JP2016213050A - Control valve-type lead storage battery and method for manufacturing the same - Google Patents

Control valve-type lead storage battery and method for manufacturing the same Download PDF

Info

Publication number
JP2016213050A
JP2016213050A JP2015095583A JP2015095583A JP2016213050A JP 2016213050 A JP2016213050 A JP 2016213050A JP 2015095583 A JP2015095583 A JP 2015095583A JP 2015095583 A JP2015095583 A JP 2015095583A JP 2016213050 A JP2016213050 A JP 2016213050A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
positive electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015095583A
Other languages
Japanese (ja)
Other versions
JP6503869B2 (en
Inventor
鈴木 啓太
Keita Suzuki
啓太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015095583A priority Critical patent/JP6503869B2/en
Publication of JP2016213050A publication Critical patent/JP2016213050A/en
Application granted granted Critical
Publication of JP6503869B2 publication Critical patent/JP6503869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control valve-type lead storage battery by which the degradation of a control valve-type lead storage battery operated in a standby use manner owing to ripple can be avoided well and inexpensively.SOLUTION: In a control valve-type lead storage battery, the ratio (N)/(P) of a negative electrode active material total superficial area (N) to a positive electrode active material total superficial area (P) is in a range of 0.010-0.020 in the battery in a state of full charge after chemical conversion; and the ratio (n)/(p) of a negative electrode active material total amount (n) to a positive electrode active material total amount (p) is in a range of 0.4-0.7 in the battery in the state of full charge after chemical conversion. The above numeric value ranges are determined by selecting an additive agent in a process for manufacturing each electrode plate, and adjusting various kinds of parameters including a blend volume of the additive agent in preparing an active material paste, addition amounts of water and diluted sulfuric acid, and maturation and dry conditions of the electrode plates. In addition, the numeric value ranges are adjusted by a grid form, quantities of charged active materials, a chemical conversion condition, and the numbers of positive and negative electrode plates in a battery case.SELECTED DRAWING: Figure 1

Description

本発明は、制御弁式鉛蓄電池に関し、特に、スタンバイユースで運用される制御弁式鉛蓄電池及びその製造法に関する。   The present invention relates to a control valve type lead storage battery, and more particularly to a control valve type lead storage battery operated for standby use and a method for manufacturing the same.

制御弁式鉛蓄電池は、コストや安全性及び信頼性に優れた二次電池であり、様々な用途に用いられている。   The control valve type lead acid battery is a secondary battery excellent in cost, safety and reliability, and is used for various applications.

従来、電力貯蔵用、特に一般回線用電話交換機の直流電源に用いられる蓄電池の電力は、0.3〜3.4kHzの音声を交換機を用いて電流の強弱に変換して固定電話回線に伝送するために供給されるので、整流されたノイズの無い直流電源を供給する必要がある。   Conventionally, the power of a storage battery used for power storage, in particular, a DC power source of a telephone switch for a general line, is converted from 0.3 to 3.4 kHz voice to current intensity using a switch and transmitted to a fixed telephone line. Therefore, it is necessary to supply a rectified noise-free DC power supply.

近年、IP化、データ通信の一部として音声データを伝送する方式が増加し、デジタル化による既存施設更新、データセンタの設置、基幹系施設等が大規模に集約されることが多く、それらの消費電力に対応できるUPSの電源として鉛蓄電池の需要が増加している。UPSは、商用電源を直流に変換した電源装置と並列に接続されて充電される為、UPSを充電するために供給される電力には、商用電源の高調波やAC−DC変換の際に整流しきれなかった変動部分などのリプル(直流の電流の中に含まれている脈動の成分)が掛っている。   In recent years, the method of transmitting voice data as part of IP conversion and data communication has increased, and existing facilities due to digitization, data center installation, backbone facilities, etc. are often concentrated on a large scale. There is an increasing demand for lead-acid batteries as UPS power sources that can handle power consumption. Since the UPS is charged by being connected in parallel with a power supply device that converts commercial power into direct current, the power supplied to charge the UPS is rectified during the harmonics of the commercial power or during AC-DC conversion. A ripple (a pulsation component included in a direct current) such as a fluctuation part that could not be applied is applied.

このようなリプルが存在する電源で制御弁式鉛蓄電池を定電圧充電すると、充電電圧がリプルにより変動するので、厳密には定電圧で充電されている訳ではなく、電圧変動によって、正極電位はリプルに合わせて変動することになり、正極板の劣化を促進すると考えられる。   When a control valve type lead-acid battery is charged at a constant voltage with a power source having such ripples, the charging voltage fluctuates due to the ripple, so strictly speaking, it is not charged at a constant voltage. It will fluctuate according to the ripple, and it is considered that the deterioration of the positive electrode plate is promoted.

特に、1kHz以下の周波数帯のリプルを含む電源を用いて制御弁式鉛蓄電池の充電を行った場合には、リプルに起因する電圧変動で生じる電流変動により、正極板でファラデー反応が生じて正極電位が不安定になり、正極電位が下がると正極活物質のPbO2がPbOx、PbSO4に変化し正極の腐食反応が加速される。また、正極電位が上がると電気分解が起こり、O2が発生して正極板の腐食が加速される。 In particular, when a control valve type lead-acid battery is charged using a power source including ripples in a frequency band of 1 kHz or less, a Faraday reaction occurs in the positive electrode plate due to current fluctuations caused by voltage fluctuations caused by ripples. When the potential becomes unstable and the positive electrode potential decreases, the positive electrode active material PbO 2 changes to PbO x , PbSO 4 , and the positive electrode corrosion reaction is accelerated. Further, when the positive electrode potential increases, electrolysis occurs, O 2 is generated, and corrosion of the positive electrode plate is accelerated.

しかしながら、リプルによる正極板への影響はこれまで明らかにされておらず、これに対する対策も少ない。   However, the influence of the ripple on the positive electrode plate has not been clarified so far, and there are few countermeasures against this.

特開平9−247856号公報(特許文献1)には、大きな負荷に対する十分な電流供給と供給電圧の変動の抑制並びにノイズの影響を良好に解消した電気二重層コンデンサを用いた車両用電源装置が開示されている。   Japanese Patent Application Laid-Open No. 9-247856 (Patent Document 1) discloses a vehicle power supply device using an electric double layer capacitor that satisfactorily supplies current to a large load, suppresses fluctuations in supply voltage, and effectively eliminates the influence of noise. It is disclosed.

特開2001−037093号公報(特許文献2)には、所定の直流電圧に重畳して直流電圧に比べて微弱な交流高周波電圧を印加する充電方法が記載されている。   Japanese Patent Laid-Open No. 2001-037093 (Patent Document 2) describes a charging method in which an alternating high frequency voltage that is weaker than a direct current voltage is applied to a predetermined direct current voltage.

特開平9−247856号公報Japanese Patent Laid-Open No. 9-247856 特開2001−037093号公報JP 2001-037093 A

しかしながら、特許文献1に記載されている発明では、デバイスを2個搭載させるため、無停電電源装置(UPS)のコスト上昇に繋がる。   However, in the invention described in Patent Document 1, since two devices are mounted, the cost of the uninterruptible power supply (UPS) is increased.

また、特許文献2は所定の直流電圧に重畳して直流電圧に比べて微弱な交流高周波電圧を印加する充電方法に関する内容であるが、制御弁式鉛蓄電池側の対策はなされていない。   Moreover, although patent document 2 is the content regarding the charging method which superimposes on a predetermined direct current voltage and applies a weak alternating current high frequency voltage compared with direct current voltage, the countermeasure by the side of a control valve type lead acid battery is not made.

本発明の目的は、スタンバイユースで運用される制御弁式鉛蓄電池のリプルによる正極板の劣化を良好かつ安価に防止することができる制御弁式鉛蓄電池及び制御弁式鉛蓄電池の製造方法を提供することにある。   An object of the present invention is to provide a control valve type lead storage battery and a method for manufacturing the control valve type lead storage battery that can prevent deterioration of the positive electrode plate due to ripple of the control valve type lead storage battery operated in standby use in a good and inexpensive manner. There is to do.

本発明は1枚以上の負極板と1枚以上の正極板とを含む極板群を備えたスタンバイユースで運用される制御弁式鉛蓄電池を対象とする。本発明の制御弁式鉛蓄電池は、化成後で満充電状態の極板群中の1枚以上の負極板の負極活物質総表面積(N)と1枚以上の正極板の正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.020の範囲にあり、1枚以上の負極板の負極活物質総質量(n)と1枚以上の正極板の正極活物質総質量(p)の比が、0.4<(n)/(p)<0.7の範囲にあり、しかも負極活物質にカーボンを含まないものである。ここで満充電状態とは、JIS C 8701−1に記載の、蓄電池が放電するときに化学反応によって電気エネルギーを生成する物質が十分に充電されている状態、すなわち、定格容量が放電できる充電状態のことである。   The present invention is directed to a control valve type lead-acid battery that is operated in a standby use including an electrode plate group including one or more negative electrode plates and one or more positive electrode plates. The control valve type lead-acid battery of the present invention comprises a total surface area (N) of negative electrode active materials of one or more negative plates and a total surface area of positive active materials of one or more positive plates in a fully charged electrode plate group after formation. The ratio of (P) is in the range of 0.010 <(N) / (P) <0.020, and the total mass (n) of the negative electrode active material of one or more negative plates and that of one or more positive plates The ratio of the positive electrode active material total mass (p) is in the range of 0.4 <(n) / (p) <0.7, and the negative electrode active material does not contain carbon. Here, the fully charged state is a state in which a substance that generates electrical energy by a chemical reaction when the storage battery discharges is sufficiently charged, that is, a charged state in which the rated capacity can be discharged. That is.

