JP6519793B2 - Method of charging control valve type lead storage battery - Google Patents

Method of charging control valve type lead storage battery Download PDF

Info

Publication number
JP6519793B2
JP6519793B2 JP2015179191A JP2015179191A JP6519793B2 JP 6519793 B2 JP6519793 B2 JP 6519793B2 JP 2015179191 A JP2015179191 A JP 2015179191A JP 2015179191 A JP2015179191 A JP 2015179191A JP 6519793 B2 JP6519793 B2 JP 6519793B2
Authority
JP
Japan
Prior art keywords
lead
voltage
charging
battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015179191A
Other languages
Japanese (ja)
Other versions
JP2017054756A (en
Inventor
鈴木 啓太
啓太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015179191A priority Critical patent/JP6519793B2/en
Publication of JP2017054756A publication Critical patent/JP2017054756A/en
Application granted granted Critical
Publication of JP6519793B2 publication Critical patent/JP6519793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、制御弁式鉛蓄電池の充電方法に関する。   The present invention relates to a method for charging a valve-regulated lead-acid battery.

制御弁式鉛蓄電池は、安全性及び信頼性に優れた二次電池であり、様々な用途に用いられている。例えば、電力貯蔵用、特に一般回線用電話交換機の直流電源に用いられており、非常用電源で運用されるため、電池は常に充電状態を維持するトリクル充電、フロート充電といった充電方法が採用さている。これら充電方法は、自己放電による蓄電池容量損失を補うための目的で常に充電している為、電池劣化の原因は、一般的に正極集電体の腐食が主である。正極集電体の腐食による劣化の防止は、これまで様々な検討が行われている。例えば、特許文献1には、UPS等の電源としての鉛蓄電池の充電方法において、電池のトリクル充電電流を測定し、トリクル充電電流の変化に合わせて充電電圧を変化させることにより、電池のトリクル寿命の長寿命化を図ることを目的とする鉛蓄電池の充電方法が開示されている。また、特許文献2には、直列接続して使用される個々の鉛蓄電池に可変抵抗器を並列に配置し、前記可変抵抗器の抵抗値を個々に調整するトリクル充電を行うことにより、鉛蓄電池の長寿命化を目的とする充電方法が開示されている。   The valve-regulated lead-acid battery is a secondary battery excellent in safety and reliability, and is used in various applications. For example, it is used for DC power supply for power storage, especially telephone switches for general line use, and it is operated by emergency power supply, so that charging methods such as trickle charge and float charge are used to keep the battery always charged. . Since these charging methods are always charged for the purpose of compensating for storage battery capacity loss due to self-discharge, the cause of battery deterioration is generally mainly corrosion of the positive electrode current collector. Various studies have been conducted to prevent deterioration of the positive electrode current collector due to corrosion. For example, in Patent Document 1, in a method of charging a lead storage battery as a power source such as UPS, the trickle life of the battery is measured by measuring the trickle charge current of the battery and changing the charge voltage according to the change of the trickle charge current. SUMMARY OF THE INVENTION A method of charging a lead-acid battery is intended to prolong the life of the battery. Further, in Patent Document 2, a lead-acid battery is provided by arranging variable resistors in parallel with individual lead-acid batteries used in series connection and performing trickle charge to individually adjust the resistance value of the variable resistors. A charging method aiming at prolonging the life of the battery is disclosed.

特開平8−308125号公報JP-A-8-308125 特開2013−168222号公報JP, 2013-168222, A

しかしながら、特許文献1に記載されている方法は、直列接続した鉛蓄電池全体のトリクル充電電流の変化に合わせて充電電圧を変動させるものであり、電流値が部分的に低く、満充電状態を維持できない鉛蓄電池が発生する可能性がある。満充電状態を維持できない鉛蓄電池が発生した場合、蓄電装置全体の電池容量が低下し、蓄電装置の寿命が短くなる現象が起こり易い。   However, the method described in Patent Document 1 fluctuates the charging voltage according to the change in the trickle charging current of the entire series-connected lead-acid battery, the current value is partially low, and the fully charged state is maintained. Lead-acid batteries may be generated. When a lead storage battery that can not maintain a fully charged state occurs, the battery capacity of the entire power storage device is reduced, and the life of the power storage device is likely to be shortened.

また、特許文献2は、直列接続して使用される個々の鉛蓄電池に対し、最適なトリクル充電を行うことができ、長寿命化を実現できるが、電池発熱によるアレニウス則に則った寿命性能の低下は抑制できない。   Further, Patent Document 2 can perform optimum trickle charge on individual lead-acid batteries used in series connection, and can achieve long life, but the life performance according to the Arrhenius law due to battery heat generation The decline can not be suppressed.

