JP2010160955A - Method of charging battery pack - Google Patents

Method of charging battery pack Download PDF

Info

Publication number
JP2010160955A
JP2010160955A JP2009002297A JP2009002297A JP2010160955A JP 2010160955 A JP2010160955 A JP 2010160955A JP 2009002297 A JP2009002297 A JP 2009002297A JP 2009002297 A JP2009002297 A JP 2009002297A JP 2010160955 A JP2010160955 A JP 2010160955A
Authority
JP
Japan
Prior art keywords
charging
parallel
assembled battery
series
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009002297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Jinbo
裕行 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009002297A priority Critical patent/JP2010160955A/en
Publication of JP2010160955A publication Critical patent/JP2010160955A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of charging a battery pack, which suppresses a sharp decrease in a cycle life that happens when four or more serial batteries are connected in parallel and charged together by n-stage constant current charging for capacity increase, and offers both advantages of fine life characteristics and short-time charging. <P>SOLUTION: According to the method of charging the battery pack, serial circuits each composed of a plurality of lead storage batteries connected in series are connected in parallel to supply power to a load. A charging device is connected to each serial circuit to carry out n-stage constant current charging in such a way that the charging device detects a charge voltage for the serial circuit to lower a charge current value step by step in n stages (n denotes an integer satisfying n≥2) when the charge voltage reaches a predetermined control voltage value. When the battery pack supplies power to the load, at least four or more of the serial circuits are connected in parallel in the battery pack. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は鉛蓄電池からなる組電池の充電方法に関する。   The present invention relates to a method for charging an assembled battery comprising a lead storage battery.

二酸化炭素の排出や石油資源の枯渇を抑制する気運が高まる中、鉛蓄電池などの二次電池のみを動力源とする小型車両の開発が嘱望されている。中でも鉛蓄電池は、タフユースに強く適度な重量を有しているため、例えば運搬車両の動力源として有用と考えられる。   In the midst of increasing momentum to suppress carbon dioxide emissions and oil resource depletion, the development of small vehicles that use only secondary batteries such as lead-acid batteries as the power source is desired. Among them, the lead storage battery is considered to be useful as a power source for a transport vehicle, for example, because it is strong for tough use and has an appropriate weight.

鉛蓄電池は、公知のように、2Vの公称電圧を有しているため、上記のような、動力源として所望される電池電圧とするために、複数個の鉛蓄電池を直列接続して組電池とすることが、ごく一般的に行なわれている。   Since a lead storage battery has a nominal voltage of 2 V as is well known, in order to obtain a battery voltage desired as a power source as described above, a plurality of lead storage batteries are connected in series to form an assembled battery. Is generally done.

一方、電池容量に関しては、鉛蓄電池の単位セル内に含まれる正極および負極の活物質量と、電解液中の硫酸濃度および電解液量を調整することにより、所望とする容量の鉛蓄電池を得ることができるものの、所望とする電池容量毎に正極板、負極板、セパレータ、電槽、蓋等の部品が異なることになるため、標準的な容量の電池を並列接続することによって、電池機種の増加を招くことなく、効率的に様々な容量の電池、すなわち組電池を得ることができる。   On the other hand, regarding the battery capacity, a lead storage battery having a desired capacity is obtained by adjusting the amount of the active material of the positive electrode and the negative electrode contained in the unit cell of the lead storage battery, the sulfuric acid concentration in the electrolytic solution, and the amount of the electrolytic solution. However, because the parts such as the positive electrode plate, the negative electrode plate, the separator, the battery case, and the lid are different for each desired battery capacity, by connecting the standard capacity batteries in parallel, A battery having various capacities, that is, an assembled battery can be obtained efficiently without causing an increase.

したがって、鉛蓄電池セルを直列接続して得た直列電池の複数を、互いに並列接続することによって、所望とする、公称電圧・定格容量の組電池を得ることができる。   Therefore, a desired assembled battery having a nominal voltage and a rated capacity can be obtained by connecting in parallel a plurality of series batteries obtained by connecting lead storage battery cells in series.

例えば、特許文献1には、2個の蓄電池セルを直列に接続して直列電池を構成し、この直列電池の2個を並列接続して負荷に給電する構成が示されている。また、特許文献1には、2個の直列電池のそれぞれに給電回路が接続され、給電回路は、直列電池に印加する電圧をある値に設定維持する定電圧回路を有していること、すなわち、直列電池を定電圧充電することが示されている。   For example, Patent Document 1 discloses a configuration in which two storage battery cells are connected in series to form a series battery, and two of the series batteries are connected in parallel to supply power to a load. Further, in Patent Document 1, a power supply circuit is connected to each of two series batteries, and the power supply circuit has a constant voltage circuit that maintains a voltage applied to the series battery at a certain value. It is shown that the series battery is charged at a constant voltage.

一般的に、液式(開放式)あるいは制御弁式に関らず、鉛蓄電池は、電解液中の水分の減少を抑制する目的で、例えば、25℃においては、一セル当り、2.25V〜2.45V程度の制御電圧で、定電圧充電することが行なわれている。   In general, regardless of whether it is a liquid type (open type) or a control valve type, a lead-acid battery is, for example, 2.25 V per cell at 25 ° C. for the purpose of suppressing a decrease in moisture in the electrolytic solution. Constant voltage charging is performed at a control voltage of about ~ 2.45V.

定電圧充電は、当初、0.6CA程度の充電電流で、蓄電池を充電し、蓄電池の電圧が、前記した制御電圧に到達した時点より、蓄電池の電圧が制御電圧に維持され、それとともに、充電電流が減衰する。そして、充電電流が0.005CA〜0.01CA程度の、いわゆるトリクル電流にまで減衰した時点で、蓄電池は満充電状態となる。   In constant voltage charging, the storage battery is initially charged with a charging current of about 0.6 CA, and the voltage of the storage battery is maintained at the control voltage from the time when the voltage of the storage battery reaches the control voltage described above. The current decays. When the charging current is attenuated to a so-called trickle current of about 0.005 CA to 0.01 CA, the storage battery is fully charged.

このように、定電圧充電の末期には、充電電流は電池容量に対して十分に小さくなるため、IR損失は小さくなる。したがって、蓄電池セルを直列接続して直列回路とし、この直列回路をさらに並列接続した組電池を定電圧充電した場合、組電池を構成する蓄電池セル容量のばらつきや、単電池間の結線抵抗によって、充電開始当初は、充電電圧および充電電流の蓄電池セル間のばらつきは比較的大である。   Thus, at the end of constant voltage charging, the charging current is sufficiently small with respect to the battery capacity, so the IR loss is small. Therefore, when the battery cells are connected in series to form a series circuit, and the assembled battery in which this series circuit is further connected in parallel is charged at a constant voltage, due to variations in the capacity of the storage battery cells constituting the assembled battery and the connection resistance between the single batteries, At the beginning of charging, the variation in charging voltage and charging current between storage battery cells is relatively large.

しかしながら、充電の進行にしたがって、各蓄電池セルに加わる充電電圧および各直列回路を流れる充電電流はしだいに収束し、満充電時には、充電電圧および充電電流のばらつきが抑制され、結果として、各蓄電池セルの充電状態のばらつきが抑制されるという利点がある。   However, as the charging progresses, the charging voltage applied to each storage battery cell and the charging current flowing through each series circuit gradually converge, and when fully charged, variations in the charging voltage and charging current are suppressed. As a result, each storage battery cell There is an advantage that variation in the state of charge is suppressed.

しかしながら、上記のような定電圧充電では、充電電流が十分に減衰し、各蓄電池セルが満充電に至るまでに長時間(例えば、一直列回路当りの最大充電電流が0.6CAの場合、12時間から24時間程度)を確保できるのであれば、組電池の充電に適した充電方法であり、バックアップ用途であれば、長い充電時間も、実用上、それほど問題とならない。   However, in the constant voltage charging as described above, the charging current is sufficiently attenuated, and each storage battery cell is fully charged for a long time (for example, when the maximum charging current per series circuit is 0.6 CA, 12 If it can be secured for about 24 hours from the time), it is a charging method suitable for charging the assembled battery, and if it is used for backup, a long charging time is not a problem in practice.

一方、前記したような組電池を電動の運搬車両用電源として用いる場合、12時間〜24時間といった長時間の充電時間は許容しがたく、充電時間の短縮化が試みられてきている。   On the other hand, when such an assembled battery is used as a power source for an electric transportation vehicle, it is difficult to tolerate a long charging time of 12 hours to 24 hours, and attempts have been made to shorten the charging time.

