the specific gravity of the electrolyte (dilute sulfuric acid) in the lead-acid battery increases from the top to the bottom, so-called stratification occurs. This is one of the causes of accelerating activation and shortening the life of lead-acid batteries for electric vehicles.

これを回避するためには、負極活物質ペースト中にカーボン粉末を添加することが有効である。しかし、カーボン粉末を大量に添加することは、一方で、負極活物質の表面積を拡張する添加剤として知られるリグニンスルホン酸の働きを妨害することが知られている。このため、大量のカーボン粉末の添加は、負極活物質の比表面積との間に強い正の相関を示す低温高率放電容量を減少させるという問題を生む。   In order to avoid this, it is effective to add carbon powder into the negative electrode active material paste. However, adding a large amount of carbon powder, on the other hand, is known to interfere with the action of lignin sulfonic acid, which is known as an additive for expanding the surface area of the negative electrode active material. For this reason, the addition of a large amount of carbon powder causes a problem of reducing the low-temperature high-rate discharge capacity that shows a strong positive correlation with the specific surface area of the negative electrode active material.

また、大量のカーボン粉末の添加は、鉛粉と希硫酸とを混練してなる負極活物質ペーストを硬くし、負極板の製造工程で、格子体への負極活物質ペーストの充填を困難にする。   Moreover, the addition of a large amount of carbon powder hardens the negative electrode active material paste formed by kneading lead powder and dilute sulfuric acid, making it difficult to fill the negative electrode active material paste into the grid in the negative electrode plate manufacturing process. .

そこで従来、負極活物質ペーストへの添加剤について、検討が繰り返されているが(特許文献1、2)、上記課題を解決するには至っていない。   So far, studies have been repeated on additives to the negative electrode active material paste (Patent Documents 1 and 2), but the above problems have not been solved.

特開2003−36882号公報JP 2003-36882 A 特開2007−273367号公報JP 2007-273367 A

そこで本発明は、上記現状に鑑み、初期容量の低下が抑制された鉛蓄電池を提供すべく図ったものである。   Therefore, in view of the above situation, the present invention is intended to provide a lead storage battery in which a decrease in initial capacity is suppressed.

上述のとおり、リグニンスルホン酸は、負極活物質の表面積を拡大し、負極板に良好な放電性能を与えるが、カーボン粉末と併用すると、その効果が減少することが知られている。これは、リグニンスルホン酸がカーボン粉末に吸着されるためである。そこで本発明者は、鋭意検討の結果、リグニンスルホン酸として、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの大部分(8割以上)がプロトンに置換されているもの(以下、H型リグニンスルホン酸という。)を使用することにより、リグニンスルホン酸とカーボン粉末とを併用しても上記の現象を抑制できることを見出し、本発明を完成させるに至った。   As described above, lignin sulfonic acid enlarges the surface area of the negative electrode active material and gives good discharge performance to the negative electrode plate, but it is known that its effect decreases when used in combination with carbon powder. This is because lignin sulfonic acid is adsorbed on the carbon powder. Therefore, as a result of intensive studies, the present inventor has, as lignin sulfonic acid, most of cations (80% or more) that can be dissociated from functional groups that can be ionized in an acidic or alkaline aqueous solution are substituted with protons. By using (hereinafter referred to as H-type lignin sulfonic acid), it has been found that the above phenomenon can be suppressed even when lignin sulfonic acid and carbon powder are used in combination, and the present invention has been completed.

すなわち本発明に係る鉛蓄電池は、酸化鉛と金属鉛との混合物からなる鉛粉と、カーボン粉末と、リグニンスルホン酸とを含有する負極活物質ペーストが格子体に充填されてなる負極板を備えた鉛蓄電池であって、前記リグニンスルホン酸は、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの8割以上がプロトンに置換されたものであることを特徴とする。   That is, the lead acid battery according to the present invention includes a negative electrode plate in which a negative electrode active material paste containing lead powder composed of a mixture of lead oxide and metal lead, carbon powder, and lignin sulfonic acid is filled in a lattice. Further, the lignin sulfonic acid is characterized in that 80% or more of cations that can be dissociated from a functional group that can be ionized in an acidic or alkaline aqueous solution are substituted with protons.

本発明に係る鉛蓄電池は、前記負極板の化成後の活物質密度が、3.7g/cm以上であり、前記負極活物質ペーストのカーボン粉末の含有量が、化成後の負極活物質100質量部に対して0.2〜1.2質量部であることが好ましく、0.5〜1.2質量部であることがより好ましい。 In the lead storage battery according to the present invention, the active material density after the formation of the negative electrode plate is 3.7 g / cm 3 or more, and the content of the carbon powder in the negative electrode active material paste is the negative electrode active material 100 after the formation. It is preferable that it is 0.2-1.2 mass part with respect to a mass part, and it is more preferable that it is 0.5-1.2 mass part.

本発明に係る鉛蓄電池は、前記負極板の化成後の活物質密度が、4.0g/cm以上であり、前記負極活物質ペーストのカーボン粉末の含有量が、化成後の負極活物質100質量部に対して0.2〜0.8質量部であることが更に好ましい。 In the lead storage battery according to the present invention, the active material density after the formation of the negative electrode plate is 4.0 g / cm 3 or more, and the content of the carbon powder in the negative electrode active material paste is the negative electrode active material 100 after the formation. More preferably, it is 0.2-0.8 mass part with respect to a mass part.

本発明は、カーボン粒子とH型リグニンスルホン酸とを併用することにより、初期容量の低下を防止することを可能とする。   The present invention makes it possible to prevent a decrease in initial capacity by using carbon particles and H-type lignin sulfonic acid in combination.

試験1における、初期容量(5サイクル目)と負極活物質ペーストのカーボン粉末の含有量との関係を示すグラフである。4 is a graph showing the relationship between the initial capacity (5th cycle) and the carbon powder content of the negative electrode active material paste in Test 1. FIG. 試験1における、低温高率放電容量の初期容量(6サイクル目)と負極活物質ペーストのカーボン粉末の含有量との関係を示すグラフである。It is a graph which shows the relationship between the initial capacity | capacitance (6th cycle) of low-temperature, high-rate discharge capacity in Test 1, and content of the carbon powder of a negative electrode active material paste. 試験1における、5C’、5C、5C”、及び、5A’、5A、5A”の低温高率放電容量の初期容量(6サイクル目)を示すグラフである。6 is a graph showing initial capacities (sixth cycle) of low-temperature, high-rate discharge capacities of 5C ′, 5C, 5C ″ and 5A ′, 5A, 5A ″ in Test 1. 試験2における、C系列の電池(化成後の負極活物質密度3.7g/cm)のサイクル寿命試験の結果を示すグラフである。6 is a graph showing the results of a cycle life test of a C-series battery (density of negative electrode active material after formation: 3.7 g / cm 3 ) in Test 2. FIG. 試験3における、B系列の電池(化成後の負極活物質密度3.5g/cm)のサイクル寿命試験の結果を示すグラフである。6 is a graph showing the results of a cycle life test of a B-series battery (density of negative electrode active material after formation: 3.5 g / cm 3 ) in Test 3. FIG. 試験3における、D系列の電池(化成後の負極活物質密度3.9g/cm)のサイクル寿命試験の結果を示すグラフである。6 is a graph showing the results of a cycle life test of a D-series battery (negative electrode active material density after conversion, 3.9 g / cm 3 ) in Test 3 . 試験3における、E系列及びF系列の電池(化成後の負極活物質密度4.0g/cm及び4.1g/cm)のサイクル寿命試験の結果を示すグラフである。6 is a graph showing the results of a cycle life test of E-series and F-series batteries (negative electrode active material densities of 4.0 g / cm 3 and 4.1 g / cm 3 after chemical conversion) in Test 3 . 各系列の電池の1200サイクル目の容量と負極活物質ペーストのカーボン粉末の含有量の関係を示すグラフである。It is a graph which shows the relationship between the capacity | capacitance of the 1200th cycle of the battery of each series, and content of the carbon powder of a negative electrode active material paste. 8B、8C、8D、8E、8Aの各サンプル電池の6サイクル目の低温高率放電容量を測定し、8Aの容量を1とする相対値で表したグラフである。It is the graph represented by the relative value which measured the low-temperature high-rate discharge capacity of the 6th cycle of each sample battery of 8B, 8C, 8D, 8E, and 8A, and set the capacity of 8A to 1.