本発明は、スタンバイユースで運用される制御弁式鉛蓄電池において、トリクル充電中に発生する発熱を抑制し、長寿命化を実現できる制御弁式鉛蓄電池の充電方法を提供することを目的とする。   An object of the present invention is to provide a control valve type lead-acid battery charging method capable of suppressing heat generation generated during trickle charge and achieving long life in a control valve type lead-acid battery operated in standby use. .

前記課題を解決するための具体的手段は以下の通りである。   The specific means for solving the said subject are as follows.

満充電状態を100%として、95〜100%の充電状態で運用される制御弁式鉛蓄電池の充電方法であって、前記制御弁式鉛蓄電池の充電に際して、100Hz〜8000Hzの周波数で電圧振幅を印加させる工程を含む、制御弁式鉛蓄電池の充電方法。   A charging method for a valve-regulated lead-acid battery operated at a state of charge of 95 to 100%, wherein the fully charged state is 100%, wherein voltage amplitude is set at a frequency of 100 Hz to 8000 Hz when charging the valve-regulated lead-acid battery. The charge method of a control valve-type lead acid battery including the process made to apply.

上記において、前記充電が定電圧充電であり、前記定電圧充電における電圧に対して、0.001〜0.05倍の電圧で振幅を印加させることが好ましい。   In the above, it is preferable that the charging is constant voltage charging and that the amplitude is applied at a voltage of 0.001 to 0.05 times the voltage in the constant voltage charging.

本発明によれば、寿命特性に優れる制御弁式鉛蓄電池の充電方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the charge method of the control valve-type lead acid battery which is excellent in the lifetime characteristic can be provided.

制御弁式鉛蓄電池の一例の部材構成を示す斜視図である。It is a perspective view showing member composition of an example of control valve-type lead acid battery.

<制御弁式鉛蓄電池の充電方法>
本発明における充電方法は、充電中に100Hz〜8000Hzの周波数で電圧振幅を印加させる工程を含むものである。前記電圧振幅の印加において、電圧は定電圧充電電圧の0.001〜0.005倍が好ましい。前記周波数は、制御弁式鉛蓄電池の温度上昇をより低減できる観点からは、1000Hz〜5000Hzが好ましい。
<Method of charging control valve type lead storage battery>
The charging method in the present invention includes the step of applying a voltage amplitude at a frequency of 100 Hz to 8000 Hz during charging. In the application of the voltage amplitude, the voltage is preferably 0.001 to 0.005 times the constant voltage charging voltage. The frequency is preferably 1000 Hz to 5000 Hz from the viewpoint of further reducing the temperature rise of the valve-regulated lead-acid battery.

制御弁式鉛蓄電池には、リテーナ式とゲル式の二種類がある。リテーナ式は、正極板と負極板との間に挿入した微細なガラス繊維を素材とするマット状セパレータ(ガラスセパレータ)で電池の充放電に必要な硫酸電解液の保持と両極の隔離を行う方式である。   There are two types of control valve type lead-acid batteries: retainer type and gel type. The retainer type is a mat type separator (glass separator) made of fine glass fibers inserted between a positive electrode plate and a negative electrode plate to hold sulfuric acid electrolyte necessary for charge and discharge of the battery and to separate the two electrodes. It is.

前記制御弁式鉛蓄電池は、無停電電源装置、非常用電源装置等として使用されている。
前記無停電電源装置又は非常用電源装置として制御弁式鉛蓄電池を用いる場合、スタンバイ状態では、満充電状態であることが好ましい。しかしながら、満充電状態で長期間保管すると、使用する際には蓄えられた電気量が自己放電等により減っているため、定格の性能が発揮出来ない、又は使用できない場合がある。そのため、前記自己放電を補うトリクル充電を行う。トリクル充電を行う際、制御弁式鉛蓄電池の充電状態(以下、SOCという場合もある。SOCとは、State Of Chargeの略である。)は95〜100%であるが、寿命性能の観点からは、98〜100%が好ましい。トリクル充電は、制御弁式鉛蓄電池の電極に公称電圧より少し高い電圧を加え、定電圧で充電することが好ましい。トリクル充電は、満充電状態に近付くと自然に充電電流が減少し、過充電を防ぐ効果がある。充電電圧は過充電を防ぐよう適切に設定するか、電流制限回路を設け、過大電流による電池寿命短縮を防ぐ。
The control valve type lead storage battery is used as an uninterruptible power supply, an emergency power supply, and the like.
When using a control valve-type lead storage battery as the uninterruptible power supply or the emergency power supply, it is preferable that the standby state is a fully charged state. However, when stored for a long time in a fully charged state, the rated amount of performance may not be exhibited or may not be used because the amount of electricity stored during use is reduced due to self-discharge and the like. Therefore, trickle charge is performed to compensate for the self-discharge. When performing trickle charge, the state of charge of the control valve type lead-acid battery (hereinafter sometimes referred to as SOC. SOC is an abbreviation for State Of Charge) is 95 to 100%, but from the viewpoint of life performance. Is preferably 98 to 100%. For trickle charge, it is preferable to apply a voltage slightly higher than the nominal voltage to the electrodes of a control valve type lead-acid battery and to charge with a constant voltage. The trickle charge naturally reduces the charge current as it approaches a fully charged state, and has the effect of preventing overcharge. The charging voltage should be set appropriately to prevent overcharging, or a current limiting circuit should be provided to prevent battery life shortening due to excessive current.