そして、鉛蓄電池の急速充電方法として、例えば、特許文献2に示したような、多段充電方式が提案されている。特許文献2の多段充電方式では、充電開始当初は、充電電流I1で充電し、蓄電池電圧がある所定の制御電圧VRに到達した時点で、充電電流をI1よりも低いI2に段階的に低下させ、以降も同様に、制御電圧VRによって、段階的に充電電流を低下させていく手法である。なお、制御電圧VRは、前記したような、蓄電池セル当り、2.40V程度とすることによって、電解液中の水分の蓄電池外への散逸を抑制する構成を有する。   And the multistage charging system as shown, for example in patent document 2 is proposed as a quick charge method of lead acid battery. In the multistage charging method of Patent Document 2, at the beginning of charging, charging is performed with the charging current I1, and when the storage battery voltage reaches a certain control voltage VR, the charging current is gradually reduced to I2 lower than I1. Thereafter, similarly, the charging current is gradually reduced by the control voltage VR. In addition, the control voltage VR has the structure which suppresses dissipation of the water | moisture content in electrolyte solution out of a storage battery by setting it as about 2.40V per storage battery cell as mentioned above.

特許文献2の充電方法では、最終のn段での充電においては、蓄電池電圧の制御を行なうのではなく、第1段目の充電電気量と電池温度によって、n段目の充電時間が決定される。そして、n段目の充電において強制的な充電が為されるため、前記したような、通常の定電圧充電において、完全放電状態の組電池を満充電状態とするまでの充電時間として、12時間〜24時間要していたものが、特許文献2の充電方法によれば、5〜6時間程度にまで短縮することができる。
特開昭55−053140号公報 特開平11−297364号公報
In the charging method of Patent Document 2, in the final n-stage charging, the storage battery voltage is not controlled, but the n-th stage charging time is determined by the first stage charging electricity amount and the battery temperature. The Since the forced charging is performed in the n-th stage charging, the charging time until the fully-charged assembled battery is fully charged in the normal constant voltage charging as described above is 12 hours. According to the charging method of Patent Document 2, it takes about 24 hours, but can be shortened to about 5-6 hours.
JP 55-053140 A JP 11-297364 A

前記したような、特許文献2に示された充電方法は、充電時間を短縮化できることから、運搬車両用電源といった、サイクル用途に適している。ところが、蓄電池セルを直列とした直列回路の複数を並列接続した組電池に、前記したような、n段定電流充電を適用した場合、特に、並列接続する直列回路数が4を越えると、サイクル寿命特性が急激に低下することを本願発明の発明者は見出した。   Since the charging method shown in Patent Document 2 as described above can shorten the charging time, it is suitable for cycle applications such as a power supply for transport vehicles. However, when the n-stage constant current charging as described above is applied to a battery pack in which a plurality of series circuits each having storage battery cells connected in series is applied, in particular, when the number of series circuits connected in parallel exceeds four, The inventor of the present invention has found that the life characteristics are rapidly deteriorated.

本発明は、前記した状況に鑑み、蓄電池セルを直列接続してなる直列回路を並列接続した組電池に、前記したようなn段定電流充電を適用した際のサイクル寿命の低下を抑制し、組電池のサイクル寿命特性と、充電時間短縮化とを両立した組電池の充電方法を提供するものである。   In view of the above situation, the present invention suppresses a decrease in cycle life when an n-stage constant current charge as described above is applied to an assembled battery in which series circuits formed by connecting battery cells in series are connected in parallel. It is an object of the present invention to provide a method for charging an assembled battery that achieves both cycle life characteristics of the assembled battery and shortening of the charging time.

前記した課題を解決するために、本発明の請求項1に係る発明は、複数個の鉛蓄電池を直列に接続した直列回路を並列に接続して負荷に給電する組電池の充電方法であって、前記直列回路毎に充電装置を接続し、前記充電装置は、前記直列回路の充電電圧を検出して、前記充電電圧が所定の制御電圧値に到達した時点で、充電電流値をn(但し、n≧2である整数)段に、段階的に低下させるn段定電流充電を行うとともに、かつ、前記組電池の前記負荷への給電時に、前記組電池は少なくとも4以上の前記直列回路が並列接続されてなる組電池の充電方法を示すものである。   In order to solve the above-described problem, the invention according to claim 1 of the present invention is a method for charging an assembled battery in which a series circuit in which a plurality of lead-acid batteries are connected in series is connected in parallel to supply power to a load. A charging device is connected to each series circuit, and the charging device detects a charging voltage of the series circuit, and when the charging voltage reaches a predetermined control voltage value, the charging current value is set to n (however, , N is an integer satisfying n ≧ 2), and the n-stage constant current charging is performed in a step-wise manner, and at the time of feeding the battery pack to the load, the battery pack includes at least four series circuits. The charging method of the assembled battery formed in parallel is shown.

また、本発明の請求項2に係る発明は、複数個の鉛蓄電池を直列に接続した直列回路を並列に接続して負荷に給電する組電池の充電方法であって、前記組電池の前記負荷への給電時において、前記組電池は少なくとも4以上の前記直列回路が並列接続されてなり、かつ、前記組電池は、前記直列回路の2もしくは3が並列に接続した並列回路の2以上を並列接続してなり、 前記並列回路毎に充電装置を接続し、前記充電装置は、前記並列回路の充電電圧を検出して、前記充電電圧が所定の制御電圧値に到達した時点で、充電電流値をn(但し、n≧2である整数)回、段階的に低下させるn段定電流充電を行うことを特徴とする組電池の充電方法を示すものである。   Further, the invention according to claim 2 of the present invention is a method of charging an assembled battery in which a series circuit in which a plurality of lead storage batteries are connected in series is connected in parallel to supply power to the load, and the load of the assembled battery At the time of power supply to the battery pack, the battery pack includes at least four or more series circuits connected in parallel, and the battery pack includes two or more parallel circuits in which two or three of the series circuits are connected in parallel. A charging device connected to each parallel circuit, the charging device detects a charging voltage of the parallel circuit, and when the charging voltage reaches a predetermined control voltage value, a charging current value The battery pack charging method is characterized in that n-stage constant current charging is performed in a step-wise manner, n times (where n ≧ 2 is an integer).

また、本発明の請求項3に係る発明は、請求項1もしくは2に記載の組電池の充電方法において、前記組電池の放電電気量に一定の係数を乗じることによって必要充電電気量を設定し、1段目の充電を第1定電流で行い、n段目の第n定電流における充電時間を1段目の充電で要した充電時間と1段目充電時における前記鉛蓄電池の電槽の温度を基準として設定制御し、1段目からn−1段目の充電による充電電気量の不足分を補うことを特徴とするものである。   The invention according to claim 3 of the present invention is the method for charging an assembled battery according to claim 1 or 2, wherein the required charge electricity is set by multiplying the discharge electricity of the assembled battery by a certain coefficient. The first stage charging is performed at the first constant current, the charging time at the nth stage n constant current is the charging time required for the first stage charging, and the battery of the lead storage battery at the time of the first stage charging. Setting control is performed based on temperature, and the shortage of the amount of charged electricity due to charging from the first stage to the (n-1) th stage is compensated.

本発明によれば、蓄電池セルを直列接続した直列回路を並列接続した組電池のサイクル寿命を低下させることなく、充電時間の短縮化が可能な組電池の充電方法を提供できるという、顕著な効果を奏する。   According to the present invention, it is possible to provide a method for charging an assembled battery that can shorten the charging time without reducing the cycle life of the assembled battery in which series circuits in which battery cells are connected in series are connected in parallel. Play.

(第1の実施形態)
図1は、本発明の第1の実施形態による充電方法を用いた電源システム101の構成を示す図である。
(First embodiment)
FIG. 1 is a diagram showing a configuration of a power supply system 101 using the charging method according to the first embodiment of the present invention.

本発明の充電方法を適用する電源システム101は、複数個の鉛蓄電池のセル102を直列に接続した直列回路103を並列接続した組電池104と、この組電池104を充電する充電装置105とからなる。   A power supply system 101 to which a charging method of the present invention is applied includes an assembled battery 104 in which a series circuit 103 in which a plurality of lead-acid battery cells 102 are connected in series is connected in parallel, and a charging device 105 that charges the assembled battery 104. Become.

電源システム101においては、組電池104は、負荷106への給電時において、少なくとも4以上の直列回路103が並列接続されている。この電源システム101において、組電池104を充電する際には、直列回路103毎に充電装置105が接続され、充電装置105によって対応する直列回路103の充電を行う。   In the power supply system 101, at least four or more series circuits 103 are connected in parallel to the assembled battery 104 when power is supplied to the load 106. In the power supply system 101, when charging the assembled battery 104, a charging device 105 is connected to each series circuit 103, and the corresponding series circuit 103 is charged by the charging device 105.