本発明のように、負極活物質にカーボンを含まないもので、上記の数値範囲にすると、負極活物質の総表面積を正極活物質の総表面積に対して非常に小さくすることができ、充電電圧が変動しても負極側が先に電位変動するため、正極の電位変動が抑制される。また、制御弁式鉛蓄電池内の負極の分極が大きくなり、正極の電位変動が抑制される。その結果、本発明によれば、正極電位が安定した状態になり、正極電位が下がって正極活物質のPbO2がPbOx、PbSO4に変化し、正極の腐食反応が加速されることを抑制できる。また、本発明によれば、正極電位が上がって、電気分解によりO2が発生し、正極板の腐食が加速されることを抑制できる。また、カーボンを含まないことで、トリクル充電中の充電電流値を小さくすることが可能となり寿命性能を十分に確保することができる。 As in the present invention, the negative electrode active material does not contain carbon, and the above-mentioned numerical range allows the total surface area of the negative electrode active material to be very small relative to the total surface area of the positive electrode active material, and the charging voltage Even if the voltage fluctuates, the potential fluctuation of the positive electrode is suppressed because the potential fluctuation of the negative electrode first occurs. Moreover, the polarization of the negative electrode in the control valve type lead storage battery is increased, and the potential fluctuation of the positive electrode is suppressed. As a result, according to the present invention, the positive electrode potential becomes stable, the positive electrode potential decreases, and the positive electrode active material PbO 2 is changed to PbO x and PbSO 4 , thereby suppressing the acceleration of the positive electrode corrosion reaction. it can. In addition, according to the present invention, it is possible to suppress the positive electrode potential from increasing, O 2 being generated by electrolysis, and the corrosion of the positive electrode plate from being accelerated. Further, by not containing carbon, it is possible to reduce the charging current value during trickle charging, and it is possible to sufficiently ensure the life performance.

上記範囲の中で、満充電状態である制御弁式鉛蓄電池内の負極活物質総表面積(N)と正極活物質総表面積(P)の比、(N)/(P)が0.010〜0.018の範囲であり、負極活物質総質量(n)と正極活物質総質量(p)の比、(n)/(p)が0.4〜0.6の範囲であることが好ましい。この範囲であれば、充電電圧が大きく変動しても負極側が先に電位変動し、この電位変動の変動量が大きくなるため、正極の電位変動が更に抑制され、安定した状態になる。また、制御弁式鉛蓄電池内の負極の分極がより大きくなり、正極の電位変動がより抑制されるので正極活物質のPbO2がPbOxやPbSO4に変化することが抑制され、電気分解によるO2の発生が抑制されて正極板の腐食を抑制することができる。 Within the above range, the ratio of the total surface area (N) of the negative electrode active material and the total surface area (P) of the positive electrode active material in the fully-charged control valve type lead storage battery, (N) / (P) is 0.010. The ratio of the total mass (n) of the negative electrode active material to the total mass (p) of the positive electrode active material (n) / (p) is preferably in the range of 0.4 to 0.6. . Within this range, even if the charging voltage largely fluctuates, the potential on the negative electrode side first fluctuates, and the fluctuation amount of this potential fluctuation increases, so that the potential fluctuation of the positive electrode is further suppressed and a stable state is achieved. Moreover, since the polarization of the negative electrode in the control valve type lead-acid battery becomes larger and the potential fluctuation of the positive electrode is further suppressed, the PbO 2 of the positive electrode active material is suppressed from being changed to PbO x or PbSO 4, which is caused by electrolysis. O 2 generation is suppressed and corrosion of the positive electrode plate can be suppressed.

さらに上記範囲の中で、満充電状態である制御弁式鉛蓄電池内の負極活物質総表面積(N)と正極活物質総表面積(P)の比、(N)/(P)が0.010〜0.014の範囲であり、負極活物質総質量(n)と正極活物質総質量(p)の比、(n)/(p)が0.4〜0.5の範囲であることがさらに好ましい。   Further, within the above range, the ratio of the total surface area (N) of the negative electrode active material to the total surface area (P) of the positive electrode active material in the fully-charged control valve type lead storage battery, (N) / (P) is 0.010. The ratio of the total mass (n) of the negative electrode active material and the total mass (p) of the positive electrode active material (n) / (p) is in the range of 0.4 to 0.5. Further preferred.

この範囲であれば、負極活物質の表面積を正極活物質の表面積に対してさらに小さくすることができ、充電電圧が変動しても負極の電位変動が正極の電位変動より先に起こり、変動量も更に大きいため、正極の電位変動がさらに抑制される。また、制御弁式鉛蓄電池内の負極の分極がより大きくなり、正極の電位変動がさらに抑制される。   Within this range, the surface area of the negative electrode active material can be further reduced with respect to the surface area of the positive electrode active material, and even if the charging voltage varies, the potential fluctuation of the negative electrode occurs before the potential fluctuation of the positive electrode. Therefore, the potential fluctuation of the positive electrode is further suppressed. Moreover, the polarization of the negative electrode in the control valve type lead-acid battery becomes larger, and the potential fluctuation of the positive electrode is further suppressed.

化成前の負極板は、鉛合金からなる負極集電体に、一酸化鉛を主成分とする鉛粉に対して、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤及び防縮剤を添加剤として加えて混合した混合物に水と希硫酸とを加えて混練して調製したペースト状負極活物質を充填した活物質充填負極板を熟成及び乾燥したものが好ましい。強化用耐酸性繊維を用いることで負極集電体へ活物質を充填した際、活物質の抜け、脱落を防止することができる。硫酸鉛結晶成長抑制添加剤を用いることで、添加剤が充電時に生成する硫酸鉛の結晶核となり、微細な硫酸鉛を形成することができる。防縮剤を添加すると、負極活物質が充放電の際に形態変化し、凝集することを防止し、活物質の表面積の大きさを保つことが可能となる。   The negative electrode plate before chemical conversion is composed of a lead alloy negative electrode current collector made of lead monoxide as a main component, acid fiber for reinforcement, lead sulfate crystal growth inhibiting additive, and anti-shrink additive. A mixture obtained by aging and drying an active material-filled negative electrode plate filled with a paste-like negative electrode active material prepared by adding water and dilute sulfuric acid to a mixture that has been added and kneaded is preferable. By using the acid-resistant fiber for reinforcement, when the active material is filled into the negative electrode current collector, the active material can be prevented from coming off or falling off. By using the lead sulfate crystal growth inhibiting additive, the additive becomes a crystal nucleus of lead sulfate generated during charging, and fine lead sulfate can be formed. When the anti-shrink agent is added, it is possible to prevent the negative electrode active material from being changed in shape during charge / discharge and to agglomerate, and to maintain the surface area of the active material.

また化成前の正極板は、一酸化鉛を主成分とする鉛粉と、鉛丹と、強化用耐酸性繊維を含む添加剤とを加えて混合した混合物に、水と希硫酸を加えて混練して調整したペースト状正極活物質を、鉛合金からなる正極集電体に充填した活物質充填正極板を熟成乾燥したものが好ましい。強化用耐酸性繊維を用いることで正極集電体へ活物質を充填した際、活物質の抜け、脱落を防止することができる。また鉛丹は電槽化成時の化成性の向上や、正極活物質の利用率を高くすることができる。   Moreover, the positive electrode plate before chemical conversion is kneaded by adding water and dilute sulfuric acid to a mixture obtained by adding lead powder mainly composed of lead monoxide, red lead and an additive containing acid-resistant fiber for reinforcement. A material obtained by aging and drying an active material-filled positive electrode plate obtained by filling a paste-like positive electrode active material prepared in this manner into a positive electrode current collector made of a lead alloy is preferable. When the positive electrode current collector is filled with the active material by using the reinforcing acid-resistant fiber, the active material can be prevented from coming off and falling off. In addition, red lead can improve the chemical conversion during battery case formation and increase the utilization rate of the positive electrode active material.