本発明における充電は、トリクル充電であることが好ましい。前記トリクル充電は、制御弁式鉛蓄電池の公称電圧に対して、1.11〜1.15倍の電圧で定電圧充電することが好ましい。前記定電圧充電時の電流は、直流で行うことが好ましい。前記定電圧充電中において、100Hz〜8000Hzの周波数で電圧振幅を印加させる工程を含むことが好ましく、制御弁式鉛蓄電池の温度上昇をより低減できる観点からは、前記周波数が100Hz〜5000Hzであることがより好ましく、500Hz〜5000Hzであることが更に好ましい。周波数が100Hz未満になると、電圧振幅による格子/活物質界面の腐食反応が選択的に起き易くなり、腐食量が多くなる可能性がある。また、8000Hzを超えると、制御弁式鉛蓄電池の温度が上昇し、寿命が低下する可能性がある。前記電圧振幅の印加における電圧は、定電圧充電における電圧に対して、0.001〜0.05倍が好ましい。定電圧充電に対して0.05倍を超える電圧振幅になると、マイナス方向に電圧が振れた際、電池の開回路電圧よりも碑な方向になり、充電状態が保てなくなる可能性がある。
<制御弁式鉛蓄電池の作製>
正極活物質は一酸化鉛を主成分とする鉛粉に、鉛丹を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成・乾燥を行う。ここで、水、及び希硫酸の添加量、熟成・乾燥条件を変えることにより、化成後、満充電状態における正極板の活物質の表面積を一定の目標範囲内に調整することができる。
The charge in the present invention is preferably a trickle charge. The trickle charge is preferably constant voltage charge at a voltage of 1.11 to 1.15 times the nominal voltage of the control valve type lead-acid battery. It is preferable that the current at the time of the constant voltage charging is direct current. It is preferable to include the step of applying a voltage amplitude at a frequency of 100 Hz to 8000 Hz during the constant voltage charging, and from the viewpoint of being able to further reduce the temperature rise of the control valve type lead-acid battery, the frequency is 100 Hz to 5000 Hz. Is more preferable, and 500 Hz to 5000 Hz is more preferable. When the frequency is less than 100 Hz, the corrosion reaction at the lattice / active material interface due to the voltage amplitude is likely to occur selectively, and the amount of corrosion may be large. Also, if it exceeds 8000 Hz, the temperature of the valve-regulated lead-acid battery may increase and the life may be reduced. The voltage at the application of the voltage amplitude is preferably 0.001 to 0.05 times the voltage at constant voltage charging. If the voltage swing exceeds 0.05 times with respect to the constant voltage charge, when the voltage swings in the negative direction, the voltage may become more monumental than the open circuit voltage of the battery and the charge state may not be maintained.
<Preparation of valve-regulated lead-acid battery>
The positive electrode active material is prepared by adding a paste of red lead to lead powder containing lead monoxide as a main component, mixing predetermined amounts of water and dilute sulfuric acid, and kneading the resulting paste-like active material into a lead alloy current collector. It is filled and aged and dried under predetermined conditions. Here, the surface area of the active material of the positive electrode plate in a fully charged state can be adjusted within a certain target range after formation, by changing the addition amount of water and dilute sulfuric acid, and aging and drying conditions.