組電池104からは、必要に応じて外部出力用の端子108が設けられ、負荷106が接続される。なお、ある直列回路103が内部短絡等で故障した状態で、電源システム101から負荷106へ給電する際、故障した直列回路103へ他の正常な直列回路103からの電流が流れ込み、負荷106への給電に不具合が生じることを防止するため、直列回路103と直列にダイオード107aを接続することができる。   An external output terminal 108 is provided from the assembled battery 104 as necessary, and a load 106 is connected thereto. When power is supplied from the power supply system 101 to the load 106 in a state where a certain series circuit 103 has failed due to an internal short circuit or the like, a current from another normal series circuit 103 flows into the failed series circuit 103 and is supplied to the load 106. In order to prevent a problem in power feeding, a diode 107 a can be connected in series with the series circuit 103.

このような、直列回路103に直列に介挿されたダイオード107aは、充電装置105で直列回路103を充電する際、他の直列回路103に接続された他の充電装置105からの直列回路103への充電電流の流れ込みを防止することによって、直列回路103とこれに接続された充電装置105の対が、他の対から独立した状態となるため、各直列回路は同一条件で充電されることとなり、直列回路103間の充電状態のばらつきを抑制することができる。   Such a diode 107 a inserted in series in the series circuit 103 is connected to the series circuit 103 from another charging device 105 connected to the other series circuit 103 when the charging device 105 charges the series circuit 103. By preventing the flow of charging current, the series circuit 103 and the pair of charging devices 105 connected to the series circuit 103 become independent from each other, so that each series circuit is charged under the same conditions. The variation in the state of charge between the series circuits 103 can be suppressed.

なお、本発明においては、ダイオード107aを設けたが、ダイオード107aに替えてスイッチング素子(図示せず)を用いてもよい。   Although the diode 107a is provided in the present invention, a switching element (not shown) may be used instead of the diode 107a.

また、図1には、充電装置に直列にダイオード107bを介挿した形態を示したが、このダイオード107bは、直列回路103から組電池への電流の逆流を阻止する目的で配置したものであり、ダイオード107bに替えて、同様の作用を有する素子あるいは回路を配置してもよい。そして、ダイオード107bあるいはこれと同様の作用を有する素子あるいは回路は、充電装置105内に設けてもよく、充電装置105外に設けてもよい。   Further, FIG. 1 shows a mode in which a diode 107b is inserted in series with the charging device, but this diode 107b is arranged for the purpose of preventing the backflow of current from the series circuit 103 to the assembled battery. Instead of the diode 107b, an element or a circuit having a similar action may be arranged. The diode 107b or an element or circuit having the same action may be provided inside the charging device 105 or outside the charging device 105.

本発明では、前記したように、組電池104が負荷106に給電を行なう際には、組電池104は直列回路103の4以上が並列接続されるとともに、充電装置105の動作を図2に示した動作とするものである。すなわち、図2に示したように、充電装置105は、直列回路103の充電電圧Vを検出して、この充電電圧Vが所定の制御電圧値VRに到達した時点で、充電電流値をn(但し、n≧2である整数)段に、段階的に低下させる。   In the present invention, as described above, when the assembled battery 104 supplies power to the load 106, four or more of the series circuits 103 are connected in parallel to the assembled battery 104, and the operation of the charging device 105 is shown in FIG. It is supposed to be an operation. That is, as shown in FIG. 2, the charging device 105 detects the charging voltage V of the series circuit 103, and when the charging voltage V reaches a predetermined control voltage value VR, the charging device 105 sets the charging current value to n ( However, it is lowered step by step to an integer where n ≧ 2.

なお、1段からn−1段までの制御電圧VRは、電解液中の水の電気分解が抑制される2.25V/セル〜2.45V/セルとすることができる。制御電圧VRに温度上昇に対する負特性を有することによって、電解液中の水分減少を抑制することができる。また、制御電圧VRは、各段で一定であってもよく、前記した範囲で変化させてもよい。   Note that the control voltage VR from the first stage to the (n−1) th stage can be set to 2.25 V / cell to 2.45 V / cell in which electrolysis of water in the electrolytic solution is suppressed. Since the control voltage VR has a negative characteristic with respect to a temperature rise, a decrease in moisture in the electrolytic solution can be suppressed. Further, the control voltage VR may be constant at each stage, or may be changed within the above-described range.

例えば、充電電流によるジュール熱によって、セル102の温度が上昇するため、制御電圧値VRに温度上昇に対する負特性(例えば、−0.02V/℃〜−0.005V/℃)を持たせることによって、実質上、充電段数毎に制御電圧VRが変化するため、セル102の温度に応じた適切な制御電圧VRで充電を切り替えることができ、充電不足や過充電を抑制することができる。   For example, since the temperature of the cell 102 rises due to Joule heat due to the charging current, the control voltage value VR has a negative characteristic (for example, −0.02 V / ° C. to −0.005 V / ° C.) with respect to the temperature rise. In practice, since the control voltage VR changes for each number of charging stages, charging can be switched at an appropriate control voltage VR corresponding to the temperature of the cell 102, and insufficient charging and overcharging can be suppressed.

また、本発明では、直列回路103を並列接続することから、セル102の位置によって、温度のばらつきが生じる。例えば、直列回路103をそのまま並列配置する場合、両側の直列回路103を構成するセル102の放熱性は、それ以外の直列回路103を構成するセル102の放熱性に比べて著しく高い。本発明では、直列回路103毎に温度計測が可能となるため、直列回路103の設置位置に関らず、各直列回路103を過不足なく充電できる。   In the present invention, since the series circuit 103 is connected in parallel, the temperature varies depending on the position of the cell 102. For example, when the series circuit 103 is arranged in parallel as it is, the heat dissipation of the cells 102 constituting the series circuits 103 on both sides is remarkably higher than the heat dissipation of the cells 102 constituting the other series circuits 103. In the present invention, since temperature measurement is possible for each series circuit 103, each series circuit 103 can be charged without excess or deficiency regardless of the installation position of the series circuit 103.

また、本発明においては、n段目充電では、充電電流は通常の定電圧充電とは異なり、連続して減衰することなく、電流Inで充電された後、遮断される。n段目の充電時間の制御方法としては、例えば、1段からn−1段までの制御電圧VRでは、電解液中の水の電気分解が抑制される2.25V/セル〜2.45V/セルとしておき、n段で電解液中の水の電気分解が進行し、負極より水素ガスが発生しはじめる直前の2.6〜2.7V/セルに到達した時点で、n段目の充電を停止し、充電完了とすること、あるいは、n段目の充電時間を予め所定時間に設定しておき、n段目の充電の開始から、タイマーがこの所定時間を計時した段階で、n段目の充電を終了させ、充電完了とする手法も考えられ、これらの方法によっても、充電時間を5〜6時間程度にまで短縮することができる。   In the present invention, in the n-th stage charging, the charging current is interrupted after being charged with the current In without being attenuated continuously unlike the normal constant voltage charging. As a method for controlling the charging time of the n-th stage, for example, with the control voltage VR from the first stage to the (n-1) th stage, the electrolysis of water in the electrolytic solution is suppressed to 2.25 V / cell to 2.45 V / As a cell, when the electrolysis of water in the electrolyte proceeds at the nth stage and reaches 2.6 to 2.7 V / cell just before hydrogen gas starts to be generated from the negative electrode, the nth stage is charged. Stop and complete the charging, or set the charging time of the nth stage to a predetermined time in advance, and at the stage when the timer counts this predetermined time from the start of the charging of the nth stage, It is also conceivable to terminate the charging and complete the charging, and these methods can also reduce the charging time to about 5 to 6 hours.

また、n段目の充電電気量を、1段目の充電電気量に応じて制御することができる。これは1段目の充電電気量が増大するにつれてn段目の充電電気量を増大させる、すなわち、n段目の定電流充電における充電時間をより長くする。このような構成によれば、直列回路103の放電深度がばらついても、過不足なく充電を行うことができ、より好ましい。   Further, the amount of charge electricity at the nth stage can be controlled according to the amount of charge electricity at the first stage. This increases the amount of charge in the nth stage as the amount of charge in the first stage increases, that is, the charge time in the constant current charge in the nth stage becomes longer. According to such a configuration, even if the depth of discharge of the series circuit 103 varies, charging can be performed without excess or deficiency, which is more preferable.