なおペースト状負極活物質に添加される強化用耐酸性繊維がポリエチレンテレフタレート繊維であり、硫酸鉛結晶成長抑制添加剤が硫酸バリウムであり、防縮剤がリグニンスルホン酸塩であるのが好ましい。また正極集電体を形成するための鉛合金は、鉛−カルシウム−スズ合金によって作成されているのが好ましい。さらにペースト状正極活物質に添加される強化用耐酸性繊維がポリエチレンテレフタレート繊維であるのが好ましい。カルシウム含有量を0.07〜0.09質量%、スズ含有量を1.5〜1.75質量%とすることで、合金組成が緻密になり、耐食性に優れた正極集電体を形成することが可能となる。なお負極集電体を形成するための鉛合金は特に限られるわけではないが、純鉛、カルシウム−スズ合金、アンチモン合金が用いられることが一般的であり、寿命性能、製造上の取り回しから、カルシウム−スズ合金を用いることが望ましい。またペースト状正極活物質に添加される鉛丹は、鉛粉に対して5〜25質量%添加するのが好ましい。鉛丹量が5%より少ないと鉛丹の効果が十分に発揮されず、25%以上であると活物質の耐久性が著しく低下するためである。   It is preferable that the reinforcing acid-resistant fiber added to the paste-like negative electrode active material is polyethylene terephthalate fiber, the lead sulfate crystal growth inhibiting additive is barium sulfate, and the antishrink agent is lignin sulfonate. The lead alloy for forming the positive electrode current collector is preferably made of a lead-calcium-tin alloy. Furthermore, it is preferable that the acid-resistant fiber for reinforcement added to the paste-like positive electrode active material is polyethylene terephthalate fiber. By setting the calcium content to 0.07 to 0.09 mass% and the tin content to 1.5 to 1.75 mass%, the alloy composition becomes dense and a positive electrode current collector excellent in corrosion resistance is formed. It becomes possible. The lead alloy for forming the negative electrode current collector is not particularly limited, but pure lead, calcium-tin alloy, and antimony alloy are generally used. It is desirable to use a calcium-tin alloy. Moreover, it is preferable to add 5-25 mass% of the red lead added to a paste-form positive electrode active material with respect to lead powder. When the amount of lead is less than 5%, the effect of the lead is not sufficiently exhibited, and when it is 25% or more, the durability of the active material is remarkably lowered.

本発明の具体的な、制御弁式鉛蓄電池の製造方法では、一酸化鉛を主成分とする鉛粉に対して、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤及び防縮剤を添加剤として加えて混合した混合物に水と希硫酸とを加えて混練して調製したペースト状負極活物質を、鉛合金からなる負極集電体に充填して形成した活物質充填負極板を熟成及び乾燥して化成前の負極板を製造する。また鉛合金からなる正極集電体に、一酸化鉛を主成分とする鉛粉と、鉛丹と、強化用耐酸性繊維を含む添加剤とを加えて混合した混合物に、水と希硫酸を加えて混練して調整したペースト状正極活物質を充填して形成した活物質充填正極板を熟成及び乾燥して化成前の正極板を製造する。そして1枚以上の化成前の負極板と1枚以上の化成前の正極板とを含む極板群を化成した後満充電状態にする。本発明では、化成後で満充電状態の極板群中の1枚以上の負極板の負極活物質総表面積(N)と、1枚以上の正極板の正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.020の範囲となるように、化成前の負極板の表面積及び化成前の正極板の表面積を、添加剤の添加量、水の量、希硫酸の量、熟成の条件及び乾燥の条件の少なくとも一つを調整することにより定める。そして化成後で満充電状態の1枚以上の負極板の負極活物質総質量(n)と1枚以上の正極板の正極活物質総質量(p)の比が、0.4<(n)/(p)<0.7の範囲となるように、負極集電体へのペースト式負極活物質の充填量及び正極集電体へのペースト式正極活物質の充填量を定める。本発明の製造方法によれば、本発明の制御弁式鉛蓄電池を簡単に製造することができる。   In a specific control valve type lead acid battery manufacturing method of the present invention, an acid-resistant fiber for reinforcement, a lead sulfate crystal growth inhibiting additive and a shrinkage-preventing agent are added to lead powder mainly composed of lead monoxide. Aged and dried active material-filled negative electrode plate formed by filling a negative electrode current collector made of a lead alloy with a paste-like negative electrode active material prepared by adding water and dilute sulfuric acid to a mixed mixture and kneading them Thus, the negative electrode plate before chemical conversion is manufactured. Moreover, water and dilute sulfuric acid are added to a mixture obtained by adding a lead powder mainly composed of lead monoxide, a lead powder, and an additive containing acid-resistant fibers for reinforcement to a positive electrode current collector made of a lead alloy. In addition, an active material-filled positive electrode plate formed by filling a paste-like positive electrode active material prepared by kneading is aged and dried to produce a positive electrode plate before chemical conversion. Then, after forming an electrode plate group including one or more pre-formation negative electrode plates and one or more pre-formation positive electrode plates, a fully charged state is obtained. In the present invention, the ratio of the total negative electrode active material surface area (N) of one or more negative electrode plates in the fully charged electrode plate group after formation to the total positive electrode active material surface area (P) of one or more positive electrode plates. Is in the range of 0.010 <(N) / (P) <0.020, the surface area of the negative electrode plate before chemical conversion and the surface area of the positive electrode plate before chemical conversion are determined by adding the additive and the amount of water. It is determined by adjusting at least one of the amount of dilute sulfuric acid, aging conditions and drying conditions. And the ratio of the negative electrode active material total mass (n) of one or more negative plates fully charged after the formation to the total positive electrode active material mass (p) of one or more positive plates is 0.4 <(n) The filling amount of the paste-type negative electrode active material into the negative electrode current collector and the filling amount of the paste-type positive electrode active material into the positive electrode current collector are determined so as to satisfy the range of /(p)<0.7. According to the manufacturing method of the present invention, the control valve type lead-acid battery of the present invention can be easily manufactured.

制御弁式鉛蓄電池の一例の部材構成を示す斜視図である。It is a perspective view which shows the member structure of an example of a control valve type lead acid battery. 一部の実施例と比較例において、満充電状態における制御弁式電池内の負極活物質総表面積と正極活物質総表面積の割合と定格容量に対する鉛蓄電池容量比及び充放電サイクル数の相関を示した曲線図である。In some examples and comparative examples, the relationship between the ratio of the total surface area of the negative electrode active material and the total surface area of the positive electrode active material in the control valve battery in the fully charged state, the capacity ratio of the lead storage battery to the rated capacity, and the number of charge / discharge cycles is shown FIG. 残りの実施例と比較例における図2と同様の曲線図である。FIG. 3 is a curve diagram similar to FIG. 2 in the remaining examples and comparative examples.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の制御弁式鉛蓄電池は、化成後で、満充電状態の制御弁式鉛蓄電池内の負極活物質総表面積(N)と正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.020の範囲であり、負極活物質総質量(n)と正極活物質総質量(p)の比が、0.4<(n)/(p)<0.7の範囲にある。本発明で用いる正極板は、例えば、正極板の製造工程における添加剤の選択、正極活物質ペーストを調製する際の添加剤の配合量、水及び希硫酸の添加量、極板の熟成・乾燥条件等各種のパラメータを調整することや、負極板の製造工程における添加剤の選択、負極活物質ペーストを調製する際の添加剤の配合量、水及び希硫酸の添加量、極板の熟成及び乾燥条件等各種のパラメータを調整することにより製造することができる。また、活物質を充填する集電体の形状、活物質充填量、化成条件、電槽内の正負極板枚数構成で調整することもできる、しかし、製造法は、これに限られるものではない。   In the control valve type lead storage battery of the present invention, the ratio of the negative electrode active material total surface area (N) and the positive electrode active material total surface area (P) in the fully charged control valve type lead storage battery is 0.010 < (N) / (P) <0.020, and the ratio of the negative electrode active material total mass (n) to the positive electrode active material total mass (p) is 0.4 <(n) / (p) <0. In the range of .7. The positive electrode plate used in the present invention includes, for example, selection of additives in the manufacturing process of the positive electrode plate, blending amount of the additive when preparing the positive electrode active material paste, addition amount of water and dilute sulfuric acid, aging / drying of the electrode plate Adjusting various parameters such as conditions, selection of additives in the manufacturing process of the negative electrode plate, compounding amount of additives when preparing the negative electrode active material paste, addition amount of water and dilute sulfuric acid, aging of the electrode plate and It can be manufactured by adjusting various parameters such as drying conditions. Further, the shape of the current collector filled with the active material, the amount of active material filling, chemical conversion conditions, and the number of positive and negative electrode plates in the battery case can be adjusted. However, the manufacturing method is not limited to this. .

以下の実施の形態では、化成された状態で満充電状態における正負極活物質総表面積比と、化成された状態で満充電状態における正負極活物質総質量比を、次のようにして調整している。   In the following embodiments, the total surface area ratio of positive and negative electrode active materials in a fully charged state in a formed state and the total mass ratio of positive and negative electrode active materials in a fully charged state in a formed state are adjusted as follows. ing.

すなわち、正極活物質は一酸化鉛を主成分とする鉛粉に、鉛丹を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成及び乾燥を行う。ここで、水、及び希硫酸の添加量、熟成・乾燥条件を変えることにより、化成された状態で満充電状態における正極板の活物質の表面積を一定の目標範囲内に調整することができる。   In other words, the positive electrode active material is a lead alloy current collector made by mixing a lead powder containing lead monoxide as a main component, adding red lead, mixing it, adding a predetermined amount of water and dilute sulfuric acid, and kneading. The body is filled and aged and dried under predetermined conditions. Here, by changing the addition amount of water and dilute sulfuric acid and the aging / drying conditions, the surface area of the active material of the positive electrode plate in the fully charged state in the formed state can be adjusted within a certain target range.