以下に、本発明に係る鉛蓄電池の実施形態について説明する。   Below, the embodiment of the lead acid battery concerning the present invention is described.

本発明に係る鉛蓄電池は、例えば、二酸化鉛を活物質の主成分とする正極板と、鉛を活物質の主成分とする負極板と、これら極板の間に介在する不織布状又は多孔性のセパレータとからなる極板群を備えたものであり、当該極板群が希硫酸を主成分とする電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, a positive electrode plate containing lead dioxide as a main component of an active material, a negative electrode plate containing lead as a main component of an active material, and a non-woven or porous separator interposed between these electrode plates And the electrode plate group is immersed in an electrolyte containing dilute sulfuric acid as a main component.

前記負極板は、Pb−Sb系合金やPb−Ca系合金等の鉛合金からなる格子体を備えたものであり、当該格子体にペースト状の活物質を充填することにより形成される。一方、前記正極板は、ペースト式である場合は、負極板と同様にして形成されるが、クラッド式である場合は、ガラス繊維等からなる多孔性の円筒形チューブと、鉛合金からなる芯金との間にペースト状の活物質を充填することにより形成される。これらの格子体、チューブ、芯金、正極活物質、セパレータ、電解液等としては特に限定されず、目的・用途に応じて適宜公知のものから選択して用いることができる。   The negative electrode plate includes a lattice body made of a lead alloy such as a Pb—Sb alloy or a Pb—Ca alloy, and is formed by filling the lattice body with a paste-like active material. On the other hand, when the positive electrode plate is a paste type, it is formed in the same manner as the negative electrode plate, but when it is a clad type, a porous cylindrical tube made of glass fiber or the like and a lead alloy core It is formed by filling a paste-like active material with gold. These lattices, tubes, metal cores, positive electrode active materials, separators, electrolytes and the like are not particularly limited, and can be appropriately selected from known materials depending on the purpose and application.

本発明に係る鉛蓄電池の負極板は、酸化鉛と金属鉛との混合物からなる鉛粉と、カーボン粉末と、リグニンスルホン酸とを含有する負極活物質ペーストが格子体に充填されてなるものである。   A negative electrode plate of a lead storage battery according to the present invention is formed by filling a grid with a negative electrode active material paste containing lead powder composed of a mixture of lead oxide and metal lead, carbon powder, and lignin sulfonic acid. is there.

前記鉛粉は、例えば、個々の粒子の組成が一酸化鉛65〜85質量部と残部が金属鉛からなるものであり、このような鉛粉としては、例えば、一酸化鉛がリサージ(r−PbO)100質量%からなる島津式鉛粉や、一酸化鉛がリサージ(r−PbO)約80質量%とマシコット(y−PbO)約20質量%とからなるバートン・ポット式鉛粉等が挙げられる。   In the lead powder, for example, the composition of individual particles is 65 to 85 parts by mass of lead monoxide and the balance is made of metal lead. As such lead powder, for example, lead monoxide is resurge (r- Shimadzu type lead powder consisting of 100% by mass of PbO), Burton pot type lead powder consisting of about 80% by mass of lead surge (r-PbO) and about 20% by mass of mascot (y-PbO). It is done.

前記カーボン粉末としては特に限定されず、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック等のカーボンブラックが挙げられる。   The carbon powder is not particularly limited, and examples thereof include carbon black such as acetylene black, ketjen black, channel black, and furnace black.

本発明においては、前記リグニンスルホン酸として、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの大部分、すなわち約8割以上がプロトンに置換されているもの(すなわち、H型リグニンスルホン酸)が用いられる。   In the present invention, as the lignin sulfonic acid, a cation that can be dissociated from a functional group that can be ionized in an acidic or alkaline aqueous solution, that is, about 80% or more is substituted with protons (that is, H Type lignin sulfonic acid).

前記リグニンスルホン酸として、H型リグニンスルホン酸を使用することにより、カーボン粉末と併用しても、リグニンスルホン酸の負極活物質の表面積を拡張する機能は抑制されず、低温高率放電容量の初期容量を高く保つことが可能となる。   By using H-type lignin sulfonic acid as the lignin sulfonic acid, even when used in combination with carbon powder, the function of expanding the surface area of the negative electrode active material of lignin sulfonic acid is not suppressed, and the initial low-temperature high-rate discharge capacity is suppressed. The capacity can be kept high.

この理由としては、従来、鉛蓄電池の負極活物質ペースト中に添加されるリグニンスルホン酸は、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの大部分が、Na等の金属イオンに置換されたリグニンスルホン酸である(このような金属イオンに置換されたリグニンスルホン酸を総称して、以下、Na型リグニンスルホン酸という。)。Na型リグニンスルホン酸が中性又は弱酸性の水溶液に溶解するのに対して、H型リグニンスルホン酸は中性又は弱酸性の水溶液には溶けにくく、水溶液が弱アルカリ性になると溶解する。このため、負極板の製造工程のうち、添加剤を希硫酸や活物質の主原料である鉛粉と混練する過程や負極板の熟成の過程で、H型リグニンスルホン酸はカーボン粉末には吸着されにくく、鉛粉により多く吸着されて、その作用を効率的に発揮すると推測される。又は、電池使用中、特に深い放電過程では負極板の細孔内の電解液が中性に近づくが、この際にもH型リグニンスルホン酸は活物質から遊離しにくく、その効果を維持するものと推測される。 The reason for this is that the lignin sulfonic acid that is conventionally added to the negative electrode active material paste of a lead-acid battery is mostly composed of Na + or the like that can dissociate from functional groups that can be ionized in an acidic or alkaline aqueous solution. (Lignin sulfonic acid substituted with such metal ions is generically referred to as Na-type lignin sulfonic acid hereinafter). Na-type lignin sulfonic acid dissolves in a neutral or weakly acidic aqueous solution, whereas H-type lignin sulfonic acid hardly dissolves in a neutral or weakly acidic aqueous solution, and dissolves when the aqueous solution becomes weakly alkaline. Therefore, in the negative electrode plate manufacturing process, H-lignin sulfonic acid is adsorbed to the carbon powder in the process of kneading the additive with dilute sulfuric acid and lead powder, which is the main raw material of the active material, and in the process of aging the negative electrode plate. It is presumed that it is hard to be absorbed and is adsorbed more by the lead powder, and effectively exerts its action. Or, while using the battery, the electrolyte in the pores of the negative electrode plate approaches neutrality, especially in the deep discharge process. At this time, H-type lignin sulfonic acid is not easily released from the active material and maintains its effect. It is guessed.

リグニンスルホン酸は複雑な構造を持つ高分子であるので、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの全てをプロトンに置換することは困難である。このため、前記H型リグニンスルホン酸としては、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンのうち91%以上がプロトンに置換されているものが好ましい。また、本発明においては、H型リグニンスルホン酸以外のリグニンスルホン酸及びその塩が負極活物質ペースト中に混入していてもよい。   Since lignin sulfonic acid is a polymer having a complicated structure, it is difficult to replace all cations that can dissociate from functional groups that can be ionized in an acidic or alkaline aqueous solution with protons. Therefore, the H-type lignin sulfonic acid is preferably one in which 91% or more of cations that can dissociate from a functional group that can be ionized in an acidic or alkaline aqueous solution are substituted with protons. In the present invention, lignin sulfonic acids other than H-type lignin sulfonic acid and salts thereof may be mixed in the negative electrode active material paste.