なお、充電の段数としては、例えば2段〜10段、好ましくは3段〜10段程度の段数から選択することができる。なお、最終段、すなわちn段目の充電電流を0.001CA〜0.005CAといったトリクル電流に相当するような値とすると、充電完了までの時間が長くなるため、0.02CA以上、好ましくは、0.04CA以上とする。また、1段目の充電電流については、セル102の充電受け入れ性が許容する範囲で高くすることが好ましく、例えば、1CA〜0.4CAの範囲内で選択することができる。   The number of charging stages can be selected from, for example, 2 to 10 stages, preferably about 3 to 10 stages. If the charging current at the final stage, i.e., the n-th stage is set to a value corresponding to a trickle current such as 0.001 CA to 0.005 CA, the time until the charging is completed becomes long, so 0.02 CA or more, preferably 0.04 CA or more. Moreover, it is preferable to make it high in the range which the charge acceptance of the cell 102 accept | permits about the 1st step | paragraph charging current, For example, it can select within the range of 1CA-0.4CA.

本発明の発明者は、直列回路103の並列数が4を越えた組電池104の端子108に、図2に示したn段定電流充電動作を行なう充電装置105を接続し、一括で組電池104を充電した場合、急激に組電池104のサイクル寿命特性が低下することを見出した。   The inventor of the present invention connects the charging device 105 that performs the n-stage constant current charging operation shown in FIG. 2 to the terminal 108 of the assembled battery 104 in which the parallel number of the series circuit 103 exceeds 4, and collects the assembled battery in a lump. It has been found that when the battery 104 is charged, the cycle life characteristics of the assembled battery 104 are rapidly deteriorated.

一方、直列回路103の並列数が4を越えた場合でも、端子108に図3で示したパターンで動作する定電圧充電装置(図示せず)を接続し、16時間〜24時間といった長時間充電を行えば、前記したような、サイクル寿命特性の低下は起こらない。   On the other hand, even when the parallel number of the series circuit 103 exceeds 4, a constant voltage charging device (not shown) operating in the pattern shown in FIG. 3 is connected to the terminal 108 and charging is performed for a long time such as 16 to 24 hours. If this is performed, the cycle life characteristics are not deteriorated as described above.

このような現象の要因は、以下のように推測される。すなわち、図3に示した定電圧充電(充電電圧が制御値に到達した時点より、充電電圧をこの制御値で一定に制御する充電であり、充電の進行にしたがって、充電電流は連続的に減衰し、最終的には0.001CA〜0.005CA程度となる。)で、組電池104を充電する場合、組電池を構成する直列回路103の容量のばらつきや結線抵抗等によって、各々の直列回路103を流れる充電電流はばらつく。   The cause of such a phenomenon is estimated as follows. That is, the constant voltage charging shown in FIG. 3 (the charging voltage is controlled to be constant at this control value from the time when the charging voltage reaches the control value, and the charging current is continuously attenuated as the charging progresses. In the case of charging the assembled battery 104, each series circuit is caused by variation in capacity of the series circuit 103 constituting the assembled battery, connection resistance, and the like. The charging current flowing through 103 varies.

しかしながら、充電電流が減衰してくると、各々の直列回路103に流れる充電電流は減衰するとともに、均等に収束していき、最終的には、直列回路103間の充電ばらつきが解消される。但し、この状態に至るまで16時間から24時間の極めて長い充電時間を要するため、バックアップ用には適するものの、サイクル用途には実用的でない。   However, when the charging current is attenuated, the charging current flowing through each series circuit 103 is attenuated and converges evenly, and finally, the charging variation between the series circuits 103 is eliminated. However, since a very long charging time of 16 to 24 hours is required to reach this state, it is suitable for backup but not practical for cycle use.

一方、本発明のように、充電電流が不連続な状態で順次切り替わり、充電電流を連続して0.001CA〜0.005CAまで減衰させる過程を含まないn段定電流充電においては、前記したような、直列回路103に流れる充電電流のばらつきが充電終了まで解消されず、結果として、直列回路103の充電状態のばらつきが生じ、このばらつきは、サイクル的な使用によって拡大され、組電池104内の特定の直列回路が過充電や、過放電を受けることによって劣化し、組電池104としてのサイクル寿命特性が極端に低下するものと推測される。   On the other hand, as in the present invention, in the n-stage constant current charging that does not include the process of sequentially switching the charging current in a discontinuous state and continuously decreasing the charging current from 0.001 CA to 0.005 CA, as described above. In addition, the variation in the charging current flowing through the series circuit 103 is not eliminated until the end of charging. As a result, the variation in the charging state of the series circuit 103 occurs, and this variation is enlarged by cyclic use, It is presumed that a specific series circuit is deteriorated by being overcharged or overdischarged, and the cycle life characteristics as the assembled battery 104 are extremely lowered.

また、このようなn段定電流充電を用いた場合のサイクル寿命特性の急激な低下は、直列回路103の並列数が4以上の場合に極めて顕著に発現することを本発明の発明者は見出したものである。   Further, the inventor of the present invention has found that such a rapid decrease in cycle life characteristics when using n-stage constant current charging is very prominent when the parallel number of the series circuit 103 is 4 or more. It is a thing.

上記の知見に基づき、直列回路103の並列数が4以上である組電池104と、n段定電流充電動作を行なう充電装置105とを組み合わせる場合、直列回路103毎に充電装置105を設けることによって、前記したような、n段定電流充電時であって、かつ並列接続数が4以上の場合に顕著に発生するサイクル寿命の低下を抑制し、良好な寿命特性が得られるとともに、従来の定電圧充電方式に比較して、極めて短時間で充電を行うことができるという、顕著な効果を奏する。   Based on the above knowledge, when combining the assembled battery 104 in which the parallel number of the series circuit 103 is 4 and the charging device 105 performing the n-stage constant current charging operation, by providing the charging device 105 for each series circuit 103 As described above, when the n-stage constant current charging is performed and the number of parallel connections is 4 or more, the decrease in cycle life that occurs remarkably is suppressed, and good life characteristics are obtained. Compared to the voltage charging method, there is a remarkable effect that charging can be performed in an extremely short time.

(第2の実施形態)
本発明の第2の実施形態による充電方法を適用する電源システム201および電源システム301の構成をそれぞれ図3および図4に示す。
(Second Embodiment)
The configurations of the power supply system 201 and the power supply system 301 to which the charging method according to the second embodiment of the present invention is applied are shown in FIGS. 3 and 4, respectively.

本発明の第2の実施形態による充電方法を適用する電源システム201は、図4に示したように、複数個の鉛蓄電池のセル102を直列に接続した直列回路103を並列に接続して負荷106に接続する組電池202と、この組電池202を充電する充電装置203を備える。   As shown in FIG. 4, the power supply system 201 to which the charging method according to the second embodiment of the present invention is applied is configured by connecting a series circuit 103 in which a plurality of lead-acid battery cells 102 are connected in series to each other in parallel. The battery pack 202 connected to the battery pack 106 and a charging device 203 for charging the battery pack 202 are provided.

組電池202は、直列回路103の2個が並列に接続した並列回路204の2以上を並列接続して構成される。そして、この組電池202を充電する際に、並列回路204毎にそれぞれ充電装置203が接続される。また、組電池202から負荷106への給電時には、組電池202は、4以上の直列回路103を並列接続した構成を有する。   The assembled battery 202 is configured by connecting in parallel two or more of the parallel circuits 204 in which two of the series circuits 103 are connected in parallel. When charging the assembled battery 202, the charging device 203 is connected to each parallel circuit 204. Further, when power is supplied from the assembled battery 202 to the load 106, the assembled battery 202 has a configuration in which four or more series circuits 103 are connected in parallel.

充電装置203は、第1の実施形態における充電装置105と全く同様の制御を行なう。すなわち、並列回路204の充電電圧を検出して、充電電圧が所定の制御電圧値VRに到達した時点で、充電電流値をn(但し、n≧2である整数)段に、段階的に低下させる機能を有したものである。但し、充電装置105は単一の直列回路103を充電するが、充電装置203は、2つの直列回路103を充電するため、出力電流値は充電装置105の2倍の容量を有したものを適用することが好ましいことはいうまでもない。   The charging device 203 performs exactly the same control as the charging device 105 in the first embodiment. That is, when the charging voltage of the parallel circuit 204 is detected and the charging voltage reaches a predetermined control voltage value VR, the charging current value is gradually reduced to n (where n ≧ 2). It has a function to make it. However, the charging device 105 charges a single series circuit 103, but the charging device 203 charges two series circuits 103, so that the output current value has a capacity twice that of the charging device 105. It goes without saying that it is preferable to do so.