負極活物質は一酸化鉛を主成分とする鉛粉に、添加剤を加えて混合し、所定量の水、希硫酸を加えて混練したペースト状活物質を、鉛合金製の集電体に充填して所定の条件で熟成・乾燥を行う。ここで、添加剤、水、及び希硫酸の添加量、熟成・乾燥条件を変えることにより、化成後、満充電状態における負極板の活物質の表面積を一定の範囲内に調整することができる。   The negative electrode active material is prepared by adding an additive to lead powder containing lead monoxide as a main component, mixing, adding predetermined amounts of water and dilute sulfuric acid and kneading the paste-like active material into a lead alloy current collector It is filled and aged and dried under predetermined conditions. Here, the surface area of the active material of the negative electrode plate in a fully charged state can be adjusted within a certain range after formation, by changing the addition amounts of the additive, water, and dilute sulfuric acid, and the aging and drying conditions.

さらに、化成条件を変えることにより正負極活物質の表面積を調整することが可能である。   Furthermore, it is possible to adjust the surface area of the positive and negative electrode active materials by changing the formation conditions.

また、鉛合金製の集電体に充填するペースト状活物質の量を変えることで正負極活物質量を調整することができる。   Further, the mass of the positive and negative electrode active materials can be adjusted by changing the amount of the paste-like active material filled in the current collector made of lead alloy.

ペースト状負極活物質に添加される添加剤には、強化用耐酸性繊維、硫酸鉛結晶成長抑制添加剤、防縮剤を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、ポリエチレンテレフタレート(PET)繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで格子基板へ活物質を充填した際、活物質の抜け、脱落を防止することができる。硫酸鉛結晶成長抑制添加剤には硫酸バリウムを用いるのが一般的である。硫酸バリウムを用いると、電解液に溶解せず、活物質中に留まるので、放電時に生成する硫酸鉛の結晶核となり、微細な硫酸鉛を形成することができる。防縮剤にはリグニンスルホン酸塩が用いられ、リグニンスルホン酸塩は合成リグニンと樹木由来の天然リグニンがあり、長期間運用されるスタンバイユース用途には長期間安定に存在する天然リグニンを用いることが望ましい。リグニンを添加することで、負極活物質が充放電の際に形態変化し、凝集することを防止し、活物質の表面積の大きさを保つことが可能となる。また、カーボンを含まないことで、トリクル充電中のトリクル電流を小さくすることが可能となり寿命性能を十分に確保することができる。   As additives to be added to the paste-like negative electrode active material, a strengthening acid-resistant fiber, a lead sulfate crystal growth suppressing additive, and a shrinkproofing agent are used. As the acid resistant fiber for reinforcement, acrylic fiber, polyester fiber, polyethylene terephthalate (PET) fiber or the like can be used, and it is desirable to use PET fiber from the viewpoint of price and acid resistance. By using the reinforcing acid resistant fiber, when the lattice substrate is filled with the active material, the active material can be prevented from coming off and coming off. It is common to use barium sulfate as a lead sulfate crystal growth inhibiting additive. When barium sulfate is used, it does not dissolve in the electrolytic solution and stays in the active material, so that it becomes a crystal nucleus of lead sulfate generated at the time of discharge and can form fine lead sulfate. A lignin sulfonate is used as a shrinkproofing agent, and there are a synthetic lignin and a natural lignin derived from trees, and a natural lignin having long-term stability is used for long-term standby use applications. desirable. By adding lignin, it is possible to prevent the negative electrode active material from being changed in form and aggregated during charge and discharge, and to maintain the surface area of the active material. Also, by not including carbon, it is possible to reduce the trickle current during trickle charge, and the life performance can be sufficiently secured.

ペースト状正極活物質に添加される添加剤には、強化用耐酸性繊維、鉛丹を用いる。強化用耐酸性繊維には、アクリル繊維、ポリエステル繊維、PET繊維等を用いることができ、価格面、耐酸性面からPET繊維を用いることが望ましい。強化用耐酸性繊維を用いることで格子基板へ活物質を充填した際、活物質の抜け、脱落を防止することができる。鉛丹は電槽化成時の化成性の向上や、正極活物質の表面積を大きくすること、正極活物質の利用率を高くすることができ、活物質の化成性、活物質の耐久性を両立させるために、鉛粉に対して5〜25質量%添加することが望ましい。鉛丹量が5%より少ないと鉛丹の効果が十分に発揮されず、25%以上であると活物質の耐久性が著しく低下するためである。   As an additive to be added to the paste-like positive electrode active material, a reinforcing acid-resistant fiber, red lead, is used. As a reinforcing acid resistant fiber, an acrylic fiber, a polyester fiber, a PET fiber or the like can be used, and it is desirable to use a PET fiber in terms of price and acid resistance. By using the reinforcing acid resistant fiber, when the lattice substrate is filled with the active material, the active material can be prevented from coming off and coming off. "Peduntan" can improve the chemical conversion during cell formation, increase the surface area of the positive electrode active material, increase the utilization of the positive electrode active material, and achieve both the chemical conversion of the active material and the durability of the active material. It is desirable to add 5 to 25% by mass to the lead powder in order to cause When the amount of red lead is less than 5%, the effect of red lead is not sufficiently exhibited, and when it is 25% or more, the durability of the active material is significantly reduced.