なお、前記陽イオンのプロトンへの置換率としては、例えば、以下のような方法を用いて算出することができる。   The substitution rate of the cation to the proton can be calculated using, for example, the following method.

まず、試料とするリグニンスルホン酸を、液温85℃、12規定の充分な量の硫酸水溶液中に8時間曝した後に、水洗し、乾燥する。   First, lignin sulfonic acid as a sample is exposed to a sufficient temperature of 85 ° C. and 12N sulfuric acid aqueous solution for 8 hours, then washed with water and dried.

次いで、ビーカー内で硫酸処理済のリグニンスルホン酸10.0gをイオン交換水に分散させて体積100mLの水溶液Xとし、50℃の水槽内で保温、攪拌しながら、これに毎分2mL以下の速さで4規定の水酸化ナトリウム水溶液を滴下する。前記水溶液XのpHをpH計で測定し、pHが14に達した時点までに滴下した水酸化ナトリウムのモル数Mと、この時点の水溶液Xの体積とpHとから算出される水酸イオンOHのモル数mとを基に、下記式(1)に従い、当該リグニンスルホン酸100g中の電離可能な最大陽イオン量F(モル/g)を算出する。
F=(M−m)/10.0×100・・・(1)
Next, 10.0 g of sulfuric acid-treated lignin sulfonic acid was dispersed in ion-exchanged water in a beaker to make an aqueous solution X having a volume of 100 mL. While keeping the temperature in a 50 ° C. water bath and stirring, A 4N aqueous sodium hydroxide solution is then added dropwise. The pH of the aqueous solution X is measured with a pH meter, and the hydroxide ion OH calculated from the number M of sodium hydroxide dripped until the pH reaches 14 and the volume and pH of the aqueous solution X at this point. Based on the number of moles of −, the maximum ionizable F amount (mol / g) in 100 g of ligninsulfonic acid is calculated according to the following formula (1).
F = (M−m) /10.0×100 (1)

得られた電離可能な最大陽イオン量F(モル/g)は、試料とするリグニンスルホン酸100g当たりで表され、この試料とするリグニンスルホン酸の酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの最大モル量を表す。   The obtained ionizable maximum cation amount F (mol / g) is expressed per 100 g of lignin sulfonic acid sample, and the functional group ionizable in an acidic or alkaline aqueous solution of lignin sulfonic acid sample. Represents the maximum molar amount of cations that can be dissociated from.

なお、この官能基は主としてスルホン基であるが、他に高分子部分が有するカルボキシル基等も含まれると推測される。   In addition, although this functional group is mainly a sulfone group, it is estimated that the carboxyl group etc. which a high molecular part has other than that are included.

次に、ビーカー内で試料とするリグニンスルホン酸10.0gをイオン交換水に分散させて体積100mLの水溶液X’とし、これを上述の方法で滴定し、前記水溶液X’のpHが14に達した時点までに滴下した水酸化ナトリウムのモル数M’と、この時点の水溶液X’の体積とpHとから算出される水酸イオンOHのモル数m’とを基に、下記式(2)に従い、当該リグニンスルホン酸100g中の、水酸イオンと反応可能な陽イオン量F’(モル/g)を算出する。
F’=(M’−m’)/10.0×100・・・(2)
Next, 10.0 g of lignin sulfonic acid used as a sample in a beaker is dispersed in ion-exchanged water to obtain an aqueous solution X ′ having a volume of 100 mL, which is titrated by the above-described method, and the pH of the aqueous solution X ′ reaches 14. Based on the number of moles M ′ of sodium hydroxide dripped up to this point and the number of moles m ′ of hydroxide ions OH calculated from the volume and pH of the aqueous solution X ′ at this point, the following formula (2 ), The amount of cation F ′ (mol / g) capable of reacting with a hydroxide ion in 100 g of the lignin sulfonic acid is calculated.
F ′ = (M′−m ′) / 10.0 × 100 (2)

次に、下記式(3)に従い数値Kを求める。
K=(1−F’/F)×100
Next, a numerical value K is obtained according to the following formula (3).
K = (1−F ′ / F) × 100

このようにして得られたK(%)が、試料とするリグニンスルホン酸の酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンのNa置換率(%)である。試料であるリグニンスルホン酸の酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンは、Na以外に、K、Ca2+、Mg2+等の金属イオンにも置換されうるが、それらの金属イオンも含めて全てNaとして計算する。以下の説明では、リグニンスルホン酸の酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの状態を、このNa置換率で表す。すなわち、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンが全てプロトンに置換されたリグニンスルホン酸では、Na置換率は0%(プロトン置換率は100%)であり、前記陽イオンが全てNa等の金属イオンに置換されたリグニンスルホン酸では、Na置換率は100%(プロトン置換率は0%)である。 K (%) thus obtained is the Na substitution rate (%) of a cation that can dissociate from a functional group that can be ionized in an acidic or alkaline aqueous solution of lignin sulfonic acid as a sample. The cation that can be dissociated from a functional group that can be ionized in an acidic or alkaline aqueous solution of lignin sulfonic acid as a sample can be replaced by metal ions such as K + , Ca 2+ , and Mg 2+ in addition to Na +. All of these metal ions are calculated as Na + . In the following description, the state of a cation that can dissociate from a functional group that can be ionized in an acidic or alkaline aqueous solution of lignin sulfonic acid is represented by this Na substitution rate. That is, in lignin sulfonic acid in which all cations capable of dissociating from functional groups capable of ionization in an acidic or alkaline aqueous solution are substituted with protons, the Na substitution rate is 0% (proton substitution rate is 100%). In lignin sulfonic acid in which all cations are substituted with metal ions such as Na + , the Na substitution rate is 100% (proton substitution rate is 0%).

本発明における負極活物質ペーストのカーボン粉末の含有量は、化成後の負極活物質100質量部に対して0.2質量部以上であることが好ましく、より好ましくは0.2〜1.2質量部であり、更に好ましい下限は0.5質量部であり、更に好ましい上限は0.8質量部である。カーボン粉末の含有量が化成後の負極活物質100質量部に対して0.2質量部以上であれば、低温高率放電容量の初期容量が下がりにくいうえに、更に寿命性能も向上しうる。なお、カーボン粉末の含有量が化成後の負極活物質100質量部に対して0.2質量部未満であると、負極活物質への硫酸鉛の蓄積抑制効果が不充分であり、サイクル寿命性能の向上効果が小さい。また、カーボン粉末の含有量が化成後の負極活物質100質量部に対して1.2質量部を超えると、サイクル寿命性能の向上効果が増大しないとともに、負極活物質ペーストが硬くなり、格子体への負極活物質ペーストの充填が困難になる。   The content of the carbon powder in the negative electrode active material paste in the present invention is preferably 0.2 parts by mass or more, more preferably 0.2 to 1.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion. Parts, and a more preferred lower limit is 0.5 parts by mass, and a more preferred upper limit is 0.8 parts by mass. If the content of the carbon powder is 0.2 parts by mass or more with respect to 100 parts by mass of the negative electrode active material after chemical conversion, the initial capacity of the low-temperature high-rate discharge capacity is difficult to decrease, and the life performance can be further improved. In addition, when the content of the carbon powder is less than 0.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion, the effect of suppressing the accumulation of lead sulfate in the negative electrode active material is insufficient, and the cycle life performance The improvement effect is small. Moreover, when the content of the carbon powder exceeds 1.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion, the effect of improving the cycle life performance is not increased, and the negative electrode active material paste becomes hard, and the lattice body It becomes difficult to fill the negative electrode active material paste into the electrode.