また、本発明の第2の実施形態による充電方法を適用する他の電源システム301は、図5に示したように、複数個の鉛蓄電池のセル102を直列に接続した直列回路103を並列に接続して負荷106に接続する組電池302と、この組電池302を充電する充電装置303を備える。   In addition, another power supply system 301 to which the charging method according to the second embodiment of the present invention is applied, as shown in FIG. 5, a series circuit 103 in which a plurality of lead-acid battery cells 102 are connected in series is connected in parallel. An assembled battery 302 connected to the load 106 and a charging device 303 for charging the assembled battery 302 are provided.

組電池302は、直列回路103の3個が並列に接続した並列回路304の2以上を並列接続して構成される。そして、この組電池302を充電する際に、並列回路304毎にそれぞれ充電装置303が接続される。さらに、組電池302から負荷106への給電時には、組電池302は、4以上の直列回路103を並列接続した構成を有する。   The assembled battery 302 is configured by connecting in parallel two or more parallel circuits 304 in which three series circuits 103 are connected in parallel. When charging the assembled battery 302, the charging device 303 is connected to each parallel circuit 304. Further, when power is supplied from the assembled battery 302 to the load 106, the assembled battery 302 has a configuration in which four or more series circuits 103 are connected in parallel.

充電装置303は、第1の実施形態における充電装置105と全く同様の制御を行なう。すなわち、並列回路304の充電電圧を検出して、充電電圧が所定の制御電圧値VRに到達した時点で、充電電流値をn(但し、n≧2である整数)段に、段階的に低下させる機能を有したものである。但し、充電装置105は単一の直列回路103を充電するが、充電装置303は、3つの直列回路103を充電するため、出力電流値は充電装置105の3倍の容量を有したものを適用することが好ましいことはいうまでもない。   The charging device 303 performs exactly the same control as the charging device 105 in the first embodiment. That is, when the charging voltage of the parallel circuit 304 is detected and the charging voltage reaches a predetermined control voltage value VR, the charging current value is gradually reduced to n (where n ≧ 2). It has a function to make it. However, the charging device 105 charges a single series circuit 103, but the charging device 303 charges three series circuits 103, so that the output current value has a capacity three times that of the charging device 105. It goes without saying that it is preferable to do so.

前記した第2の実施形態は、第1の実施形態における直列回路103を、2つの直列回路103を並列接続した並列回路204、もしくは、3つの直列回路103を並列接続した並列回路304で置換した構成を有する。   In the second embodiment described above, the series circuit 103 in the first embodiment is replaced with a parallel circuit 204 in which two series circuits 103 are connected in parallel or a parallel circuit 304 in which three series circuits 103 are connected in parallel. It has a configuration.

前記したように、第1の実施形態において、本発明の課題は、直列回路103の並列接続数が4を越えると顕著になることを示した。したがって、並列接続数2および3とした第2の実施形態であれば、寿命低下を抑制する効果が得られつつ、また、短時間充電が可能となる上、充電装置203,303の必要数も少なくなるため、コスト的に好ましいものである。   As described above, in the first embodiment, it has been shown that the problem of the present invention becomes significant when the number of parallel connections of the series circuit 103 exceeds four. Therefore, in the second embodiment in which the number of parallel connections is 2 and 3, while the effect of suppressing the life reduction is obtained, the short-time charging is possible and the required number of the charging devices 203 and 303 is also increased. Since it decreases, it is preferable in terms of cost.

以下、実施例における本発明例と比較例との比較により、本発明の効果を説明する。なお、本実施例では、サイクル寿命試験により、本発明の効果を示すが、サイクル寿命試験の温度は本発明例および比較例ともに25℃である。   Hereinafter, the effects of the present invention will be described by comparing the examples of the present invention with comparative examples. In this example, the effect of the present invention is shown by a cycle life test. The temperature of the cycle life test is 25 ° C. in both the present invention example and the comparative example.

(直列回路)
まず、本発明例と比較例に共通に用いた直列回路の構成を説明する。本実施例で用いた直列回路(第1および第2の実施形態における直列回路103に相当)は、鉛蓄電池のセル102が6個直列接続されたモノブロックタイプの制御弁式鉛蓄電池の5個が直列接続されており、公称電圧60V、3時間率定格容量50Ahの電池である。本直列回路は、30個のセル102が直列接続された構成を有する。なお、本発明例および比較例とも、組電池は実質的に12個の直列回路103が並列接続されているため、3時間率定格容量は600Ahとなる。
(Series circuit)
First, the configuration of a series circuit commonly used in the present invention example and the comparative example will be described. The series circuit (corresponding to the series circuit 103 in the first and second embodiments) used in this example is a monoblock type control valve type lead storage battery in which six lead storage battery cells 102 are connected in series. Are connected in series and have a nominal voltage of 60V and a rated capacity of 50Ah for 3 hours. This series circuit has a configuration in which 30 cells 102 are connected in series. Note that, in both the inventive example and the comparative example, the 12 hour series circuit 103 of the assembled battery is substantially connected in parallel, so that the three-hour rate rated capacity is 600 Ah.

(定電圧充電装置)
次に、比較例に用いた定電圧充電装置の仕様は、充電電圧2.40V/セル、最大充電電流30A/直列回路である。なお、「30A/直列回路」とは、最大充電電流を直列回路数で割った、1直列回路当りの最大充電電流を意味する。なお、この表現は、後述する5段充電電流装置の説明においても同様である。
(Constant voltage charger)
Next, the specifications of the constant voltage charging device used in the comparative example are a charging voltage of 2.40 V / cell and a maximum charging current of 30 A / series circuit. “30 A / series circuit” means the maximum charging current per series circuit obtained by dividing the maximum charging current by the number of series circuits. This expression is the same in the description of the five-stage charging current device described later.

(5段定電流充電装置)
本発明例および比較例に用いた5段定電流充電装置の仕様は、制御電圧VR=2.40V/セルで、充電電流を以下の5段階で切り替える方式である。すなわち、1段目充電電流=40A/直列回路、2段目充電=30A/直列回路、3段目充電電流=0.20A/直列回路、4段目充電電流=10A/直列回路、5段目充電電流=5A/直列回路である。なお、5段目充電において、直列回路の電圧が2.65V/セルとなった時点で充電完了とした。なお、充電電流は直列回路当りの表現を用いており、例えば、3個の直列回路が並列接続された並列回路を充電する場合、各段の充電電流は、上記の各3倍でなる。すなわち、接続する直列回路の並列接続数倍に相当することになる。
(5-stage constant current charger)
The specification of the five-stage constant current charging device used in the present invention example and the comparative example is a system in which the control voltage VR = 2.40 V / cell and the charging current is switched in the following five stages. That is, first stage charging current = 40 A / series circuit, second stage charging = 30 A / series circuit, third stage charging current = 0.20 A / series circuit, fourth stage charging current = 10 A / series circuit, fifth stage Charging current = 5 A / series circuit. In the fifth stage charging, the charging was completed when the voltage of the series circuit reached 2.65 V / cell. Note that the charging current uses an expression per series circuit. For example, when charging a parallel circuit in which three series circuits are connected in parallel, the charging current at each stage is three times the above. That is, it corresponds to the number of parallel connections of the series circuit to be connected.

(本発明例A1)
本発明例A1は、第1の実施形態によるものであり、電源システム101の組電池104を0.3CA(180A)で1.70V/セルまで放電した後、前記した5段定電流充電装置で充電完了となるまで充電し、これら放電と充電とを繰り返して行うことにより、組電池104のサイクル寿命試験を行なったものである。0.3CA(180A)放電における放電持続時間が初期の50%に低下した時点を寿命サイクル数とした。
(Invention Sample A1)
Invention Example A1 is according to the first embodiment. After discharging the assembled battery 104 of the power supply system 101 to 1.70 V / cell at 0.3 CA (180 A), the above-described five-stage constant current charging device is used. A cycle life test of the assembled battery 104 was performed by charging until the charging was completed and repeating the discharging and charging. The time when the discharge duration in 0.3 CA (180 A) discharge was reduced to 50% of the initial value was defined as the number of life cycles.

なお、本発明例A1においては、組電池104は、12個の直列回路103が並列接続され、それぞれの直列回路103に5段定電流充電装置(充電装置105)が接続された構成である。   In the invention sample A1, the assembled battery 104 has a configuration in which twelve series circuits 103 are connected in parallel, and a five-stage constant current charging device (charging device 105) is connected to each series circuit 103.