正極集電体を形成するための鉛合金は、鉛−カルシウム−スズ合金によって作製される。カルシウム含有量、スズ含有量、を鉛に対してカルシウム:0.08質量%、スズ:1.6質量%とすることで、合金組成が緻密になり、耐食性に優れた正極集電体を形成することが可能となる。   The lead alloy for forming the positive electrode current collector is made of a lead-calcium-tin alloy. By setting the calcium content and tin content to calcium: 0.08% by mass and tin: 1.6% by mass with respect to lead, the alloy composition becomes dense and a positive electrode current collector excellent in corrosion resistance is formed. It is possible to

負極集電体を形成するための鉛合金は特に限定されるものではないが、純鉛、カルシウム−スズ合金、アンチモン合金を用いるのが一般的であり、寿命性能、製造上の取り回し易さから、カルシウム−スズ合金を用いることが望ましい。   The lead alloy for forming the negative electrode current collector is not particularly limited, but pure lead, calcium-tin alloy and antimony alloy are generally used, and in view of life performance and ease of manufacturing, It is desirable to use a calcium-tin alloy.

正負極板は、前述したそれぞれのペースト状活物質を集電体に充填して熟成・乾燥させたものである。集電体は、エキスパンド方式、鋳造方式、鍛造方式等により作製することができる。   The positive and negative electrode plates are obtained by filling the above-described paste-like active materials in a current collector, and ripening and drying. The current collector can be manufactured by an expanding method, a casting method, a forging method, or the like.

本実施の形態の制御弁式鉛蓄電池では、例えば、図1に示すように、鉛蓄電池を組み立て、所定量の電解液を注入して電槽化成を行った。   In the control valve type lead storage battery of the present embodiment, for example, as shown in FIG. 1, a lead storage battery is assembled, and a predetermined amount of electrolytic solution is injected to perform battery formation.

電槽に複数のセル室を設けるときは、各セル室内に極板群が収容され、隣接するセル室内に収容された極板群と反対極性のストラップ間を相互に接続することにより、所定の定格電圧と定格容量を持つ鉛蓄電池が構成される。また、単セル電槽のときは、複数の鉛蓄電池の端子間を、導電板を用いて並列あるいは直列に接続し、所定の電圧、容量の電池を構成することができる。   When a plurality of cell chambers are provided in the battery case, the electrode plate group is accommodated in each cell chamber, and the electrode plate group accommodated in the adjacent cell chamber and the strap of the opposite polarity are connected to each other. Lead-acid battery with rated voltage and rated capacity is configured. Moreover, in the case of a single cell battery case, terminals of a plurality of lead storage batteries can be connected in parallel or in series using conductive plates to configure a battery of a predetermined voltage and capacity.

以下、本発明の実施例について説明する。   Hereinafter, examples of the present invention will be described.

以下の実施例と比較例では、次の方法で、充電中の電極間温度を測定した。   In the following examples and comparative examples, the interelectrode temperature during charging was measured by the following method.