負極活物質は一酸化鉛を主成分とする鉛粉に、添加剤を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成及び乾燥を行う。ここで、添加剤、水、及び希硫酸の添加量、熟成及び乾燥条件を変えることにより、化成された状態で満充電状態における負極板の活物質の表面積を一定の範囲内に調整することができる。   The negative electrode active material is a powder of lead alloy containing lead powder containing lead monoxide as a main component, mixed with an additive, and mixed with a predetermined amount of water and dilute sulfuric acid. After filling, aging and drying are performed under predetermined conditions. Here, it is possible to adjust the surface area of the active material of the negative electrode plate in a fully charged state within a certain range by changing the amount of additive, water and dilute sulfuric acid added, aging and drying conditions. it can.

さらに、化成条件を変えることでも正負極活物質の表面積を調整することが可能である。   Furthermore, it is possible to adjust the surface area of the positive and negative electrode active materials by changing the chemical conversion conditions.

また、鉛合金製の集電体に充填するペースト状活物質の量を変えることで正負極活物質総質量比を調整することができる。   Further, the total mass ratio of the positive and negative electrode active materials can be adjusted by changing the amount of the pasty active material filled in the lead alloy current collector.

ペースト状負極活物質に添加される添加剤には、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤、防縮剤を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、ポリエチレンテレフタレート(PET)繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで負極集電体へ活物質を充填した際、活物質の抜け、脱落を防止することができる。硫酸鉛結晶成長抑制添加剤には硫酸バリウムを用いるのが一般的であり、硫酸バリウムを添加することで、硫酸バリウムは電解液に溶解することなく活物質中に留まって、充電時に生成する硫酸鉛の結晶核となり、微細な硫酸鉛を形成することができる。防縮剤にはリグニンスルホン酸塩を用いることができる。リグニンスルホン酸塩は合成リグニンと樹木由来の天然リグニンがあり、長期間運用されるスタンバイユース用途には長期間安定に存在する天然リグニンを用いることが望ましい。リグニンを添加することで、負極活物質が充放電の際に形態変化し、凝集することを防止し、活物質の表面積の大きさを保つことが可能となる。また、カーボンを含まないことで、トリクル充電中の電流値を小さくすることが可能となり寿命性能を十分に確保することができる。   As the additive added to the paste-like negative electrode active material, an acid-resistant fiber for reinforcement, a lead sulfate crystal growth inhibiting additive, and a shrinkage preventing agent are used. As the acid-resistant fiber for reinforcement, acrylic fiber, polyester fiber, polyethylene terephthalate (PET) fiber or the like can be used, and it is desirable to use PET fiber from the viewpoint of price and acid resistance. By using the acid-resistant fiber for reinforcement, when the active material is filled into the negative electrode current collector, the active material can be prevented from coming off or falling off. It is common to use barium sulfate as a lead sulfate crystal growth inhibiting additive. By adding barium sulfate, the barium sulfate remains in the active material without dissolving in the electrolyte, and the sulfuric acid produced during charging It becomes lead crystal nucleus and can form fine lead sulfate. A lignin sulfonate can be used as the anti-shrinking agent. There are synthetic lignin and tree-derived natural lignin as lignin sulfonate, and it is desirable to use natural lignin that exists stably for a long period of time for standby use applications that are operated for a long period of time. By adding lignin, it is possible to prevent the negative electrode active material from being changed in shape during charge and discharge and to be aggregated, and to maintain the surface area of the active material. Further, by not containing carbon, it is possible to reduce the current value during trickle charging, and it is possible to sufficiently ensure the life performance.

ペースト状正極活物質に添加される添加剤には、強化用耐酸性繊維、鉛丹を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、PET繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで正極集電体へ活物質を充填した際、活物質の抜け、脱落を防止することができる。鉛丹は電槽化成時の化成性の向上や、正極活物質の表面積を大きくして正極活物質の利用率を高くすることができ、活物質の化成性、活物質の耐久性を両立させるために、鉛粉に対して5〜25質量%添加することが望ましい。鉛丹量が5%より少ないと鉛丹の効果が十分に発揮されず、25%以上であると活物質の耐久性が著しく低下するためである。   As an additive added to the paste-like positive electrode active material, acid-resistant fibers for reinforcement and red lead are used. As the acid-resistant fiber for reinforcement, acrylic fiber, polyester fiber, PET fiber or the like can be used, and it is desirable to use PET fiber from the viewpoint of price and acid resistance. When the positive electrode current collector is filled with the active material by using the reinforcing acid-resistant fiber, the active material can be prevented from coming off and falling off. Lead red can improve the chemical conversion during battery cell formation and increase the surface area of the positive electrode active material to increase the utilization rate of the positive electrode active material, thereby achieving both the conversion of the active material and the durability of the active material. Therefore, it is desirable to add 5 to 25% by mass with respect to the lead powder. When the amount of lead is less than 5%, the effect of the lead is not sufficiently exhibited, and when it is 25% or more, the durability of the active material is remarkably lowered.

正極集電体を形成するための鉛合金は、鉛−カルシウム−スズ合金によって作製される。カルシウム含有量、スズ含有量、を前記の通りとすることで、合金組成が緻密になり、耐食性に優れた正極集電体を形成することが可能となる。   The lead alloy for forming the positive electrode current collector is made of a lead-calcium-tin alloy. By making the calcium content and the tin content as described above, the alloy composition becomes dense and a positive electrode current collector excellent in corrosion resistance can be formed.

負極集電体を形成するための鉛合金は特に限られるわけではないが、純鉛、カルシウム−スズ合金、アンチモン合金が用いられることが一般的であり、寿命性能、製造上の取り回しから、カルシウム−スズ合金を用いることが望ましい。
<満充電状態における活物質の表面積>
活物質の表面積の測定には、一般的な透過法や気体吸着法を用いることができる。本実施の形態では、活物質の表面積は、Quantachrome Instrumen
ts社製の気体吸着法を採用する比表面積測定器であるNOVA 4200eを用いて測定した。そして化成後で満充電状態の負極活物質の表面積を測定するセルはNOVA 9mm Large VALVE LONG CELLを用い、化成後で満充電状態の正極活物質の表面積の測定はNOVA STD 9mm TEL LONG CELLを用いた。セル中に投入する活物質質量は、それぞれ正極活物質を0.7g、負極活物質を7.0gとした。測定に用いる気体としては窒素ガスを用いた。窒素ガスは純度が99.9995%のものを用いた。そしてセル中に6φのフィラー棒を入れて、活物質の表面に吸着した窒素ガスの量からそれぞれ活物質に対する化成後で満充電状態の表面積を測定した。負極活物質総表面積及び正極活物質総表面積は、極板群に含まれる負極板及び正極板に使用された化成前の活物質量の量と、前述の測定結果とを用いて計算した。
The lead alloy for forming the negative electrode current collector is not particularly limited, but pure lead, calcium-tin alloy, and antimony alloy are generally used. -It is desirable to use a tin alloy.
<Surface area of active material in fully charged state>
A general permeation method or gas adsorption method can be used for measuring the surface area of the active material. In the present embodiment, the surface area of the active material is Quantachrome Instrument.
It measured using NOVA 4200e which is a specific surface area measuring instrument which employ | adopts the gas adsorption method made from ts. The cell for measuring the surface area of the fully charged negative electrode active material after the formation uses NOVA 9 mm Large VALVE LONG CELL, and the surface area of the fully charged positive electrode active material after the formation uses NOVA STD 9 mm TEL LONG CELL. It was. The active material mass charged into the cell was 0.7 g for the positive electrode active material and 7.0 g for the negative electrode active material, respectively. Nitrogen gas was used as the gas used for the measurement. Nitrogen gas having a purity of 99.9995% was used. Then, a 6φ filler rod was put in the cell, and the surface area in a fully charged state was measured after the formation of the active material from the amount of nitrogen gas adsorbed on the surface of the active material. The total surface area of the negative electrode active material and the total surface area of the positive electrode active material were calculated using the amount of the active material before chemical conversion used in the negative electrode plate and the positive electrode plate included in the electrode plate group and the above-described measurement results.

<満充電状態における活物質総質量の測定>
化成後で満充電状態にした極板群から1枚の正極板及び負極板を取り出して質量を測定し、集電体の質量を引いた値をそれぞれ1枚の正極板及び負極板の満充電状態における正極活物質の質量及び負極活物質の質量とし、使用する正極板の枚数と負極板の枚数とに基づいて、計算により負極活物質総質量(n)と正極活物質総質量(p)を求めた。
<Measurement of total active material mass in fully charged state>
Take out one positive electrode plate and negative electrode plate from the electrode plate group that has been fully charged after formation, measure the mass, and subtract the mass of the current collector to charge each positive electrode plate and negative electrode plate fully. The total mass of negative electrode active material (n) and the total mass of positive electrode active material (p) are calculated based on the number of positive electrode plates and the number of negative electrode plates to be used. Asked.