また、本発明における負極活物質ペーストのH型リグニンスルホン酸の含有量は、前記鉛粉100質量部に対して0.1〜0.4質量部であることが好ましく、より好ましくは0.2〜0.4質量部である。H型リグニンスルホン酸の含有量が前記鉛粉100質量部に対して0.1重量部未満であると、低温高率放電性能の改善効果が不充分であり、0.4重量部を超えても、例えば10分率放電のような極端な高率放電性能を要求されないフォークリフト用途では、実質的な利益はない。   Moreover, it is preferable that content of H-type lignin sulfonic acid of the negative electrode active material paste in this invention is 0.1-0.4 mass part with respect to 100 mass parts of said lead powder, More preferably, it is 0.2. It is -0.4 mass part. When the content of H-type lignin sulfonic acid is less than 0.1 parts by weight with respect to 100 parts by weight of the lead powder, the effect of improving the low-temperature high-rate discharge performance is insufficient, exceeding 0.4 parts by weight. However, there is no substantial benefit in forklift applications that do not require extremely high rate discharge performance such as 10-minute discharge.

本発明に係る鉛蓄電池の負極板は、化成後の活物質密度が3.7g/cm以上であることが好ましく、より好ましくは化成後の活物質密度が4.0g/cm以上である。化成後の活物質密度が3.7g/cm以上であれば、鉛粒子同士や鉛粒子とカーボン粉末との接続点が増え、深放電時でもなお電子伝導性を維持することができるとともに、鉛粒子間の距離が小さくなり、充電効率を向上することが可能となると推測される。なお、負極板の化成後の活物質密度の上限としては特に限定されないが、4.1g/cm以下であることが好ましい。化成後の活物質密度が4.1g/cmを超えるように調製した負極活物質ペーストは、密度の上昇やカーボン粉末の含有量の増加に伴い硬くなり、格子体への充填が著しく困難になる。 In the negative electrode plate of the lead storage battery according to the present invention, the active material density after chemical conversion is preferably 3.7 g / cm 3 or more, more preferably the active material density after chemical conversion is 4.0 g / cm 3 or more. . If the active material density after chemical conversion is 3.7 g / cm 3 or more, the connection points between the lead particles and between the lead particles and the carbon powder are increased, and the electron conductivity can be maintained even during deep discharge, It is presumed that the distance between the lead particles is reduced and the charging efficiency can be improved. In addition, although it does not specifically limit as an upper limit of the active material density after chemical conversion of a negative electrode plate, it is preferable that it is 4.1 g / cm < 3 > or less. The negative electrode active material paste prepared so that the density of the active material after conversion exceeds 4.1 g / cm 3 becomes hard as the density increases and the content of the carbon powder increases, making it extremely difficult to fill the lattice. Become.

なお、本発明における負極活物質ペースト中には、上記の鉛粉、カーボン粉末、H型リグニンスルホン酸に加え、更に、硫酸バリウムや、必要に応じて他の添加剤を添加してもよく、これらに希硫酸を加え練膏することにより負極活物質ペーストを調製することができる。   In addition, in the negative electrode active material paste in the present invention, in addition to the above lead powder, carbon powder, and H-type lignin sulfonic acid, barium sulfate and other additives may be added as necessary. A negative electrode active material paste can be prepared by adding dilute sulfuric acid to these and kneading.

本発明に係る鉛蓄電池の製造方法としては特に限定されないが、例えば、まず、常法により作製した正極板と、鉛合金からなる格子体に上記の負極活物質ペーストを充填することにより作製した負極板とを、セパレータを介して交互に組み合わせて未化成の極板群を作製する。次いで、当該未化成の極板群を電槽に挿入した後、極板群の溶接、モノブロック電池の場合は引き続きセル間の接続、及び、蓋の接着を行い、端子溶接して組立てを完了してから、希硫酸を主成分とする電解液を注液し、電槽化成を行う。このようにして本発明に係る鉛蓄電池を製造することができる。   Although it does not specifically limit as a manufacturing method of the lead acid battery which concerns on this invention, For example, the negative electrode produced by first filling the negative electrode active material paste into the positive electrode plate produced by the conventional method, and the grid body which consists of lead alloys, for example. An unformed electrode plate group is produced by alternately combining plates with separators. Next, after inserting the unformed electrode plate group into the battery case, welding of the electrode plate group, in the case of a monoblock battery, connection between cells and bonding of the lid are performed, and terminal welding is completed to complete the assembly. After that, an electrolytic solution containing dilute sulfuric acid as a main component is injected to form a battery case. Thus, the lead acid battery according to the present invention can be manufactured.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらのみに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

<試験1>
以下のようにして、表1に示す各種組成の負極活物質ペーストを調製した。
<Test 1>
Negative electrode active material pastes having various compositions shown in Table 1 were prepared as follows.

(C’系列)
鉛粉100質量部に対して、H型リグニンスルホン酸を0.1質量部、硫酸バリウムを0.6質量部含有させるとともに、カーボン粉末としてアセチレンブラックを化成後の負極活物質100質量部に対して0.1〜1.2質量部となるよう含有させた後、化成後の負極板の活物質密度が3.7g/cmとなるように硫酸と水とで練り上げて、実施例1C’〜12C’の負極活物質ペーストを調製した。
(C 'series)
With respect to 100 parts by mass of lead powder, 0.1 part by mass of H-type lignin sulfonic acid and 0.6 part by mass of barium sulfate are contained, and 100 parts by mass of the negative electrode active material after conversion of acetylene black as carbon powder. Then, it was kneaded with sulfuric acid and water so that the active material density of the negative electrode plate after chemical conversion was 3.7 g / cm 3, and Example 1C ′ A negative electrode active material paste of ˜12C ′ was prepared.

(C系列)
H型リグニンスルホン酸の含有量を0.2質量部にしたこと以外は1C’〜12C’と同様にして、実施例1C〜16Cの負極活物質ペーストを調製した。
(C series)
Negative electrode active material pastes of Examples 1C to 16C were prepared in the same manner as 1C ′ to 12C ′ except that the content of H-type lignin sulfonic acid was 0.2 parts by mass.

(A’系列)
H型リグニンスルホン酸に代えてNa型リグニンスルホン酸を0.1質量部含有させたこと以外は1C’〜12C’ と同様にして、比較例1A’〜12A’の負極活物質ペーストを調製した。
(A 'series)
Negative electrode active material pastes of Comparative Examples 1A ′ to 12A ′ were prepared in the same manner as 1C ′ to 12C ′ except that 0.1 part by mass of Na type lignin sulfonic acid was contained instead of H type lignin sulfonic acid. .

(A系列)
H型リグニンスルホン酸に代えてNa型リグニンスルホンを0.2質量部含有させたこと以外は1C〜16Cと同様にして、比較例1A〜16Aの負極活物質ペーストを調製した。
(A series)
Negative electrode active material pastes of Comparative Examples 1A to 16A were prepared in the same manner as 1C to 16C except that 0.2 parts by mass of Na type lignin sulfone was contained instead of H type lignin sulfonic acid.

(5C”、5A”)
H型リグニンスルホン酸を0.3質量部含有させたこと以外は5Cと同様にして実施例5C” の負極活物質ペーストを調製し、Na型リグニンスルホン酸を0.3質量部含有させたこと以外は5Aと同様にして比較例5A” の負極活物質ペーストを調製した。
(5C ", 5A")
A negative electrode active material paste of Example 5C "was prepared in the same manner as 5C except that 0.3 part by mass of H-type lignin sulfonic acid was contained, and 0.3 part by mass of Na-type lignin sulfonic acid was contained. A negative electrode active material paste of Comparative Example 5A ″ was prepared in the same manner as 5A except for the above.

なお、試験1で使用したH型リグニンスルホン酸のNa置換率は0%(プロトン置換率は100%)であり、Na型リグニンスルホン酸のNa置換率は約80%(プロトン置換率は約20%)である。   The Na substitution rate of the H-type lignin sulfonic acid used in Test 1 is 0% (proton substitution rate is 100%), and the Na substitution rate of the Na-type lignin sulfonic acid is about 80% (proton substitution rate is about 20%). %).