(本発明例A2)
本発明例A2は、第2の実施形態によるものであり、電源システム201の組電池202を0.3CA(180A)で1.70V/セルまで放電した後、前記した5段定電流充電装置で充電完了となるまで充電し、これら放電と充電とを繰り返して行うことにより、組電池202のサイクル寿命試験を行なったものである。0.3CA(180A)放電における放電持続時間が初期の50%に低下した時点を寿命サイクル数とした。
(Invention Sample A2)
Invention Example A2 is according to the second embodiment. After discharging the assembled battery 202 of the power supply system 201 to 1.70 V / cell at 0.3 CA (180 A), the above-described 5-stage constant current charging device is used. A cycle life test of the assembled battery 202 was performed by charging until the charging was completed and repeating the discharging and charging. The time when the discharge duration in 0.3 CA (180 A) discharge was reduced to 50% of the initial value was defined as the number of life cycles.

なお、本発明例A2においては、組電池202は、2個の直列回路103が並列接続された並列回路204の6個が並列接続され、それぞれの並列回路204に5段定電流充電装置(充電装置203)が接続された構成である。   In the present invention example A2, the assembled battery 202 includes six parallel circuits 204 in which two series circuits 103 are connected in parallel, and each parallel circuit 204 is connected to a five-stage constant current charging device (charging). The apparatus 203) is connected.

(本発明例A3)
本発明例A3は、第2の実施形態によるものであり、電源システム301の組電池302を0.3CA(180A)で1.70V/セルまで放電した後、前記した5段定電流充電装置で充電完了となるまで充電し、これら放電と充電とを繰り返して行うことにより、組電池302のサイクル寿命試験を行なったものである。0.3CA(180A)放電における放電持続時間が初期の50%に低下した時点を寿命サイクル数とした。
(Invention Sample A3)
Invention Example A3 is according to the second embodiment. After discharging the assembled battery 302 of the power supply system 301 to 1.70 V / cell at 0.3 CA (180 A), the above-described 5-stage constant current charging device is used. A cycle life test of the assembled battery 302 was performed by charging until the charging was completed and repeating the discharging and charging. The time when the discharge duration in 0.3 CA (180 A) discharge was reduced to 50% of the initial value was defined as the number of life cycles.

なお、本発明例A3においては、組電池302は、3個の直列回路103が並列接続された並列回路304の4個が並列接続され、それぞれの並列回路304に5段定電流充電装置(充電装置303)が接続された構成である。   In Example A3 of the present invention, the assembled battery 302 includes four parallel circuits 304 in which three series circuits 103 are connected in parallel, and each parallel circuit 304 is connected to a five-stage constant current charging device (charging). The device 303) is connected.

(比較例A4)
比較例A4は、電源システム301において、並列回路304が3個の直列回路で構成されるところ、4個の直列回路を並列接続して並列回路a4(図示せず)とし、この並列回路a4の3個を並列接続して組電池A4を構成したものである。なお、並列回路a4のそれぞれに5段定電流充電装置が接続されている。
(Comparative Example A4)
In the comparative example A4, in the power supply system 301, the parallel circuit 304 is configured by three series circuits, and the four series circuits are connected in parallel to form a parallel circuit a4 (not shown). The assembled battery A4 is configured by connecting three in parallel. A five-stage constant current charging device is connected to each of the parallel circuits a4.

組電池A4を0.3CA(180A)で1.70V/セルまで放電した後、前記した5段定電流充電装置で充電完了となるまで充電し、これら放電と充電とを繰り返して行うことにより、組電池A4のサイクル寿命試験を行なったものである。0.3CA(180A)放電における放電持続時間が初期の50%に低下した時点を寿命サイクル数とした。   After discharging the assembled battery A4 to 1.70 V / cell at 0.3 CA (180 A), charging it with the above-described 5-stage constant current charging device until charging is completed, and repeating these discharging and charging, The cycle life test of the assembled battery A4 was performed. The time when the discharge duration in 0.3 CA (180 A) discharge was reduced to 50% of the initial value was defined as the number of life cycles.

(比較例A5)
比較例A5は、電源システム301において、並列回路304が3個の直列回路で構成されるところ、6個の直列回路を並列接続して並列回路a5(図示せず)とし、この並列回路a5の2個を並列接続して組電池A5を構成したものである。なお、並列回路A5のそれぞれに5段定電流充電装置が接続されている。
(Comparative Example A5)
In the comparative example A5, in the power supply system 301, the parallel circuit 304 is constituted by three series circuits. The six series circuits are connected in parallel to form a parallel circuit a5 (not shown). The battery pack A5 is configured by connecting two in parallel. A 5-stage constant current charging device is connected to each of the parallel circuits A5.

組電池A5を0.3CA(180A)で1.70V/セルまで放電した後、前記した5段定電流充電装置で充電完了となるまで充電し、これら放電と充電とを繰り返して行うことにより、組電池A4のサイクル寿命試験を行なったものである。0.3CA(180A)放電における放電持続時間が初期の50%に低下した時点を寿命サイクル数とした。   After discharging the assembled battery A5 to 1.70 V / cell at 0.3 CA (180 A), charging it with the above-described 5-stage constant current charging device until charging is completed, and repeating these discharging and charging, The cycle life test of the assembled battery A4 was performed. The time when the discharge duration in 0.3 CA (180 A) discharge was reduced to 50% of the initial value was defined as the number of life cycles.

(比較例A6)
比較例A6は、12個の直列回路を並列接続して組電池A6を構成したものであり、組電池A6の端子間に5段定電流充電装置が接続されている。
(Comparative Example A6)
In Comparative Example A6, a battery pack A6 is configured by connecting 12 series circuits in parallel, and a five-stage constant current charging device is connected between terminals of the battery pack A6.

(比較例B1)
比較例B1は、本発明例A1で用いた充電装置105に替えて定電圧充電装置を接続したものである。なお、充電時間は8時間である。
(Comparative Example B1)
In Comparative Example B1, a constant voltage charging device is connected instead of the charging device 105 used in Invention Example A1. The charging time is 8 hours.

(比較例B2)
比較例B2は、本発明例A2で用いた充電装置203に替えて定電圧充電装置を接続したものである。なお、充電時間は8時間である。
(Comparative Example B2)
In Comparative Example B2, a constant voltage charging device is connected instead of the charging device 203 used in Invention Example A2. The charging time is 8 hours.

(比較例B3)
比較例B3は、本発明例A3で用いた充電装置303に替えて定電圧充電装置を接続したものである。なお、充電時間は8時間である。
(Comparative Example B3)
In Comparative Example B3, a constant voltage charging device is connected instead of the charging device 303 used in Invention Example A3. The charging time is 8 hours.

(比較例B4)
比較例B4は、比較例A4で用いた5段定電流充電装置に替えて定電圧充電装置を接続したものである。なお、充電時間は8時間である。
(Comparative Example B4)
In Comparative Example B4, a constant voltage charging device is connected instead of the five-stage constant current charging device used in Comparative Example A4. The charging time is 8 hours.

(比較例B5)
比較例B5は、比較例A5で用いた5段定電流充電装置に替えて定電圧充電装置を接続したものである。なお、充電時間は8時間である。
(Comparative Example B5)
In Comparative Example B5, a constant voltage charging device is connected instead of the five-stage constant current charging device used in Comparative Example A5. The charging time is 8 hours.

(比較例B6)
比較例B6は、比較例A6で用いた5段定電流充電装置に替えて定電圧充電装置を接続したものである。なお、充電時間は8時間である。
(Comparative Example B6)
In Comparative Example B6, a constant voltage charging device is connected instead of the five-stage constant current charging device used in Comparative Example A6. The charging time is 8 hours.

(比較例C1)
比較例C1は、比較例B1の充電時間を8時間から24時間としたものである。
(Comparative Example C1)
In Comparative Example C1, the charging time of Comparative Example B1 was changed from 8 hours to 24 hours.

(比較例C2)
比較例C2は、比較例B2の充電時間を8時間から24時間としたものである。
(Comparative Example C2)
In Comparative Example C2, the charging time of Comparative Example B2 is changed from 8 hours to 24 hours.

(比較例C3)
比較例C3は、比較例B3の充電時間を8時間から24時間としたものである。
(Comparative Example C3)
In Comparative Example C3, the charging time of Comparative Example B3 was changed from 8 hours to 24 hours.

(比較例C4)
比較例C4は、比較例B4の充電時間を8時間から24時間としたものである。
(Comparative Example C4)
In Comparative Example C4, the charging time of Comparative Example B4 was changed from 8 hours to 24 hours.

(比較例C5)
比較例C5は、比較例B5の充電時間を8時間から24時間としたものである。
(Comparative Example C5)
In Comparative Example C5, the charging time of Comparative Example B5 was changed from 8 hours to 24 hours.

(比較例C6)
比較例C6は、比較例B5の充電時間を8時間から24時間としたものである。
(Comparative Example C6)
In Comparative Example C6, the charging time of Comparative Example B5 was changed from 8 hours to 24 hours.