満充電状態(SOC=100%)の新神戸電機社製の38Ah−12V制御弁式鉛蓄電池に、高速で充放電可能なバイポーラ電源を接続させた。制御弁式鉛蓄電池の正極端子側のセルを(1)とし、K熱伝対を注液口から(1)〜(3)セルのリテーナ中へ差し込んで、電池内温度を測定した。GRAPHTEC製のGL−800を用いて1Point/Minで電池内温度を記録した。
(実施例1)
45℃恒温槽中で24時間放置した後、バイポーラ電源((株)エヌエフ回路設計ブロック製、製品名:BP4610)にて13.65V(公称電圧に対して約1.14倍)の定電圧充電を48時間実施した(充電状態は約100%)。その後、定電圧充電中に±50mV(定電圧充電における電圧に対して約0.0037倍)の電圧振幅を500Hzで48時間重畳させ、48時間電極間温度を測定した。このとき、測定前の温度は25.1℃であり、48時間後の温度は28.4℃であり、温度上昇は3.3℃であった。
(実施例2)
45℃恒温槽中で24時間放置した後、バイポーラ電源にて13.65Vの定電圧充電を48時間実施した。その後、定電圧充電中に±50mVの電圧振幅を800Hzで48時間重畳させ、48時間電極間温度を測定した。このとき、測定前の温度は25.2℃であり、48時間後の温度は28.7℃であり、温度上昇は3.5℃であった。
(実施例3)
45℃恒温槽中で24時間放置した後、バイポーラ電源にて13.65Vの定電圧充電を48時間実施した。その後、定電圧充電中に±50mVの電圧振幅を1000Hzで48時間重畳させ、48時間電極間温度を測定した。このとき、測定前の温度は25.0℃であり、48時間後の温度は28.6℃であり、温度上昇は3.6℃であった。
(実施例4)
45℃恒温槽中で24時間放置した後、バイポーラ電源にて13.65Vの定電圧充電を48時間実施した。その後、定電圧充電中に±50mVの電圧振幅を2000Hzで48時間重畳させ、48時間電極間温度を測定した。このとき、測定前の温度は25.1℃であり、48時間後の温度は28.8℃であり、温度上昇は3.7℃であった。
(実施例5)
45℃恒温槽中で24時間放置した後、バイポーラ電源にて13.65Vの定電圧充電を48時間実施した。その後、定電圧充電中に±50mVの電圧振幅を5000Hzで48時間重畳させ、48時間電極間温度を測定した。このとき、測定前の温度は24.8℃であり、48時間後の温度は29.3℃であり、温度上昇は4.5℃であった。
(比較例1)
45℃恒温槽中で24時間放置した後、バイポーラ電源にて13.65Vの定電圧充電を48時間実施した。このとき、測定前の温度は24.9℃であり、48時間後の温度は30.0℃であり、温度上昇は5.1℃であった。
(比較例2)
45℃恒温槽中で24時間放置した後、バイポーラ電源にて13.65Vの定電圧充電を48時間実施した。その後、定電圧充電中に±50mVの電圧振幅を10000Hzで48時間重畳させ、48時間電極間温度を測定した。このとき、測定前の温度は25.2℃であり、48時間後の温度は30.6℃であり、温度上昇は5.4℃であった。
<試験結果>
実施例1〜5は、比較例1及び2よりも電極間温度が低くなった。
A fast chargeable / dischargeable bipolar power supply was connected to a 38 Ah-12 V control valve type lead-acid battery manufactured by Shin-Kobe Electric Machinery Co., Ltd., which is fully charged (SOC = 100%). With the cell on the positive electrode terminal side of the control valve type lead-acid battery as (1), the K thermocouple was inserted from the liquid inlet into the (1) to (3) cell retainer, and the temperature inside the battery was measured. The temperature in the battery was recorded at 1 Point / Min using GL-800 manufactured by GRAPHTEC.
Example 1
After standing for 24 hours in a 45 ° C. constant temperature bath, a constant voltage charge of 13.65 V (about 1.14 times the nominal voltage) with a bipolar power supply (manufactured by NF Circuit Design Block, product name: BP4610) For 48 hours (about 100% charged). Thereafter, during constant-voltage charging, a voltage amplitude of ± 50 mV (about 0.0037 times the voltage at constant-voltage charging) was superimposed at 500 Hz for 48 hours, and the inter-electrode temperature was measured for 48 hours. At this time, the temperature before measurement was 25.1 ° C., the temperature after 48 hours was 28.4 ° C., and the temperature rise was 3.3 ° C.
(Example 2)
After leaving in a thermostat at 45 ° C. for 24 hours, constant-voltage charging at 13.65 V was performed for 48 hours using a bipolar power supply. Thereafter, during constant voltage charging, a voltage amplitude of ± 50 mV was superposed at 800 Hz for 48 hours, and the temperature between the electrodes was measured for 48 hours. At this time, the temperature before measurement was 25.2 ° C., the temperature after 48 hours was 28.7 ° C., and the temperature rise was 3.5 ° C.
(Example 3)
After leaving in a thermostat at 45 ° C. for 24 hours, constant-voltage charging at 13.65 V was performed for 48 hours using a bipolar power supply. Thereafter, during constant voltage charging, a voltage amplitude of ± 50 mV was superposed at 1000 Hz for 48 hours, and the temperature between the electrodes was measured for 48 hours. At this time, the temperature before measurement was 25.0 ° C., the temperature after 48 hours was 28.6 ° C., and the temperature rise was 3.6 ° C.
(Example 4)
After leaving in a thermostat at 45 ° C. for 24 hours, constant-voltage charging at 13.65 V was performed for 48 hours using a bipolar power supply. Thereafter, during constant voltage charging, a voltage amplitude of ± 50 mV was superposed at 2000 Hz for 48 hours, and the temperature between the electrodes was measured for 48 hours. At this time, the temperature before measurement was 25.1 ° C., the temperature after 48 hours was 28.8 ° C., and the temperature rise was 3.7 ° C.
(Example 5)
After leaving in a thermostat at 45 ° C. for 24 hours, constant-voltage charging at 13.65 V was performed for 48 hours using a bipolar power supply. Thereafter, during constant voltage charging, a voltage amplitude of ± 50 mV was superimposed at 5000 Hz for 48 hours, and the temperature between the electrodes was measured for 48 hours. At this time, the temperature before measurement was 24.8 ° C., the temperature after 48 hours was 29.3 ° C., and the temperature rise was 4.5 ° C.
(Comparative example 1)
After leaving in a thermostat at 45 ° C. for 24 hours, constant-voltage charging at 13.65 V was performed for 48 hours using a bipolar power supply. At this time, the temperature before measurement was 24.9 ° C., the temperature after 48 hours was 30.0 ° C., and the temperature rise was 5.1 ° C.
(Comparative example 2)
After leaving in a thermostat at 45 ° C. for 24 hours, constant-voltage charging at 13.65 V was performed for 48 hours using a bipolar power supply. Thereafter, during constant voltage charging, a voltage amplitude of ± 50 mV was superposed at 10000 Hz for 48 hours, and the temperature between the electrodes was measured for 48 hours. At this time, the temperature before measurement was 25.2 ° C., the temperature after 48 hours was 30.6 ° C., and the temperature rise was 5.4 ° C.
<Test result>
In Examples 1 to 5, the temperature between the electrodes was lower than in Comparative Examples 1 and 2.