得られた各種組成の負極活物質ペーストを鉛合金製の格子体に充填して負極板を作製し、以下に示す仕様のサンプル電池を組み立てた。すなわち、極板部が、高さ300mm、幅140mm、厚み3.5mmのペースト式負極板5枚と、極板部の高さ及び幅が同じ寸法で、チューブ径が10mmのクラッド式正極板4枚とを、それぞれタンク化成後にポリエチレン製微孔セパレータを介して積層した。   The obtained negative electrode active material pastes having various compositions were filled in a lead alloy lattice body to produce a negative electrode plate, and a sample battery having the following specifications was assembled. That is, the electrode plate portion has a height of 300 mm, a width of 140 mm, and a thickness of 3.5 mm, and the clad positive electrode plate 4 having the same height and width as the electrode plate portion and a tube diameter of 10 mm. The sheets were laminated via a polyethylene microporous separator after tank formation.

前記正極板の4枚分の理論容量は710±5Ahであり、前記各負極板5枚分の理論容量は575±3Ahであった。セパレータは、負極板に対し、その上辺を除く3辺を囲う封筒状として装着した。これらを積層した極群を電槽に入れ、比重1.28(20℃)の希硫酸を2800mL注入して、サンプル電池としてフォークリフト用鉛蓄電池を組み立てた。この条件により、負極板の種類ごとに4セルずつ、合計120セルを組み立てた。   The theoretical capacity of the four positive plates was 710 ± 5 Ah, and the theoretical capacity of the five negative plates was 575 ± 3 Ah. The separator was attached to the negative electrode plate as an envelope surrounding three sides excluding the upper side. A pole group in which these layers were laminated was placed in a battery case, and 2800 mL of dilute sulfuric acid having a specific gravity of 1.28 (20 ° C.) was injected to assemble a lead storage battery for a forklift as a sample battery. Under these conditions, a total of 120 cells were assembled, 4 cells for each type of negative electrode plate.

これらの電池(各種類の電池ごとに4セルずつ)を30℃の水槽中にて45Aで放電し、端子電圧が1.7Vを下回った時点の放電電気量の130%を充電する充放電を5回繰り返し、5サイクル目の容量を測定した。そして、各セルの測定値を同一種類の電池ごとに平均した値を表1及び図1に示す。   These batteries (4 cells for each type of battery) were discharged at 45A in a 30 ° C water bath, and charged / discharged to charge 130% of the discharged electricity when the terminal voltage dropped below 1.7V. Repeated 5 times, the capacity of the 5th cycle was measured. And the value which averaged the measured value of each cell for every battery of the same kind is shown in Table 1 and FIG.

また、5サイクル目の容量の測定値をすべて平均した数値を基準容量とした。その値は244Ahであり、244Ah放電時の負極活物質の利用率は約44%であった。   A numerical value obtained by averaging all measured values of the capacity at the fifth cycle was used as a reference capacity. The value was 244 Ah, and the utilization factor of the negative electrode active material during 244 Ah discharge was about 44%.

更に、6サイクル目に低温高率放電容量試験として、10℃の水槽中にて12時間冷却した後、電流225A、終止電圧1.0Vの放電を実施した。その結果(平均値)を表1及び図2に示す。   Furthermore, after cooling for 12 hours in a 10 degreeC water tank as a low-temperature, high-rate discharge capacity test in the 6th cycle, the discharge of electric current 225A and final voltage 1.0V was implemented. The results (average values) are shown in Table 1 and FIG.

また5C’、5C、5C”、及び、5A’、5A、5A”の6サイクル目の容量の測定値を図3に示す。   FIG. 3 shows measured values of the capacities at the 6th cycle of 5C ′, 5C, 5C ″ and 5A ′, 5A, 5A ″.

また、上記の各種電池のうち5A”、5C”を除く1セルずつを6サイクル目の放電試験の充電後に解体し、負極活物質中の硫酸鉛の含有量を測定した。その結果を表1に示す。   In addition, one cell excluding 5A ″ and 5C ″ among the above various batteries was disassembled after charging in the discharge test of the sixth cycle, and the content of lead sulfate in the negative electrode active material was measured. The results are shown in Table 1.

これらの試験の結果、H型リグニンスルホン酸を含有させたC’系列とC系列の電池は、安定して良好な5サイクル目容量を発揮した。一方、Na型リグニンスルホン酸を含有させたA’系列とA系列の電池では、カーボン粉末の含有量が増加するに伴い5サイクル目容量が小さくなり、A’系列の8A’〜12A’、A系列の14A、16Aの5サイクル目容量は明らかに小さかった。   As a result of these tests, the C ′ series and C series batteries containing H-type lignin sulfonic acid stably exhibited a good fifth cycle capacity. On the other hand, in the A ′ series and A series batteries containing Na-type lignin sulfonic acid, the capacity at the fifth cycle decreases as the carbon powder content increases, and the A ′ series 8A ′ to 12A ′, A The capacity of the fifth cycle of the series 14A and 16A was clearly small.

6サイクル目の低温高率放電容量試験では、図2に示すように、Na型リグニンスルホン酸を含有させた電池ではカーボン粉末の含有量の増加に伴う容量の低下が著しかった。また、図3に示すように、リグニンスルホン酸の含有量に拘わらず、H型リグニンスルホン酸を含有させた電池の低温高率放電容量はNa型リグニンスルホン酸を含有させた電池の容量よりも大きかった。   In the low-temperature high-rate discharge capacity test at the 6th cycle, as shown in FIG. 2, in the battery containing Na-type lignin sulfonic acid, the capacity decrease with the increase in the carbon powder content was remarkable. Further, as shown in FIG. 3, regardless of the content of lignin sulfonic acid, the low temperature high rate discharge capacity of the battery containing H-type lignin sulfonic acid is higher than the capacity of the battery containing Na-type lignin sulfonic acid. It was big.

そこで、各種類の電池のうち、C系列の2C〜12CとA系列の2A〜12Aの1セルずつを解体し、その負極活物質に吸着されたリグニンスルホン酸量を化学分析法によって測定した。すなわち、所定量の負極活物質を硝酸水溶液で溶解し、その水溶液をろ過した後、この水溶液のCODを測定した。予め測定しておいた所定量のH型及びNa型リグニンスルホン酸のCODと比較して、それらのCOD値よりカーボン粉末に吸着されないリグニンスルホン酸の量を、分析した負極活物質の総量に対する百分率で表示した。その結果を表2に示す。   Therefore, among each type of battery, each cell of C series 2C to 12C and A series 2A to 12A was disassembled, and the amount of lignin sulfonic acid adsorbed on the negative electrode active material was measured by chemical analysis. That is, a predetermined amount of the negative electrode active material was dissolved in an aqueous nitric acid solution, the aqueous solution was filtered, and the COD of this aqueous solution was measured. The percentage of lignin sulfonic acid that is not adsorbed to the carbon powder from the COD value compared to the COD of a predetermined amount of H-type and Na-type lignin sulfonic acid measured in advance, as a percentage of the total amount of the negative electrode active material analyzed Displayed. The results are shown in Table 2.

表2に示す結果より、H型リグニンスルホン酸を用いたC系列ではカーボン粉末の含有量の増加にかかわらず、負極活物質に吸着されたリグニンスルホン酸の量がほとんど減らないのに対し、Na型リグニンスルホン酸を用いたA系列ではカーボン粉末の含有量が増加するのに伴って負極活物質に吸着されたリグニンスルホン酸の量が減少することが明らかとなった。これが低温高率放電容量が減少した原因であると推測される。   From the results shown in Table 2, in the C series using H-type lignin sulfonic acid, the amount of lignin sulfonic acid adsorbed on the negative electrode active material is hardly decreased regardless of the increase in the carbon powder content, whereas Na In the A series using the type lignin sulfonic acid, it became clear that the amount of lignin sulfonic acid adsorbed on the negative electrode active material decreased as the carbon powder content increased. This is presumed to be the cause of the decrease in the low-temperature high-rate discharge capacity.