<ペースト状正極活物質の作製>
ペースト状正極活物質は、一酸化鉛を主成分とする鉛粉に、鉛丹とカットファイバー等の添加剤を加えて混合し、更に当該混合物に水と希硫酸を加え、混練して作製した。
<Preparation of paste-like positive electrode active material>
The paste-like positive electrode active material was prepared by adding additives such as red lead and cut fiber to lead powder containing lead monoxide as a main component, and adding water and dilute sulfuric acid to the mixture and kneading. .

<ペースト状負極活物質の作製>
ペースト状負極活物質は、一酸化鉛を主成分とする鉛粉に、リグニンスルホンサン塩、硫酸バリウム、カットファイバー等の添加剤を加えて混合し、更に当該混合物に水と希硫酸を加え、混練して作製した。
<Preparation of pasty negative electrode active material>
The paste-like negative electrode active material is mixed with lead powder containing lead monoxide as a main component by adding additives such as lignin sulfosan salt, barium sulfate, cut fiber, and water and dilute sulfuric acid are added to the mixture. It was prepared by kneading.

<正負極板>
本発明にて述べる正負極板は、前述したそれぞれのペースト状活物質を集電体に充填して熟成及び乾燥させたものである。集電体は、エキスパンド方式、鋳造方式等により作製することができる。
<Positive electrode plate>
The positive and negative electrode plates described in the present invention are obtained by filling each of the paste-like active materials described above into a current collector, aging and drying. The current collector can be produced by an expanding method, a casting method, or the like.

集電体の材質は、鉛を主成分としてスズ、カルシウム、アンチモン等を添加することができ、スズ及びカルシウムを添加するのが好ましい。これは、カルシウムを添加することにより、集電体の強度を保つことができると共に、自己放電を減少させることができるが、カルシウムを添加した際の課題である、集電体の骨の腐食をスズの添加により抑制することができるためである。   As the material of the current collector, tin, calcium, antimony and the like can be added with lead as a main component, and it is preferable to add tin and calcium. The addition of calcium can maintain the strength of the current collector and reduce self-discharge. However, the corrosion of the current collector bone, which is a problem when calcium is added, can be reduced. It is because it can suppress by addition of tin.

<制御弁式鉛蓄電池>
本実施の形態の制御弁式鉛蓄電池では、例えば、図1に示すように、正極板2及び負極板3を、セパレータ4を介して交互に積層した同極性極板の耳同士をストラップで接続して構成した極板群を用いる。この極板群を電槽5に収容し、蓋体6により閉塞して鉛蓄電池を組み立て、所定量の電解液を注入して電槽化成を行った。
<Controlled lead-acid battery>
In the control valve type lead storage battery of the present embodiment, for example, as shown in FIG. 1, the ears of the same polarity electrode plates in which the positive electrode plates 2 and the negative electrode plates 3 are alternately laminated via the separators 4 are connected with straps. An electrode plate group configured as described above is used. The electrode plate group was accommodated in the battery case 5 and closed by the lid 6 to assemble a lead storage battery, and a predetermined amount of electrolyte was injected to form a battery case.

電槽に複数のセル室を設けるときは、各セル室内に極板群が収容され、隣接するセル室内に収容された極板群と反対極性のストラップ間を相互に接続することにより、所定の定格電圧と定格容量を持つ鉛蓄電池が構成される。また、単セル電槽のときは、複数の鉛蓄電池の端子間を、導電板を用いて並列あるいは直列に接続し、所定の電圧、容量の電池を構成することができる。   When a plurality of cell chambers are provided in the battery case, electrode plate groups are accommodated in each cell chamber, and a predetermined polarity is obtained by mutually connecting between the electrode plate groups accommodated in the adjacent cell chambers and the opposite polarity straps. A lead-acid battery having a rated voltage and a rated capacity is configured. In the case of a single-cell battery case, terminals of a plurality of lead storage batteries can be connected in parallel or in series using a conductive plate to constitute a battery having a predetermined voltage and capacity.

電槽5の材質は、特に制限されるものではなく、具体的には、ポリプロピレン、ABS、変性PPE(ポリフェニレンエーテル)等を用いることができる。   The material of the battery case 5 is not particularly limited, and specifically, polypropylene, ABS, modified PPE (polyphenylene ether) or the like can be used.

制御弁式鉛蓄電池では、充電時に正極で発生する酸素ガスのうち、負極のガス吸収反応で吸収しきれなかった過剰ガスを、電槽外へ排出するための制御弁を取り付ける。制御弁の材質は、耐薬品性(耐酸性、耐シリコンオイル)、耐磨耗性、耐熱性に優れた材質、具体的には、フッ素ゴムを用いることが好ましい。   In the control valve type lead-acid battery, a control valve for discharging the excess gas that cannot be absorbed by the gas absorption reaction of the negative electrode out of the oxygen gas generated at the positive electrode at the time of charging is attached. The material of the control valve is preferably a material excellent in chemical resistance (acid resistance, silicon oil resistance), wear resistance, and heat resistance, specifically, fluororubber.

以下、本発明の実施の形態に基づいて作成した実施例を説明する。   Examples created based on the embodiments of the present invention will be described below.

以下の実施例と比較例では、次のペースト状負極活物質を共通して用いた。   In the following Examples and Comparative Examples, the following pasty negative electrode active materials were used in common.

鉛−カルシウム−スズ合金(カルシウム含有量:0.1質量%、スズ含有量:0.2質量%)を溶融し、鋳造方式によって、縦:144.0mm、横:147.0mm、厚み:2.4mmの負極集電体を作製した。   A lead-calcium-tin alloy (calcium content: 0.1% by mass, tin content: 0.2% by mass) is melted and length: 144.0 mm, width: 147.0 mm, thickness: 2 depending on the casting method. A negative electrode current collector of 4 mm was produced.

この集電体に、一酸化鉛を主成分とする鉛粉100質量部に対して、PET繊維を0.03質量部、硫酸バリウムを0.05質量部、及びリグニンスルホン酸塩を0.2質量部加えて混合し、次に水を10質量部、希硫酸を10質量部加えた後、混練して調製したペースト状活物質を充填して負極板を作製した。   In this current collector, 0.03 parts by mass of PET fiber, 0.05 parts by mass of barium sulfate, and 0.2 parts of lignin sulfonate with respect to 100 parts by mass of lead powder mainly composed of lead monoxide. Next, 10 parts by mass of water and 10 parts by mass of dilute sulfuric acid were added, and then the paste-like active material prepared by kneading was filled to prepare a negative electrode plate.

(実施例1)
鉛−カルシウム−スズ合金(カルシウム含有量:0.08質量%、スズ含有量:1.6質量%)を溶融し、鋳造方式によって、縦:143.0mm、横:145.0mm、厚み:4.0mmの正極集電体を作製した。
Example 1
A lead-calcium-tin alloy (calcium content: 0.08 mass%, tin content: 1.6 mass%) is melted and length: 143.0 mm, width: 145.0 mm, thickness: 4 depending on the casting method. A 0.0 mm positive electrode current collector was produced.

この集電体に、一酸化鉛を主成分とする鉛粉100質量部に対して、鉛丹を17質量部、PET繊維を0.15質量部加えて混合し、次に水を10質量部、希硫酸を17質量部加えた後、混練して作製したペースト状活物質を充填して正極板を作製した。   To this current collector, 17 parts by weight of red lead and 0.15 parts by weight of PET fiber are added to and mixed with 100 parts by weight of lead powder mainly composed of lead monoxide, and then 10 parts by weight of water. After adding 17 parts by mass of dilute sulfuric acid, a paste-like active material prepared by kneading was filled to prepare a positive electrode plate.

作製した負極活物質ペーストと正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.4となるようそれぞれ集電体に充填した。   The prepared negative electrode active material paste and positive electrode active material paste were each filled in a current collector so that the total mass of negative electrode active material (n) / total mass of positive electrode active material (p) = 0.4 after formation.

ペースト状活物質を作成した格子に充填後、ペースト状負極活物質を充填した極板は、
熟成条件:温度:40℃、湿度:98%、時間:40時間
乾燥条件:温度:60℃、時間:24時間
の熟成、乾燥条件の工程を経ることにより負極板を作製した。
After filling the grid in which the paste-like active material is created, the electrode plate filled with the paste-like negative electrode active material is
Aging condition: temperature: 40 ° C., humidity: 98%, time: 40 hours Drying condition: temperature: 60 ° C., time: aging for 24 hours, a negative electrode plate was produced.

ペースト状正極活物質を充填した極板は、以下の熟成条件1〜3、乾燥条件の工程を経ることにより正極板を作製した。   The electrode plate filled with the paste-like positive electrode active material was manufactured through the following aging conditions 1 to 3 and drying conditions.