トリクル充電のような定電圧で充電される制御弁式鉛蓄電池の寿命は、一般的に正極格子の腐食によって決定される。正極格子の腐食はアレニウス則に従い、温度上昇によって加速する。電圧振幅を印加していない通常の定電圧充電(比較例1)が、従来運用されている電極間温度であるので、電圧振幅の印加は、電圧振幅を印加していない通常の定電圧充電より電極間温度が低くなり、長寿命化が可能となることが予想できる。   The lifetime of a controlled valve lead acid battery charged with a constant voltage such as trickle charge is generally determined by the corrosion of the positive grid. The corrosion of the positive grid is accelerated by the temperature rise according to the Arrhenius law. Since the normal constant voltage charging (Comparative Example 1) in which the voltage amplitude is not applied (Comparative Example 1) is the temperature between the electrodes operated in the related art, the application of the voltage amplitude is more It can be expected that the temperature between the electrodes is lowered and the life can be extended.

実施例1〜5の結果から、500Hz〜5000Hzでは電極間温度の上昇は特に低く、10000Hz付近で電極間温度が上昇し、比較例2にように10000Hzでは比較例1の電圧振幅を重畳していない定電圧充電より電極間温度上昇が高くなった。10000Hz付近までは、電圧振幅により電極で軽度な充放電が頻繁に起き、充放電中の吸熱反応によって電極間温度が低下したと考えられる。また、電圧がプラス側へ高く上昇し、充電反応が過度に起きガス発生反応が起きても、その分負極でガス吸収反応が起きるため、電極間温度が低下すると考えられる。10000Hz付近で電極間温度の上昇の開始が始まる理由としては、10000Hz付近から、電子又はイオンの移動抵抗が顕在化する周波数帯であるためと推測する。また、さらに周波数が高くなると、電池構成部材の電気抵抗も顕在化するため、より温度上昇し、電圧振幅を重畳していない定電圧充電より電極間温度が高くなると考える。   From the results of Examples 1 to 5, the rise in the interelectrode temperature is particularly low at 500 Hz to 5000 Hz, the interelectrode temperature rises at around 10000 Hz, and the voltage amplitude of Comparative Example 1 is superimposed at 10000 Hz as in Comparative Example 2. The temperature rise between the electrodes was higher than no constant voltage charging. Up to around 10000 Hz, it is thought that light charging and discharging frequently occur at the electrodes due to the voltage amplitude, and the temperature between the electrodes is lowered by the endothermic reaction during charging and discharging. In addition, even if the voltage rises to the positive side and the charging reaction occurs excessively and the gas generation reaction occurs, the gas absorption reaction occurs at the negative electrode, and the temperature between the electrodes is considered to decrease. The reason why the start of the rise in the interelectrode temperature starts at around 10000 Hz is presumed to be the frequency band in which the transfer resistance of electrons or ions is apparent from around 10000 Hz. In addition, when the frequency is further increased, the electric resistance of the battery component is also manifested, so the temperature rises more, and the inter-electrode temperature is considered to be higher than the constant voltage charging in which the voltage amplitude is not superimposed.