<試験2>
次に、C系列の1C〜16Cの各種類の電池の残りの2セルずつにより、試験1と同様にしてサイクル試験を継続し、1400サイクルまでの容量の推移を測定した。その結果を表3及び図4に示す。
<Test 2>
Next, the cycle test was continued in the same manner as in Test 1 using the remaining two cells of each type of C-series 1C to 16C batteries, and the change in capacity up to 1400 cycles was measured. The results are shown in Table 3 and FIG.

なお、ここで、電池の400サイクル目の放電容量が初期容量の90%以上あり、かつ1200サイクル目の放電容量が初期容量の70%以上あることを、良好な電池性能の判断基準とした。   Here, the criteria for good battery performance were that the discharge capacity at the 400th cycle of the battery was 90% or more of the initial capacity and the discharge capacity at the 1200th cycle was 70% or more of the initial capacity.

更に、1400サイクル後に各種類の電池ごとに1セルを解体し、負極活物質中の硫酸鉛の含有率を測定した。その結果を表3に示す。また、これらの負極活物質ペーストの格子体への充填し易さも表3に示す。なお、表3における「1200サイクル目の容量」の項目の1Cのデータは1100サイクル目の容量の測定値である。   Further, after 1400 cycles, one cell was disassembled for each type of battery, and the content of lead sulfate in the negative electrode active material was measured. The results are shown in Table 3. Table 3 also shows the ease of filling these negative electrode active material pastes into the lattice. In Table 3, 1C data in the item “capacity at 1200th cycle” is a measured value of the capacity at the 1100th cycle.

図4に示す結果より、1Cの電池は100サイクル以降、急速に容量を失った。一方、2C〜16Cの電池は1200サイクル目の容量が初期容量の70%を上回った。そのなかでも、化成後の負極活物質100重量部に対して0.5質量部以上含有されるように、カーボン粉末を負極活物質ペースト中に添加した5C〜16Cの電池で、容量の推移が特に良好であった。   From the results shown in FIG. 4, the battery of 1C rapidly lost its capacity after 100 cycles. On the other hand, in the batteries of 2C to 16C, the capacity at the 1200th cycle exceeded 70% of the initial capacity. Among them, in the battery of 5C to 16C in which the carbon powder is added to the negative electrode active material paste so as to be contained by 0.5 parts by mass or more with respect to 100 parts by weight of the negative electrode active material after chemical conversion, the transition of the capacity is Especially good.

また、表3に示す結果より、1Cの電池の容量低下の原因が硫酸鉛の蓄積であることがわかる。負極活物質ペーストのカーボン粉末の含有量の増加に伴い硫酸鉛の蓄積量が少なくなり、カーボン粉末が化成後の負極活物質100質量部に対し0.5質量部以上含有された5C〜16Cの負極板で、特に硫酸鉛の蓄積量が少なかった。しかし、14C、16Cの電池では、解体時に負極活物質の膨れと脱落、及び、電解液へのカーボン粉末の流出が目立った。   In addition, the results shown in Table 3 show that lead sulfate is the cause of the 1C battery capacity reduction. As the content of carbon powder in the negative electrode active material paste increases, the amount of lead sulfate accumulation decreases, and the carbon powder is contained in an amount of 5C to 16C in an amount of 0.5 parts by mass or more with respect to 100 parts by mass of the negative electrode active material after conversion. In particular, the amount of lead sulfate accumulated in the negative electrode plate was small. However, in the batteries of 14C and 16C, swelling and dropping of the negative electrode active material and outflow of the carbon powder to the electrolytic solution were noticeable during disassembly.

また、負極活物質ペーストの格子体への充填し易さに関しては、14C、16Cの負極板では、充填機械では負極活物質ペーストを均一に充填できず、人の手で充填した。12Cの負極板でも、その負極活物質ペーストはやや硬かったが、充填機械の速さを調整することにより充填は可能であった。1C〜10Cの負極活物質ペーストは充填機械で容易に充填可能であった。   Regarding the ease of filling the negative electrode active material paste into the grid, the negative electrode plates of 14C and 16C were not filled uniformly with the filling machine by the filling machine, and were filled by human hands. Even with the 12C negative electrode plate, the negative electrode active material paste was somewhat hard, but could be filled by adjusting the speed of the filling machine. The negative electrode active material paste of 1C to 10C could be easily filled with a filling machine.

以上の結果より、カーボン粉末の含有量が化成後の負極活物質100質量部に対して0.2〜1.2質量部である2C〜12Cの電池が、初期容量、サイクル寿命性能、及び、製造の容易さの点で、優れていることがわかった。また、そのなかでも、カーボン粉末の含有量が化成後の負極活物質100質量部に対して0.5〜1.2質量部である5C〜12Cの電池が、特に優れたサイクル寿命性能を発現することが明らかとなった。   From the above results, the battery of 2C to 12C, in which the content of the carbon powder is 0.2 to 1.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion, the initial capacity, cycle life performance, and It was found to be excellent in terms of ease of manufacture. Among them, the 5C to 12C battery in which the content of the carbon powder is 0.5 to 1.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion exhibits particularly excellent cycle life performance. It became clear to do.

<試験3>
次に、鉛粉100質量部に対するH型リグニンスルホン酸の含有量はC系列の電池と同じく0.2質量部としつつ、カーボン粉末の含有量と共に化成後の負極活物質密度を変えて、電池性能を検討するために、表4に示すB系列の電池(化成後の負極活物質密度3.5g/cm)、D系列の電池(同3.9g/cm)、E系列の電池(同4.0g/cm)、及び、F系列の電池(同4.1g/cm)を、試験1におけるC系列の電池(負極活物質密度3.7g/cm)と同様にして各種類の電池ごとに2セルずつ組み立てた。ただし、この際、負極板5枚分の理論容量がいずれも575±3Ahとなるように、負極板の厚みと活物質量を調整した。
<Test 3>
Next, the content of the H-type lignin sulfonic acid with respect to 100 parts by mass of the lead powder is 0.2 parts by mass as in the case of the C series battery, and the density of the negative electrode active material after conversion is changed along with the content of the carbon powder, In order to examine the performance, B series batteries shown in Table 4 (negative electrode active material density after chemical conversion 3.5 g / cm 3 ), D series batteries (3.9 g / cm 3 ), E series batteries ( 4.0 g / cm 3 ) and F-series batteries (4.1 g / cm 3 ) were treated in the same manner as the C-series batteries (negative electrode active material density 3.7 g / cm 3 ) in Test 1. Two cells were assembled for each type of battery. However, at this time, the thickness of the negative electrode plate and the amount of active material were adjusted so that the theoretical capacities for the five negative electrode plates were all 575 ± 3 Ah.

これらのうち、10E、12E、10F、12Fの負極活物質ペーストは硬く、それらを格子体に充填する際に充填機械では均一な充填ができなかった。   Of these, 10E, 12E, 10F, and 12F negative electrode active material pastes were hard and could not be uniformly filled by a filling machine when filling them into the lattice.

そこで10E、12E、10F、12F以外の、機械充填が可能であった負極板を用いて各種類の電池を組み立てて、試験2と同様にして1400サイクルの寿命試験に供し、100サイクル毎に放電容量を測定した。各種類の電池の容量の平均値を、C系列の電池の結果とともに表4及び図5〜7に示す。なお、表4における「1200サイクル目の容量」の項目の1Cのデータは1100サイクル目の容量の測定値である。   Therefore, various types of batteries were assembled using negative electrode plates other than 10E, 12E, 10F, and 12F, which could be machine-filled, and subjected to a life test of 1400 cycles in the same manner as in test 2, and discharged every 100 cycles. The capacity was measured. The average value of the capacity of each type of battery is shown in Table 4 and FIGS. Note that 1C data in the item “capacity at 1200th cycle” in Table 4 is a measured value of the capacity at the 1100th cycle.