熟成条件1:温度:80℃、湿度:98%、時間:10時間
熟成条件2:温度:65℃、湿度:75%、時間:13時間
熟成条件3:温度:40℃、湿度:65%、時間:40時間
乾燥条件:温度:60℃、時間:24時間
上記正極板3枚と先に述べた負極板4枚を、ガラス繊維をマット状にしたセパレータ(リテーナ)を介して交互に積層し、同極どうしを接続して極板群を作製した。
Aging condition 1: temperature: 80 ° C., humidity: 98%, time: 10 hours Aging condition 2: temperature: 65 ° C., humidity: 75%, time: 13 hours Aging condition 3: temperature: 40 ° C., humidity: 65% Time: 40 hours Drying conditions: Temperature: 60 ° C., Time: 24 hours The above-described three positive electrode plates and four negative electrode plates described above are alternately laminated via a separator (retainer) made of glass fiber in a mat shape. The electrode groups were produced by connecting the same poles.

作製した極板群を、電槽へ挿入し、正極端子及び負極端子を極板群に溶接した後、電槽を密閉する。次に排気栓口から希硫酸を主成分とする電解液を注入し、電槽化成した後、制御弁を取り付け制御弁式鉛蓄電池を作製した。   The produced electrode plate group is inserted into the battery case, and after the positive electrode terminal and the negative electrode terminal are welded to the electrode plate group, the battery case is sealed. Next, an electrolyte containing dilute sulfuric acid as a main component was injected from the exhaust plug port, and after forming a battery case, a control valve was attached to produce a control valve type lead storage battery.

化成条件は、水槽中で水温:40℃、課電量:正極活物質の理論化成課電量に対し250%、時間:60時間とした。   The chemical conversion conditions were as follows: water temperature: 40 ° C., electric charge: 250% of the theoretical chemical electric charge of the positive electrode active material, and time: 60 hours.

(実施例2)
正極活物質ペーストに添加する希硫酸を、一酸化鉛を主成分とする鉛粉100質量部に対して、16質量部とする以外は実施例1と同様にペースト状活物質を作製した。作製した負極活物質ペーストと正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.5となるようそれぞれ集電体に充填した。ペースト状活物質を充填した後、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Example 2)
A pasty active material was prepared in the same manner as in Example 1 except that the dilute sulfuric acid added to the positive electrode active material paste was 16 parts by mass with respect to 100 parts by mass of lead powder containing lead monoxide as a main component. The produced negative electrode active material paste and positive electrode active material paste were filled into current collectors so that the total mass of negative electrode active material (n) / total mass of positive electrode active material (p) = 0.5 after chemical conversion. After filling the pasty active material, a control valve type lead-acid battery was produced in the same manner as in Example 1.

(実施例3)
正極活物質ペーストに添加する希硫酸を、一酸化鉛を主成分とする鉛粉100質量部に対して、15質量部とする以外は実施例1と同様にペースト状活物質を作製した。作製した負極活物質ペーストと正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.6となるようそれぞれ集電体に充填した。ペースト状活物質を充填した後、実施例1と同様にして制御弁式鉛蓄電池を作製した。
Example 3
A pasty active material was prepared in the same manner as in Example 1 except that the dilute sulfuric acid added to the positive electrode active material paste was 15 parts by mass with respect to 100 parts by mass of lead powder containing lead monoxide as a main component. The produced negative electrode active material paste and positive electrode active material paste were filled into current collectors so that the total mass of negative electrode active material (n) / total mass of positive electrode active material (p) = 0.6 after chemical conversion. After filling the pasty active material, a control valve type lead-acid battery was produced in the same manner as in Example 1.

(実施例4)
正極活物質ペーストに添加する希硫酸を、一酸化鉛を主成分とする鉛粉100質量部に対して、14質量部とする以外は実施例1と同様にペースト状活物質を作製した。作製した負極活物質ペーストと正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.6となるようそれぞれ集電体に充填した。ペースト状活物質を充填した後、実施例1と同様にして制御弁式鉛蓄電池を作製した。
Example 4
A pasty active material was prepared in the same manner as in Example 1 except that the dilute sulfuric acid added to the positive electrode active material paste was 14 parts by mass with respect to 100 parts by mass of lead powder containing lead monoxide as a main component. The produced negative electrode active material paste and positive electrode active material paste were filled into current collectors so that the total mass of negative electrode active material (n) / total mass of positive electrode active material (p) = 0.6 after chemical conversion. After filling the pasty active material, a control valve type lead-acid battery was produced in the same manner as in Example 1.

(比較例1)
負極活物質ペーストと正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.3となるようそれぞれ集電体に充填する以外は実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Comparative Example 1)
Same as Example 1 except that the negative electrode active material paste and the positive electrode active material paste are filled in the current collector so that the total mass of negative electrode active material (n) / total mass of positive electrode active material (p) = 0.3 after the formation. Thus, a control valve type lead acid battery was produced.

(比較例2)
負極活物質ペーストと正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.7となるようそれぞれ集電体に充填する以外は実施例4と同様にして制御弁式鉛蓄電池作製した。
(Comparative Example 2)
Same as Example 4 except that the negative electrode active material paste and the positive electrode active material paste are filled in the current collector so that the total mass of the negative electrode active material (n) / the total mass of the positive electrode active material (p) = 0.7 after the formation. A control valve type lead-acid battery was prepared.

(実施例5〜7)
実施例1で作製した負極活物質ペーストと実施例2で作製した正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.4(実施例5)、(n)/(p)=0.6(実施例6)、(n)/(p)=0.7(実施例7)となるようそれぞれ集電体に充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Examples 5-7)
After the formation of the negative electrode active material paste prepared in Example 1 and the positive electrode active material paste prepared in Example 2, the total mass of negative electrode active material (n) / total mass of positive electrode active material (p) = 0.4 (Example 5) , (N) / (p) = 0.6 (Example 6), (n) / (p) = 0.7 (Example 7) A control valve type lead-acid battery was produced in the same manner as described above.

(比較例3〜4)
実施例1で作製した負極活物質ペーストと実施例2で作製した正極活物質ペーストが化成後に負極活物質総質量(n)/正極活物質総質量(p)=0.3(比較例3)、(n)/(p)=0.8(実施例4)となるようそれぞれ集電体に充填する以外は、実施例1と同様にして制御弁式鉛蓄電池を作製した。
(Comparative Examples 3-4)
After the formation of the negative electrode active material paste prepared in Example 1 and the positive electrode active material paste prepared in Example 2, the total mass of negative electrode active material (n) / total mass of positive electrode active material (p) = 0.3 (Comparative Example 3) , (N) / (p) = 0.8 (Example 4) A control valve type lead-acid battery was produced in the same manner as in Example 1 except that the current collector was filled.

前述した実施例、比較例の希硫酸の添加量と表面積比および活物質量比を下記表1に示す。   Table 1 below shows the amount of addition of the dilute sulfuric acid, the surface area ratio, and the active material amount ratio of the above-described Examples and Comparative Examples.

Figure 2016213050
次に、実施例1〜7及び比較例1〜4の条件で作製した個々の鉛蓄電池について、リプルを印加させたトリクル充電期間ごとに放電容量を確認するリプル印加トリクル寿命試験を行った。
Figure 2016213050
Next, the ripple application trickle life test which confirms a discharge capacity for every trickle charge period to which the ripple was applied was performed about each lead acid battery produced on the conditions of Examples 1-7 and Comparative Examples 1-4.

<試験方法>
放電容量確認試験は、0.25CAによった。すなわち、満充電後の制御弁式鉛蓄電池を雰囲気温度25℃中に24時間放置した後、0.25CAで終止電圧1.70Vまで放電し、そのときの放電容量を測定する。その後、JIS C 8702−1に記載されている条件、すなわち、雰囲気温度25℃中で、放電量の110%充電量到達まで0.1CAで定電流充電して満充電状態とした。
<Test method>
The discharge capacity confirmation test was based on 0.25 CA. That is, the fully-charged control valve type lead-acid battery is allowed to stand for 24 hours at an ambient temperature of 25 ° C., and then discharged to a final voltage of 1.70 V at 0.25 CA, and the discharge capacity at that time is measured. Then, under the conditions described in JIS C 8702-1, that is, at an ambient temperature of 25 ° C., the battery was charged at a constant current of 0.1 CA until the charge amount reached 110%, and the battery was fully charged.

リプル印加トリクル寿命試験は満充電状態の制御弁式鉛蓄電池を設定電圧2.275Vの一定電圧で連続充電する。その後、雰囲気温度を75℃とし、設定電圧2.275Vの一定電圧で24時間連続充電する。その後、電圧振幅±50mV、周波数25Hzのリプルを設定電圧2.275Vに印加する。リプル印加トリクル充電試験を15日間実施し、15日ごとに放電容量を測定した。   In the ripple application trickle life test, a fully-charged control valve lead-acid battery is continuously charged at a constant voltage of 2.275V. Thereafter, the ambient temperature is set to 75 ° C., and the battery is continuously charged for 24 hours at a constant voltage of 2.275V. Thereafter, a ripple having a voltage amplitude of ± 50 mV and a frequency of 25 Hz is applied to the set voltage of 2.275V. A ripple application trickle charge test was conducted for 15 days, and the discharge capacity was measured every 15 days.