本発明によれば、スタンバイユースで運用される制御弁式鉛蓄電池において、トリクル充電中に発生する発熱を抑制し、寿命特性に優れる制御弁式鉛蓄電池の充電方法を提供することができる。   According to the present invention, in the control valve-type lead storage battery operated in standby use, it is possible to provide a method for charging the control valve-type lead storage battery which suppresses heat generation generated during trickle charge and is excellent in life characteristics.

1…制御弁式鉛蓄電池、2…正極板、3…負極板、4…セパレータ、5…電槽、6…蓋体   DESCRIPTION OF SYMBOLS 1 ... Control valve-type lead storage battery, 2 ... Positive electrode plate, 3 ... Negative electrode plate, 4 ... Separator, 5 ... Battery case, 6 ... Lid

Claims (2)

満充電状態を100%として、95〜100%の充電状態で運用される制御弁式鉛蓄電池の充電方法であって、前記制御弁式鉛蓄電池の充電に際して、100Hz〜8000Hzの周波数で電圧振幅を印加させる工程を含む、制御弁式鉛蓄電池の充電方法。   A charging method for a valve-regulated lead-acid battery operated at a state of charge of 95 to 100%, wherein the fully charged state is 100%, wherein voltage amplitude is set at a frequency of 100 Hz to 8000 Hz when charging the valve-regulated lead-acid battery. The charge method of a control valve-type lead acid battery including the process made to apply. 前記充電が定電圧充電であり、前記定電圧充電における電圧に対して、0.001〜 0.05倍の電圧で振幅を印加させる、請求項1に記載の制御弁式鉛蓄電池の充電方法。   The method for charging a valve-regulated lead-acid battery according to claim 1, wherein the charge is constant voltage charge, and an amplitude is applied at a voltage of 0.001 to 0.05 times the voltage in the constant voltage charge.
JP2015179191A 2015-09-11 2015-09-11 Method of charging control valve type lead storage battery Active JP6519793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015179191A JP6519793B2 (en) 2015-09-11 2015-09-11 Method of charging control valve type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015179191A JP6519793B2 (en) 2015-09-11 2015-09-11 Method of charging control valve type lead storage battery

Publications (2)

Publication Number Publication Date
JP2017054756A JP2017054756A (en) 2017-03-16
JP6519793B2 true JP6519793B2 (en) 2019-05-29

Family

ID=58317079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015179191A Active JP6519793B2 (en) 2015-09-11 2015-09-11 Method of charging control valve type lead storage battery

Country Status (1)

Country Link
JP (1) JP6519793B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004320838A (en) * 2003-04-11 2004-11-11 Japan Storage Battery Co Ltd Charging method and charging apparatus for storage battery
JP4749095B2 (en) * 2005-09-12 2011-08-17 武次 西田 Storage battery regeneration processing method
JP2011040237A (en) * 2009-08-08 2011-02-24 Gs Yuasa Corp Charging apparatus for lead-storage battery

Also Published As

Publication number Publication date
JP2017054756A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
Keshan et al. Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems
Rand et al. Lead–acid battery fundamentals
CN101777650B (en) Battery and cathode composition thereof
JP2010160955A (en) Method of charging battery pack
JP2012074279A (en) Lead acid battery
JP5720947B2 (en) Lead acid battery
JP6519793B2 (en) Method of charging control valve type lead storage battery
CA2895358C (en) Electrochemical cell or battery with reduced impedance and method for producing same
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
KR102098510B1 (en) Rapid formation of electrodes
JP4812386B2 (en) Method for producing lead-acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP5283429B2 (en) Sealed lead acid battery
JP6369514B2 (en) Lead acid battery
JP6503869B2 (en) Control valve type lead storage battery and method of manufacturing the same
Buengeler et al. Lead-Acid–Still the Battery Technology with the Largest Sales
JP6164502B2 (en) Lead acid battery
US2994626A (en) Low loss battery
JP4827452B2 (en) Method for producing lead-acid battery
Hayat et al. Modelling of Gassing for VRLA OPzV (gel) Battery at 25 C
JP2013145664A (en) Control valve type lead storage battery
JP4411860B2 (en) Storage battery
US20240243368A1 (en) Power storage system, power supply, driving device, power control device, and method for equalizing power storage statuses
Burrows et al. Low maintenance lead-acid batteries for energy storage
JP2006310062A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R151 Written notification of patent or utility model registration

Ref document number: 6519793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250