上記した本発明例および比較例における、充電装置あたりの直列回路数と、充電方式および充電時間とサイクル寿命試験との関係を表1に示す。   Table 1 shows the number of series circuits per charging device, the charging method, the charging time, and the cycle life test in the above-described examples of the present invention and comparative examples.

Figure 2010160955
Figure 2010160955

表1に示した結果から、定電圧充電で24時間の長時間充電を行う場合、充電装置あたりの直列回路数(一つの充電装置に接続される直列回路の数、この数が1を除き、直列回路は互いに並列接続されている。)が多くなるにつれてサイクル寿命数は低下するものの、その低下の度合いは、定電圧充電で充電時間を8時間とした場合よりも緩和されている。   From the results shown in Table 1, when performing charging for 24 hours with constant voltage charging, the number of series circuits per charging device (the number of series circuits connected to one charging device, except for this number being 1, The series circuits are connected in parallel to each other.) As the number of cycles increases, the number of cycle lives decreases. However, the degree of decrease is less than when the charging time is 8 hours in constant voltage charging.

このことは、充電電流が連続的に減衰する定電圧充電方式では、充電時間を長くし、充電電流が0.001CA〜0.005CAのトリクル電流といわれる領域までに低下させれば、充電装置あたりの直列回路数の増加によるサイクル寿命の低下をある程度まで抑制できることを示している。なお、8時間の定電圧充電時における充電末期電流の直列回路間の平均値は、1直列回路あたり0.02CAである一方、24時間充電の場合のそれは0.005CAであった。   This is because, in the constant voltage charging method in which the charging current is continuously attenuated, if the charging time is lengthened and the charging current is reduced to a region called a trickle current of 0.001 CA to 0.005 CA, It is shown that a decrease in cycle life due to an increase in the number of series circuits can be suppressed to some extent. In addition, the average value between the series circuits of the end-of-charge current at the time of constant voltage charging for 8 hours was 0.02 CA per one series circuit, while that for 24 hours charging was 0.005 CA.

一方、5段定電流充電を用いた場合、一つの充電装置に接続される直列回路の数(この数が1を除き、直列回路は互いに並列接続されている。)が3以下の場合には、定電圧充電を用いた場合よりも充電時間が短時間であり、組電池のサイクル寿命は極めて良好である。   On the other hand, when five-stage constant current charging is used, when the number of series circuits connected to one charging device (the number of series circuits is connected to each other except 1) is 3 or less. The charging time is shorter than when constant voltage charging is used, and the cycle life of the assembled battery is extremely good.

一方、充電装置あたりの直列回路数が3を超え、4以上となると、組電池の寿命特性は急激に低下することがわかる。このような現象は、定電圧充電直列回路間の充電状態のばらつきが充放電サイクルとともに拡大し、直列回路の一つが極端に過充電されたり、あるいは過放電を受けることによって生じていた。   On the other hand, when the number of series circuits per charging device exceeds 3 and becomes 4 or more, it can be seen that the life characteristics of the assembled battery are drastically lowered. Such a phenomenon is caused by the fact that the variation in the state of charge between the constant voltage charge series circuits increases with the charge / discharge cycle, and one of the series circuits is extremely overcharged or overdischarged.

このような、充電装置あたりの直列回路数の増加に伴うサイクル寿命の低下は、定電圧充電を用いた場合にも現れるが、5段定電流充電の場合にはその度合いは極めて顕著であり、定電圧充電では、充電時間を長くすることによって、このような現象は緩和されることから、このような現象は、特に5段定電流充電に顕著に発生するものであることがわかる。   Such a decrease in cycle life accompanying an increase in the number of series circuits per charging device also appears when constant voltage charging is used, but in the case of five-stage constant current charging, the degree is extremely significant. In constant voltage charging, such a phenomenon is alleviated by extending the charging time, so that it can be seen that such a phenomenon is particularly noticeable in 5-stage constant current charging.

したがって、組電池の容量を確保する目的で、4以上の直列回路を並列接続して組電池を構成する場合であり、かつ、充電時間の短縮化の目的で、n段定電流充電を行なう場合には、充電装置あたりの直列回路を、少なくとも3以下とし、最も好ましくは1、すなわち、直列回路毎に充電装置を設ける。   Therefore, in order to secure the capacity of the assembled battery, it is a case where the assembled battery is configured by connecting four or more series circuits in parallel, and for the purpose of shortening the charging time, n-stage constant current charging is performed. The number of series circuits per charging device is at least 3 or less, most preferably 1, that is, a charging device is provided for each series circuit.

上記したように、本発明の構成によれば、直列回路の4以上が並列接続された組電池を短時間で充電可能であり、組電池のサイクル寿命特性を極めて顕著に改善された充電方法を提供できる。   As described above, according to the configuration of the present invention, it is possible to charge an assembled battery in which four or more of the series circuits are connected in parallel in a short time, and a charging method that significantly improves the cycle life characteristics of the assembled battery. Can be provided.

なお、本実施例においては、n段定電流充電の例として、n=5とした例を述べたが、実施の形態でも述べたように、n≧2とした場合においても、本実施例と同様の効果が得られる。これは、1段目の充電電流値I1と最終段目の充電電流値Ixとが決まれば、I1〜Ixの間を任意の段数nで分割できることは自明であることによる。   In this example, as an example of n-stage constant current charging, an example in which n = 5 is described. However, as described in the embodiment, even when n ≧ 2, Similar effects can be obtained. This is because, if the charging current value I1 of the first stage and the charging current value Ix of the final stage are determined, it is obvious that the range between I1 and Ix can be divided by an arbitrary number n.

また、本実施例においては、最終段、すなわち5段目の充電停止の制御として、5段目の充電電圧が制御電圧VRより高い、2.65Vとなった時点で充電停止とした例を示したが、この最終段である、5段目の充電電気量を、1段目の充電電気量に応じて制御する、すなわち、これは1段目の充電電気量が増大するにつれてn段目の充電電気量を、n段目の定電流充電における充電時間をより長くすることにより増加させる制御を行なうことにより、実施例よりも顕著な効果を奏した。   In the present embodiment, an example is shown in which charging is stopped when the charging voltage at the fifth stage is 2.65 V, which is higher than the control voltage VR, as control for stopping charging at the final stage, that is, the fifth stage. However, the amount of charge electricity at the fifth stage, which is the final stage, is controlled according to the amount of charge electricity at the first stage. That is, as the amount of charge electricity at the first stage increases, By performing control to increase the amount of charged electricity by increasing the charging time in the n-th constant current charging, a remarkable effect was obtained compared to the example.

すなわち、本発明例A1において、サイクル寿命回数が実施例の440サイクルから480サイクル、本発明例A2において、サイクル寿命回数が、実施例の380サイクルから440サイクル、本発明例A3において、サイクル寿命回数が、実施例の360サイクルから、400サイクルに改善する一方で、比較例A4〜A6のサイクル寿命回数は、それぞれ140サイクル、100サイクルおよび60サイクルから、120サイクル、90サイクル、および55サイクルと若干の低下が認められた。   That is, in the present invention example A1, the cycle life number is from 440 cycles to 480 cycles in the embodiment, in the present invention example A2, the cycle life number is from 380 cycles to 440 cycles in the embodiment, and in the present invention example A3, the cycle life number. However, the cycle life of Comparative Examples A4 to A6 was slightly increased from 140 cycles, 100 cycles, and 60 cycles to 120 cycles, 90 cycles, and 55 cycles, respectively. Decrease was observed.

本発明は、電動車両等、特に、サイクル用途に用いられる組電池の充電方法として好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable as a method for charging an assembled battery used for an electric vehicle or the like, particularly for cycle use.

第1の実施形態による充電方法を適用する電源システムの構成を示す図The figure which shows the structure of the power supply system to which the charging method by 1st Embodiment is applied. n段定電流充電における電圧―電流の時間変化を示す図The figure which shows the time change of voltage-current in n stage constant current charge 定電圧充電における電圧−電流の時間変化を示す図The figure which shows the time change of the voltage-current in constant voltage charge 第2の実施形態による充電方法を適用する電源システムの構成を示す図The figure which shows the structure of the power supply system to which the charging method by 2nd Embodiment is applied. 他の第2の実施形態による充電方法を適用する電源システムの構成を示す図The figure which shows the structure of the power supply system to which the charging method by other 2nd Embodiment is applied.