<試験結果>
図2、図3に実施例1〜7と比較例1〜4の制御弁式鉛蓄電池について、上記寿命試験を実施した結果を示す。これは、化成後0.25CAで放電試験したときを初期放電容量とし、リプル印加トリクル充電後の0.25CA放電試験後の放電容量が初期容量の70%になったときを寿命として比較した。
<Test results>
FIG. 2 and FIG. 3 show the results of conducting the above life test on the control valve type lead storage batteries of Examples 1 to 7 and Comparative Examples 1 to 4. This was compared with the initial discharge capacity when the discharge test was performed at 0.25 CA after the formation, and when the discharge capacity after the 0.25 CA discharge test after the ripple applied trickle charge was 70% of the initial capacity.

図2は実施例1〜4及び比較例1、2の制御弁式鉛蓄電池に関する試験結果であり、これより、負極活物質総表面積と正極活物質総表面積の比と寿命性能の関係が分かる。   FIG. 2 shows the test results regarding the control valve type lead storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2. From this, the relationship between the ratio of the total surface area of the negative electrode active material and the total surface area of the positive electrode active material and the life performance can be seen.

図3は、実施例2、5〜7及び比較例3,4の制御弁式鉛蓄電池に関する試験結果であり、これより、負極活物質総質量と正極活物質総質量の比と寿命性能の関係が分かる。   FIG. 3 is a test result relating to the control valve type lead storage batteries of Examples 2, 5 to 7 and Comparative Examples 3 and 4, and the relationship between the ratio of the total mass of the negative electrode active material and the total mass of the positive electrode active material and the life performance thereof. I understand.

負極活物質総質量と正極活物質総質量の比が小さくなると寿命性能が向上した。実施例1よりも総表面積比が小さい比較例1、及び実施例2よりも活物質の総質量比が小さい比較例3は、総表面積比及び活物質質量比が低くなりすぎ、トリクル寿命試験による負極劣化の影響を強く受けたため寿命性能が低下した。   When the ratio of the total mass of the negative electrode active material to the total mass of the positive electrode active material is decreased, the life performance is improved. Comparative Example 1 in which the total surface area ratio is smaller than that in Example 1 and Comparative Example 3 in which the total mass ratio of the active material is smaller than that in Example 2 are too low due to the trickle life test. The life performance decreased due to the strong negative electrode deterioration.

図2、図3より、制御弁式鉛蓄電池内の負極活物質総表面積(N)と正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.020の範囲であり、前記制御弁式鉛蓄電池内の負極活物質総質量(n)と正極活物質総質量(p)の比が、0.4<(n)/(p)<0.7の範囲にあるときに長寿命であることが分かる。   2 and 3, the ratio of the total surface area (N) of the negative electrode active material and the total surface area (P) of the positive electrode active material in the control valve type lead storage battery is 0.010 <(N) / (P) <0.020. The ratio of the negative electrode active material total mass (n) and the positive electrode active material total mass (p) in the control valve type lead storage battery is 0.4 <(n) / (p) <0.7. When it is in the range, it can be seen that the life is long.

好ましくは、制御弁式鉛蓄電池内の負極活物質総表面積(N)と正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.018の範囲であり、前記制御弁式鉛蓄電池内の負極活物質総質量(n)と正極活物質総質量(p)の比が、0.4<(n)/(p)<0.6の範囲にある実施例1、2、3、5、6がより長寿命となる。   Preferably, the ratio of the negative electrode active material total surface area (N) and the positive electrode active material total surface area (P) in the control valve type lead-acid battery is in the range of 0.010 <(N) / (P) <0.018. The ratio of the negative electrode active material total mass (n) and the positive electrode active material total mass (p) in the control valve type lead storage battery is in the range of 0.4 <(n) / (p) <0.6. Examples 1, 2, 3, 5, and 6 have longer lifetimes.

さらに、制御弁式鉛蓄電池内の負極活物質総表面積(N)と正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.014の範囲であり、前記制御弁式鉛蓄電池内の負極活物質総質量(n)と正極活物質総質量(p)の比が、0.4<(n)/(p)<0.5の範囲にある実施例1、2、5が長寿命となる。   Furthermore, the ratio of the negative electrode active material total surface area (N) and the positive electrode active material total surface area (P) in the control valve type lead-acid battery is in the range of 0.010 <(N) / (P) <0.014, An embodiment in which the ratio of the total mass (n) of the negative electrode active material and the total mass (p) of the positive electrode active material in the control valve type lead-acid battery is in the range of 0.4 <(n) / (p) <0.5 1, 2, and 5 have a long life.

本発明の制御弁式鉛蓄電池によれば、正極電位が安定した状態になり、正極電位が下がって正極活物質のPbO2がPbOx、PbSO4に変化し正極の腐食反応が加速されることを抑制できる。また、本発明の制御弁式鉛蓄電池によれば、正極電位が上がることを抑制して、電気分解によりO2が発生し、正極板の腐食が加速されることを抑制できる。 According to the control valve type lead storage battery of the present invention, the positive electrode potential becomes stable, the positive electrode potential decreases, and the positive electrode active material PbO 2 changes to PbO x , PbSO 4 , and the positive electrode corrosion reaction is accelerated. Can be suppressed. Moreover, according to the control valve type lead-acid battery of the present invention, it is possible to suppress the positive electrode potential from rising and to suppress the generation of O 2 by electrolysis and the acceleration of the positive electrode plate.

1 制御弁式鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 電槽
6 蓋体
DESCRIPTION OF SYMBOLS 1 Control valve type lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Battery case 6 Lid

Claims (6)