図5はB系列の電池の結果を示す。B系列の電池は、いずれも1200サイクル目の容量が初期容量の70%を下回った。従って、化成後の負極活物質密度が3.5g/cmの負極板では、カーボン粉末の含有量を1.6質量部まで増加しても、良好なサイクル寿命性能が得られないことがわかった。また化成後の負極活物質密度が3.5g/cm未満の負極板でも同様であることは容易に推測できる。 FIG. 5 shows the results for B-series batteries. In all B series batteries, the capacity at the 1200th cycle was less than 70% of the initial capacity. Therefore, it can be seen that in the negative electrode plate having a negative electrode active material density of 3.5 g / cm 3 after chemical conversion, good cycle life performance cannot be obtained even if the carbon powder content is increased to 1.6 parts by mass. It was. Moreover, it can be easily estimated that the same applies to the negative electrode plate having a negative electrode active material density of less than 3.5 g / cm 3 after chemical conversion.

図6はD系列の電池の結果を示す。1Dの電池は1200サイクル目の容量が初期容量の70%を下回った。2D〜12Dの電池では1200サイクル目の容量が初期容量の70%を上回り、良好なサイクル寿命性能を発現した。なかでも、カーボン粉末の含有量が化成後の負極活物質100質量部に対して0.5質量部以上である5D〜12Dの電池において、容量の推移が特に良好であった。従って、化成後の負極活物質密度が3.9g/cmの負極板では、カーボン粉末の含有量が化成後の負極活物質100質量部に対して0.2〜1.2質量部であれば、良好なサイクル寿命性能が得られることがわかる。また、カーボン粉末の含有量を0.5〜1.2質量部とすることにより、特に良好なサイクル寿命性能が得られることがわかった。 FIG. 6 shows the results for D-series batteries. In the 1D battery, the capacity at the 1200th cycle was less than 70% of the initial capacity. In the batteries of 2D to 12D, the capacity at the 1200th cycle exceeded 70% of the initial capacity, and good cycle life performance was exhibited. Especially, the transition of the capacity was particularly good in 5D to 12D batteries in which the content of the carbon powder was 0.5 parts by mass or more with respect to 100 parts by mass of the negative electrode active material after chemical conversion. Therefore, in the negative electrode plate having a negative electrode active material density of 3.9 g / cm 3 after conversion, the carbon powder content may be 0.2 to 1.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after conversion. It can be seen that good cycle life performance can be obtained. Moreover, it turned out that especially favorable cycle life performance is obtained by making content of carbon powder into 0.5-1.2 mass parts.

図7はE系列及びF系列の電池の結果を示す。1Eの電池及び1F電池は1200サイクル目の容量が初期容量の70%を下回った。2E、8E、2F、8Fの電池では、1200サイクル目の容量が初期容量の70%を上回り、良好なサイクル寿命性能を発現した。従って、化成後の負極活物質密度が4.0〜4.1g/cmである負極板では、カーボン粉末の含有量を化成後の負極活物質100質量部に対して0.2〜0.8質量部とすることにより、良好なサイクル寿命性能が得られることがわかる。 FIG. 7 shows the results of E-series and F-series batteries. In the 1E battery and the 1F battery, the capacity at the 1200th cycle was less than 70% of the initial capacity. In the batteries of 2E, 8E, 2F, and 8F, the capacity at the 1200th cycle exceeded 70% of the initial capacity, and good cycle life performance was exhibited. Therefore, in the negative electrode plate whose negative electrode active material density after conversion is 4.0 to 4.1 g / cm 3 , the content of the carbon powder is 0.2 to 0. 0 relative to 100 parts by mass of the negative electrode active material after conversion. It turns out that favorable cycle life performance is obtained by setting it as 8 mass parts.

更に、化成後の負極活物質密度が4.1g/cmを超える負極板について考察すると、このような負極板がサイクル寿命性能に有利であることは容易に推定されるが、このような負極板では、負極活物質ペーストが、密度の上昇やカーボン粉末の含有量の増加に伴い硬くなり、負極板の製造が著しく困難になると推測される。試験3の結果に鑑みるに、量産において化成後の負極活物質密度が4.0g/cm以上である負極活物質ペーストに、化成後の負極活物質100質量部に対して1.0質量部又はそれ以上の含有量となるように、カーボン粉末を添加することは極めて困難であり、更に、カーボン粉末の含有量の上限は、化成後の負極活物質密度の上昇と共に低下することも推測される。 Further, when considering a negative electrode plate having a negative electrode active material density of more than 4.1 g / cm 3 after chemical conversion, it is easily estimated that such a negative electrode plate is advantageous in cycle life performance. In the plate, it is estimated that the negative electrode active material paste becomes hard as the density increases and the content of the carbon powder increases, making it difficult to manufacture the negative electrode plate. In view of the results of Test 3, in negative electrode active material paste having a negative electrode active material density of 4.0 g / cm 3 or more after chemical conversion in mass production, 1.0 part by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion. In addition, it is extremely difficult to add carbon powder so that the content is higher than that, and it is also speculated that the upper limit of the content of carbon powder decreases with an increase in the density of the negative electrode active material after chemical conversion. The

また、8C、8D、8E、8Fの電池の寿命性能を比較すると、8Fでほぼ飽和していることから、化成後の負極活物質密度の効果は4.1g/cm付近に飽和点があることが観察される。 In addition, when the lifetime performance of 8C, 8D, 8E, and 8F batteries is compared, it is almost saturated at 8F. Therefore, the effect of the density of the negative electrode active material after chemical conversion has a saturation point near 4.1 g / cm 3. It is observed.

以上の結果を図8にまとめて示す。図8のグラフはB〜F系列の電池の1200サイクル目の容量と負極活物質ペーストのカーボン粉末の含有量の関係を示す。カーボン粉末の含有量が0.2質量部以上であると、サイクル寿命性能を向上する効果が発現することが判明した。一方、カーボン粉末の含有量が1.2質量部を超えると、その効果が増大しないか、又は、負極活物質ペーストの格子体への充填が困難となることが判明した。また、化成後の負極活物質密度が3.7g/cm以上であると、良好なサイクル寿命を発現することが判明した。 The above results are summarized in FIG. The graph of FIG. 8 shows the relationship between the capacity of the BF series batteries at the 1200th cycle and the carbon powder content of the negative electrode active material paste. It has been found that the effect of improving the cycle life performance is manifested when the content of the carbon powder is 0.2 parts by mass or more. On the other hand, it has been found that when the content of the carbon powder exceeds 1.2 parts by mass, the effect does not increase or it becomes difficult to fill the negative electrode active material paste into the lattice. Further, it was found that when the density of the negative electrode active material after chemical conversion was 3.7 g / cm 3 or more, a good cycle life was exhibited.

また、8B、8C、8D、8E、8Aの各サンプル電池の6サイクル目の低温高率放電容量を測定し、8Aの容量を1とする相対値で表し、表5及び図9に示した。   Further, the low-temperature, high-rate discharge capacity at the sixth cycle of each of the sample batteries 8B, 8C, 8D, 8E, and 8A was measured and expressed as a relative value where the capacity of 8A was 1, and are shown in Table 5 and FIG.

表5及び図9に示すように、リグニンスルホン酸としてH型リグニンスルホン酸を使用した場合は、カーボン粉末と併用しても、低温高率放電容量の初期容量が下がりにくいことが明らかとなった。   As shown in Table 5 and FIG. 9, when H-type lignin sulfonic acid was used as the lignin sulfonic acid, it became clear that the initial capacity of the low-temperature high-rate discharge capacity was difficult to decrease even when used in combination with carbon powder. .