101 電源システム
102 セル
103 直列回路
104 組電池
105 充電装置
106 負荷
107a、107b ダイオード
108 端子
201 電源システム
202 組電池
203 充電装置
204 並列回路
301 電源システム
302 組電池
303 充電装置
304 並列回路
DESCRIPTION OF SYMBOLS 101 Power supply system 102 Cell 103 Series circuit 104 Battery assembly 105 Charging device 106 Load 107a, 107b Diode 108 Terminal 201 Power supply system 202 Battery assembly 203 Charging device 204 Parallel circuit 301 Power supply system 302 Battery assembly 303 Charging device 304 Parallel circuit

Claims (3)

複数個の鉛蓄電池を直列に接続した直列回路を並列に接続して負荷に給電する組電池の充電方法であって、
前記直列回路毎に充電装置を接続し、
前記充電装置は、前記直列回路の充電電圧を検出して、前記充電電圧が所定の制御電圧値に到達した時点で、充電電流値をn(但し、n≧2である整数)段に、段階的に低下させるn段定電流充電を行うとともに、
かつ、前記組電池の前記負荷への給電時に、前記組電池は少なくとも4以上の前記直列回路が並列接続されてなる組電池の充電方法。
A method for charging an assembled battery in which a series circuit in which a plurality of lead storage batteries are connected in series is connected in parallel to supply power to a load,
Connect a charging device for each series circuit,
The charging device detects a charging voltage of the series circuit, and when the charging voltage reaches a predetermined control voltage value, sets the charging current value to n (where n ≧ 2 is an integer) stage. N-stage constant current charging,
And at the time of electric power feeding to the said load of the said assembled battery, the said assembled battery is a charging method of the assembled battery by which at least 4 or more said series circuits are connected in parallel.
複数個の鉛蓄電池を直列に接続した直列回路を並列に接続して負荷に給電する組電池の充電方法であって、
前記組電池の前記負荷への給電時において、前記組電池は少なくとも4以上の前記直列回路が並列接続されてなり、
かつ、前記組電池は、前記直列回路の2もしくは3が並列に接続した並列回路の2以上を並列接続してなり、
前記並列回路毎に充電装置を接続し、
前記充電装置は、前記並列回路の充電電圧を検出して、前記充電電圧が所定の制御電圧値に到達した時点で、充電電流値をn(但し、n≧2である整数)回、段階的に低下させるn段定電流充電を行うことを特徴とする組電池の充電方法。
A method for charging an assembled battery in which a series circuit in which a plurality of lead storage batteries are connected in series is connected in parallel to supply power to a load,
At the time of feeding power to the load of the assembled battery, the assembled battery is formed by connecting at least four or more series circuits in parallel,
And the assembled battery is formed by connecting two or more parallel circuits in which two or three of the series circuits are connected in parallel,
Connect a charging device for each parallel circuit,
The charging device detects the charging voltage of the parallel circuit, and at the time when the charging voltage reaches a predetermined control voltage value, the charging current value is set to n (where n ≧ 2) times stepwise. A method for charging an assembled battery, characterized in that n-stage constant current charging is performed.
前記組電池の放電電気量に一定の係数を乗じることによって必要充電電気量を設定し、1段目の充電を第1定電流で行い、n段目の第n定電流における充電時間を1段目の充電で要した充電時間と1段目充電時における前記鉛蓄電池の電槽の温度を基準として設定制御し、1段目からn−1段目の充電による充電電気量の不足分を補うことを特徴とする、請求項1もしくは2に記載の組電池の充電方法。 The required charge electricity amount is set by multiplying the discharge electricity amount of the assembled battery by a certain coefficient, the first stage charging is performed at the first constant current, and the charging time at the nth stage n constant current is one stage. Setting control is performed based on the charging time required for the first charging and the temperature of the battery tank of the lead storage battery at the first charging, and the shortage of charging electricity due to the charging from the first to the (n-1) th charging is compensated. The method for charging an assembled battery according to claim 1, wherein the battery pack is charged.
JP2009002297A 2009-01-08 2009-01-08 Method of charging battery pack Withdrawn JP2010160955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002297A JP2010160955A (en) 2009-01-08 2009-01-08 Method of charging battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002297A JP2010160955A (en) 2009-01-08 2009-01-08 Method of charging battery pack

Publications (1)

Publication Number Publication Date
JP2010160955A true JP2010160955A (en) 2010-07-22

Family

ID=42577982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002297A Withdrawn JP2010160955A (en) 2009-01-08 2009-01-08 Method of charging battery pack

Country Status (1)

Country Link
JP (1) JP2010160955A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029394A (en) * 2010-05-03 2012-02-09 Ememory Technology Inc Smart battery device, method for charging battery pack thereof, and method for approximating attf therein
WO2013073175A1 (en) * 2011-11-17 2013-05-23 パナソニック株式会社 Assembled battery charging method, charging control circuit, and power supply system
JP2013172551A (en) * 2012-02-21 2013-09-02 Ntt Facilities Inc Battery pack charge system and battery pack charge method
US9054551B2 (en) 2011-12-01 2015-06-09 Samsung Sdi Co., Ltd. Battery charging method and battery pack using the same
US20210013722A1 (en) * 2019-01-16 2021-01-14 Lg Chem, Ltd. Secondary battery charging method that shortens charging time
CN113224470A (en) * 2020-02-05 2021-08-06 大有能源科技有限公司 Power supply battery of electric vehicle
WO2023238712A1 (en) * 2022-06-06 2023-12-14 エナジーウィズ株式会社 Battery pack charging method and power storage system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029394A (en) * 2010-05-03 2012-02-09 Ememory Technology Inc Smart battery device, method for charging battery pack thereof, and method for approximating attf therein
WO2013073175A1 (en) * 2011-11-17 2013-05-23 パナソニック株式会社 Assembled battery charging method, charging control circuit, and power supply system
JP5250727B1 (en) * 2011-11-17 2013-07-31 パナソニック株式会社 Battery charge method, charge control circuit and power supply system
US9035614B2 (en) 2011-11-17 2015-05-19 Panasonic Intellectual Property Management Co., Ltd. Assembled battery charging method, charging control circuit, and power supply system
US9054551B2 (en) 2011-12-01 2015-06-09 Samsung Sdi Co., Ltd. Battery charging method and battery pack using the same
JP2013172551A (en) * 2012-02-21 2013-09-02 Ntt Facilities Inc Battery pack charge system and battery pack charge method
US20210013722A1 (en) * 2019-01-16 2021-01-14 Lg Chem, Ltd. Secondary battery charging method that shortens charging time
US11929630B2 (en) * 2019-01-16 2024-03-12 Lg Energy Solution, Ltd. Secondary battery charging method that shortens charging time
CN113224470A (en) * 2020-02-05 2021-08-06 大有能源科技有限公司 Power supply battery of electric vehicle
WO2023238712A1 (en) * 2022-06-06 2023-12-14 エナジーウィズ株式会社 Battery pack charging method and power storage system

Similar Documents

Publication Publication Date Title
JP5502282B2 (en) How to charge the battery pack
JP6102746B2 (en) Storage battery device and charge control method
US20130187465A1 (en) Power management system
JP2010160955A (en) Method of charging battery pack
JP7337061B2 (en) battery management
Wong et al. Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation
JP2018074633A (en) Lead-acid storage battery device, uninterruptible power supply device, power supply system, lead-acid storage battery control device, and control method for lead-acid storage battery
JP6614010B2 (en) Battery system
JP6965770B2 (en) Lead-acid battery control device, lead-acid battery device, uninterruptible power supply, power supply system, and charge control method
US11316352B2 (en) Battery management
WO2019089824A1 (en) Battery charging method
Hurley et al. Self-equalization of cell voltages to prolong the life of VRLA batteries in standby applications
JP2011160635A (en) Storage battery charging method and photovoltaic power generation system
CN110867922B (en) Pulse charging method for pulling high voltage in floating charging stage and power supply charger
CN107453452B (en) Multi-cell series lithium battery based on load switch
JP5295869B2 (en) Alkaline storage battery module and battery deterioration judgment method
JP7213442B2 (en) Operation control method for lead-acid battery and micro-capacity charging device
JP2013055758A (en) Electrical power system and charging method for battery pack
JP6112255B1 (en) Lead storage battery device, uninterruptible power supply, power supply system, lead storage battery control device, lead storage battery charging method
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP4334507B2 (en) Power storage device and lead storage battery charge control method
JP6519793B2 (en) Method of charging control valve type lead storage battery
JP2017147803A (en) Storage battery control device
Wong et al. Temperature compensation algorithm for interrupted charge control regime for a VRLA battery in standby applications
Ramírez et al. Study of the Lead-Acid Battery Lifetime By Combining Electrochemical and Electrical Models

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121011