1枚以上の負極板と1枚以上の正極板とを含む極板群を備えたスタンバイユースで運用される制御弁式鉛蓄電池であって、化成後で満充電状態の前記極板群中の前記1枚以上の負極板の負極活物質総表面積(N)と前記1枚以上の正極板の正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.020の範囲にあり、前記1枚以上の負極板の負極活物質総質量(n)と前記1枚以上の正極板の正極活物質総質量(p)の比が、0.4<(n)/(p)<0.7の範囲にあり、負極活物質にカーボンを含まないことを特徴とする制御弁式鉛蓄電池。   A control valve-type lead-acid battery operated in a standby use having an electrode plate group including one or more negative electrode plates and one or more positive electrode plates, in the electrode plate group in a fully charged state after formation The ratio of the negative electrode active material total surface area (N) of the one or more negative plates to the positive electrode active material total surface area (P) of the one or more positive plates is 0.010 <(N) / (P) <0. The ratio of the negative electrode active material total mass (n) of the one or more negative plates to the positive electrode active material total mass (p) of the one or more positive plates is 0.4 <(n ) / (P) <0.7, and the negative electrode active material does not contain carbon. 1枚以上の負極板と1枚以上の正極板とを含む極板群を備えたスタンバイユースで運用される制御弁式鉛蓄電池であって、化成後で満充電状態の前記極板群中の前記1枚以上の負極板の負極活物質総表面積(N)と前記1枚以上の正極板の正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.018の範囲にあり、前記1枚以上の負極板の負極活物質総質量(n)と前記1枚以上の正極板の正極活物質総質量(p)の比が、0.4<(n)/(p)<0.6の範囲にあり、負極活物質にカーボンを含まないことを特徴とする制御弁式鉛蓄電池。   A control valve-type lead-acid battery operated in a standby use having an electrode plate group including one or more negative electrode plates and one or more positive electrode plates, in the electrode plate group in a fully charged state after formation The ratio of the negative electrode active material total surface area (N) of the one or more negative plates to the positive electrode active material total surface area (P) of the one or more positive plates is 0.010 <(N) / (P) <0. The ratio of the total negative electrode active material mass (n) of the one or more negative plates to the total positive electrode active mass (p) of the one or more positive plates is 0.4 <(n ) / (P) <0.6 and the negative electrode active material does not contain carbon. 1枚以上の負極板と1枚以上の正極板とを含む極板群を備えたスタンバイユースで運用される制御弁式鉛蓄電池であって化成後で満充電状態における前記極板群中の前記1枚以上の負極板の負極活物質総表面積(N)と前記1枚以上の正極板の正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.014の範囲にあり、前記1枚以上の負極板の負極活物質総質量(n)と前記1枚以上の正極板の正極活物質総質量(p)の比が、0.4<(n)/(p)<0.5の範囲にあり、負極活物質にカーボンを含まないことを特徴とする制御弁式鉛蓄電池。   A control valve-type lead-acid battery operated in a standby use having an electrode plate group including one or more negative electrode plates and one or more positive electrode plates, wherein the electrode plate group in the fully charged state after formation The ratio of the total negative electrode active material surface area (N) of one or more negative plates to the total positive electrode active material surface area (P) of the one or more positive plates is 0.010 <(N) / (P) <0. The ratio of the total negative electrode active material mass (n) of the one or more negative electrode plates to the total positive electrode active material mass (p) of the one or more positive electrode plates is 0.4 <(n). /(P)<0.5, and the negative electrode active material does not contain carbon. 化成前の前記負極板は、鉛合金からなる負極集電体に、一酸化鉛を主成分とする鉛粉に対して、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤及び防縮剤を添加剤として加えて混合した混合物に水と希硫酸とを加えて混練して調製したペースト状負極活物質を充填した活物質充填負極板を熟成及び乾燥したものであり、
化成前の前記正極板は、鉛合金からなる正極集電体に、一酸化鉛を主成分とする鉛粉と、鉛丹と、強化用耐酸性繊維を含む添加剤とを加えて混合した混合物に、水と希硫酸を加えて混練して調整したペースト状正極活物質を充填した活物質充填正極板を熟成乾燥したものである請求項1乃至3のいずれか1項に記載の制御弁式鉛蓄電池。
The negative electrode plate before chemical conversion is made of a lead alloy-based negative electrode current collector with lead-resistant oxide fiber, lead sulfate crystal growth inhibitor additive, and anti-shrink agent added to lead powder mainly composed of lead monoxide. An active material-filled negative electrode plate filled with a paste-like negative electrode active material prepared by adding water and dilute sulfuric acid to a mixture added and mixed as an agent and kneading was dried and dried,
The positive electrode plate before chemical conversion is a mixture in which a positive electrode current collector made of a lead alloy is mixed with lead powder mainly composed of lead monoxide, red lead, and an additive containing acid-resistant fibers for reinforcement. The control valve system according to any one of claims 1 to 3, wherein an active material-filled positive electrode plate filled with a paste-like positive electrode active material prepared by adding water and dilute sulfuric acid to the mixture and aging is dried and aged. Lead acid battery.
前記ペースト状負極活物質に添加される前記強化用耐酸性繊維がポリエチレンテレフタレート繊維であり、前記硫酸鉛結晶成長抑制添加剤が硫酸バリウムであり、前記防縮剤がリグニンスルホン酸塩であり、
前記正極集電体を形成するための前記鉛合金は、鉛−カルシウム−スズ合金によって作成されており、
前記ペースト状正極活物質に添加される前記強化用耐酸性繊維がポリエチレンテレフタレート繊維であり、前記鉛丹が鉛粉に対して5〜25質量%添加されている請求項4に記載の制御弁式鉛蓄電池。
The reinforcing acid-resistant fiber added to the paste-like negative electrode active material is polyethylene terephthalate fiber, the lead sulfate crystal growth inhibiting additive is barium sulfate, and the shrinkage preventing agent is lignin sulfonate,
The lead alloy for forming the positive electrode current collector is made of a lead-calcium-tin alloy,
The control valve system according to claim 4, wherein the acid-resistant fiber for reinforcement added to the paste-like positive electrode active material is polyethylene terephthalate fiber, and 5 to 25% by mass of the red lead is added to lead powder. Lead acid battery.
化成前の負極板を、鉛合金からなる負極集電体に、一酸化鉛を主成分とする鉛粉に対して、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤及び防縮剤を添加剤として加えて混合した混合物に水と希硫酸とを加えて混練して調製したペースト状負極活物質を充填して形成した活物質充填負極板を熟成及び乾燥して化成前の負極板を製造し、
鉛合金からなる正極集電体に、一酸化鉛を主成分とする鉛粉と、鉛丹と、強化用耐酸性繊維を含む添加剤とを加えて混合した混合物に、水と希硫酸を加えて混練して調整したペースト状正極活物質を充填して形成した活物質充填正極板を熟成及び乾燥して化成前の正極板を製造し、
1枚以上の前記化成前の負極板と1枚以上の前記化成前の正極板とを含む極板群を化成した後初充電する制御弁式鉛蓄電池の製造方法であって、
前記化成後で満充電状態の前記極板群中の1枚以上の負極板の負極活物質総表面積(N)と1枚以上の正極板の正極活物質総表面積(P)の比が、0.010<(N)/(P)<0.020の範囲となるように、前記化成前の負極板の比表面積及び前記化成前の正極板の比表面積を、前記添加剤の添加量、前記水の量、前記希硫酸の量、前記熟成の条件及び前記乾燥の条件の少なくとも一つを調整することにより定め、
前記化成後で満充電状態の前記極板群中の前記1枚以上の負極板の負極活物質総質量(n)と前記1枚以上の正極板の正極活物質総質量(p)の比が、0.4<(n)/(p)<0.7の範囲となるように、前記負極集電体への前記ペースト式負極活物質の充填量及び前記正極集電体へのペースト式正極活物質の充填量を定めることを特徴とする制御弁式鉛蓄電池の製造方法。
The negative electrode plate before chemical conversion is added to a negative electrode current collector made of a lead alloy, lead powder mainly composed of lead monoxide, acid fiber for reinforcement, lead sulfate crystal growth inhibitor additive and anti-shrink additive. In addition, the active material-filled negative electrode plate formed by filling and mixing the paste-like negative electrode active material prepared by adding water and dilute sulfuric acid to the mixed mixture was aged and dried to produce a negative electrode plate before conversion. ,
Water and dilute sulfuric acid are added to a mixture of a lead alloy consisting of lead alloy and lead powder containing lead monoxide as a main component, red lead and an additive containing acid-resistant fiber for reinforcement. An active material-filled positive electrode plate formed by filling a paste-like positive electrode active material prepared by kneading and aging is aged and dried to produce a positive electrode plate before conversion,
A method of manufacturing a control valve type lead-acid battery that is charged for the first time after forming an electrode plate group including one or more pre-formation negative electrode plates and one or more pre-formation positive electrode plates,
The ratio of the negative electrode active material total surface area (N) of one or more negative electrode plates in the fully charged electrode plate group after the formation to the positive electrode active material total surface area (P) of one or more positive electrode plates is 0. 0.010 <(N) / (P) <0.020, the specific surface area of the negative electrode plate before chemical conversion and the specific surface area of the positive electrode plate before chemical conversion are determined by adding the additive, By adjusting at least one of the amount of water, the amount of dilute sulfuric acid, the aging conditions and the drying conditions,
The ratio of the negative electrode active material total mass (n) of the one or more negative electrode plates in the fully charged electrode plate group after the formation to the total positive electrode active material mass (p) of the one or more positive electrode plates is , 0.4 <(n) / (p) <0.7, the amount of the paste-type negative electrode active material charged into the negative-electrode current collector and the paste-type positive electrode into the positive-electrode current collector A method for manufacturing a control valve type lead-acid battery, characterized in that the filling amount of an active material is determined.
JP2015095583A 2015-05-08 2015-05-08 Control valve type lead storage battery and method of manufacturing the same Active JP6503869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095583A JP6503869B2 (en) 2015-05-08 2015-05-08 Control valve type lead storage battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095583A JP6503869B2 (en) 2015-05-08 2015-05-08 Control valve type lead storage battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016213050A true JP2016213050A (en) 2016-12-15
JP6503869B2 JP6503869B2 (en) 2019-04-24

Family

ID=57551935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095583A Active JP6503869B2 (en) 2015-05-08 2015-05-08 Control valve type lead storage battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6503869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839011A (en) * 2021-08-30 2021-12-24 天能电池集团股份有限公司 Negative lead plaster for low-temperature-resistant lead storage battery and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689738A (en) * 1992-07-23 1994-03-29 Shin Kobe Electric Mach Co Ltd Sealed type lead-acid battery
JPH0745301A (en) * 1993-08-02 1995-02-14 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2004055323A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
JP2010102922A (en) * 2008-10-23 2010-05-06 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2013187173A (en) * 2012-03-12 2013-09-19 Shin Kobe Electric Mach Co Ltd Method for manufacturing control valve type lead-acid storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689738A (en) * 1992-07-23 1994-03-29 Shin Kobe Electric Mach Co Ltd Sealed type lead-acid battery
JPH0745301A (en) * 1993-08-02 1995-02-14 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2004055323A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
JP2010102922A (en) * 2008-10-23 2010-05-06 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2013187173A (en) * 2012-03-12 2013-09-19 Shin Kobe Electric Mach Co Ltd Method for manufacturing control valve type lead-acid storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839011A (en) * 2021-08-30 2021-12-24 天能电池集团股份有限公司 Negative lead plaster for low-temperature-resistant lead storage battery and preparation method thereof
CN113839011B (en) * 2021-08-30 2022-09-16 天能电池集团股份有限公司 Negative lead plaster for low-temperature-resistant lead storage battery and preparation method thereof

Also Published As

Publication number Publication date
JP6503869B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP2013218894A (en) Lead acid battery
JP6168138B2 (en) Liquid lead-acid battery
JP2009170234A (en) Control valve type lead-acid battery
WO2013114822A1 (en) Lead-acid battery
JP5720947B2 (en) Lead acid battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP2018055903A (en) Positive electrode plate for lead storage battery and lead storage battery
JP2016213050A (en) Control valve-type lead storage battery and method for manufacturing the same
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP2010102922A (en) Control valve type lead-acid battery
JP2004055323A (en) Control valve type lead-acid battery
JP4812386B2 (en) Method for producing lead-acid battery
JP2949772B2 (en) Liquid-filled lead-acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP5277885B2 (en) Method for producing lead-acid battery
JP6519793B2 (en) Method of charging control valve type lead storage battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2006185743A (en) Control valve type lead-acid battery
JP4411860B2 (en) Storage battery
JP2006310062A (en) Lead-acid battery
JP2005310688A (en) Control valve type lead storage battery
JP2006155901A (en) Control valve type lead-acid storage battery
JPH0414760A (en) Lead-acid accumulator
JP3196556B2 (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6503869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250