Claims (4)

酸化鉛と金属鉛との混合物からなる鉛粉と、カーボン粉末と、リグニンスルホン酸とを含有する負極活物質ペーストが格子体に充填されてなる負極板を備えた鉛蓄電池であって、
前記リグニンスルホン酸は、酸性又はアルカリ性の水溶液中で電離可能な官能基から解離しうる陽イオンの8割以上がプロトンに置換されたものであることを特徴とする鉛蓄電池。
A lead storage battery including a negative electrode plate in which a negative electrode active material paste containing a lead powder composed of a mixture of lead oxide and metal lead, carbon powder, and lignin sulfonic acid is filled in a lattice body,
The lignin sulfonic acid is a lead acid battery in which 80% or more of cations that can dissociate from an ionizable functional group in an acidic or alkaline aqueous solution are substituted with protons.
前記負極板の化成後の活物質密度が、3.7g/cm以上であり、
前記負極活物質ペーストのカーボン粉末の含有量が、化成後の負極活物質100質量部に対して0.2〜1.2質量部である請求項1記載の鉛蓄電池。
The active material density after the formation of the negative electrode plate is 3.7 g / cm 3 or more,
The lead acid battery according to claim 1, wherein the content of the carbon powder in the negative electrode active material paste is 0.2 to 1.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion.
前記負極活物質ペーストのカーボン粉末の含有量が、化成後の負極活物質100質量部に対して0.5〜1.2質量部である請求項2記載の鉛蓄電池。   The lead acid battery according to claim 2, wherein the content of the carbon powder in the negative electrode active material paste is 0.5 to 1.2 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion. 前記負極板の化成後の活物質密度が、4.0g/cm以上であり、
前記負極活物質ペーストのカーボン粉末の含有量が、化成後の負極活物質100質量部に対して0.2〜0.8質量部である請求項1又は2記載の鉛蓄電池。
The active material density after the formation of the negative electrode plate is 4.0 g / cm 3 or more,
The lead acid battery according to claim 1 or 2, wherein a content of the carbon powder of the negative electrode active material paste is 0.2 to 0.8 parts by mass with respect to 100 parts by mass of the negative electrode active material after chemical conversion.
JP2012088800A 2012-04-09 2012-04-09 Lead acid battery Pending JP2013218894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088800A JP2013218894A (en) 2012-04-09 2012-04-09 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088800A JP2013218894A (en) 2012-04-09 2012-04-09 Lead acid battery

Publications (1)

Publication Number Publication Date
JP2013218894A true JP2013218894A (en) 2013-10-24

Family

ID=49590777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088800A Pending JP2013218894A (en) 2012-04-09 2012-04-09 Lead acid battery

Country Status (1)

Country Link
JP (1) JP2013218894A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121510A1 (en) * 2015-01-28 2016-08-04 日立化成株式会社 Lead storage cell and automobile provided with same
JP2016189260A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
JP2017084487A (en) * 2015-10-23 2017-05-18 日立化成株式会社 Lead-acid battery
JPWO2016114315A1 (en) * 2015-01-14 2017-08-31 日立化成株式会社 Lead acid battery, micro hybrid vehicle and idling stop system vehicle
WO2017149871A1 (en) * 2016-03-01 2017-09-08 日立化成株式会社 Resin for lead storage battery, electrode, lead storage battery, and motor vehicle
WO2018021420A1 (en) * 2016-07-29 2018-02-01 株式会社Gsユアサ Lead storage cell
JP2019165016A (en) * 2019-05-30 2019-09-26 株式会社Gsユアサ Lead acid storage battery
CN111293310A (en) * 2019-12-30 2020-06-16 安徽力普拉斯电源技术有限公司 Preparation method of lead-carbon energy storage battery
JP2020167079A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery
CN114566617A (en) * 2022-01-27 2022-05-31 淄博火炬能源有限责任公司 Wet tubular positive electrode and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864758A (en) * 1981-10-09 1983-04-18 Japan Storage Battery Co Ltd Lead accumulator for power
JPH10208746A (en) * 1997-01-20 1998-08-07 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2002343413A (en) * 2001-05-14 2002-11-29 Japan Storage Battery Co Ltd Seal type lead-acid battery
JP2003051307A (en) * 2001-08-08 2003-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery for hybrid system
JP2004327108A (en) * 2003-04-22 2004-11-18 Shin Kobe Electric Mach Co Ltd Control valve type lead-acid battery
JP2005294027A (en) * 2004-03-31 2005-10-20 Yuasa Corp Cathode active material and lead acid storage battery using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864758A (en) * 1981-10-09 1983-04-18 Japan Storage Battery Co Ltd Lead accumulator for power
JPH10208746A (en) * 1997-01-20 1998-08-07 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2002343413A (en) * 2001-05-14 2002-11-29 Japan Storage Battery Co Ltd Seal type lead-acid battery
JP2003051307A (en) * 2001-08-08 2003-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery for hybrid system
JP2004327108A (en) * 2003-04-22 2004-11-18 Shin Kobe Electric Mach Co Ltd Control valve type lead-acid battery
JP2005294027A (en) * 2004-03-31 2005-10-20 Yuasa Corp Cathode active material and lead acid storage battery using it

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050229A (en) * 2015-01-14 2019-03-28 日立化成株式会社 Lead battery, micro hybrid vehicle, and idling stop system vehicle
JPWO2016114315A1 (en) * 2015-01-14 2017-08-31 日立化成株式会社 Lead acid battery, micro hybrid vehicle and idling stop system vehicle
JPWO2016121510A1 (en) * 2015-01-28 2017-08-31 日立化成株式会社 Lead-acid battery and automobile equipped with the same
WO2016121510A1 (en) * 2015-01-28 2016-08-04 日立化成株式会社 Lead storage cell and automobile provided with same
JP2016189260A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
JP2017084487A (en) * 2015-10-23 2017-05-18 日立化成株式会社 Lead-acid battery
WO2017149871A1 (en) * 2016-03-01 2017-09-08 日立化成株式会社 Resin for lead storage battery, electrode, lead storage battery, and motor vehicle
JPWO2018021420A1 (en) * 2016-07-29 2019-05-23 株式会社Gsユアサ Lead storage battery
WO2018021420A1 (en) * 2016-07-29 2018-02-01 株式会社Gsユアサ Lead storage cell
JP2022009931A (en) * 2016-07-29 2022-01-14 株式会社Gsユアサ Lead acid battery
JP7143927B2 (en) 2016-07-29 2022-09-29 株式会社Gsユアサ lead acid battery
JP2020167079A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery
JP2019165016A (en) * 2019-05-30 2019-09-26 株式会社Gsユアサ Lead acid storage battery
CN111293310A (en) * 2019-12-30 2020-06-16 安徽力普拉斯电源技术有限公司 Preparation method of lead-carbon energy storage battery
CN114566617A (en) * 2022-01-27 2022-05-31 淄博火炬能源有限责任公司 Wet tubular positive electrode and method for producing same
CN114566617B (en) * 2022-01-27 2024-01-02 淄博火炬能源有限责任公司 Wet tubular positive electrode and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2013218894A (en) Lead acid battery
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP6168138B2 (en) Liquid lead-acid battery
JP5748091B2 (en) Lead acid battery
JP2017063001A (en) Lead storage battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
CN103247827A (en) Composite additive of lead-acid storage battery
JP2008243489A (en) Lead acid storage battery
JP5720947B2 (en) Lead acid battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP6628070B2 (en) Manufacturing method of positive electrode plate for control valve type lead-acid battery
WO2019088040A1 (en) Lead storage battery separator and lead storage battery
JP2010102922A (en) Control valve type lead-acid battery
JP6607344B2 (en) Lead acid battery
JP2013073716A (en) Lead acid battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
JP2007095626A (en) Method of manufacturing lead-acid battery
JP6164502B2 (en) Lead acid battery
JP2016213050A (en) Control valve-type lead storage battery and method for manufacturing the same
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP2013093312A (en) Lead acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2011165378A (en) Method of manufacturing lead storage battery
JP2019165016A (en) Lead acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151217