JP4827452B2 - Method for producing lead-acid battery - Google Patents

Method for producing lead-acid battery Download PDF

Info

Publication number
JP4827452B2
JP4827452B2 JP2005211615A JP2005211615A JP4827452B2 JP 4827452 B2 JP4827452 B2 JP 4827452B2 JP 2005211615 A JP2005211615 A JP 2005211615A JP 2005211615 A JP2005211615 A JP 2005211615A JP 4827452 B2 JP4827452 B2 JP 4827452B2
Authority
JP
Japan
Prior art keywords
discharge
lead
battery
negative electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005211615A
Other languages
Japanese (ja)
Other versions
JP2007027057A (en
Inventor
優 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005211615A priority Critical patent/JP4827452B2/en
Publication of JP2007027057A publication Critical patent/JP2007027057A/en
Application granted granted Critical
Publication of JP4827452B2 publication Critical patent/JP4827452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、鉛蓄電池特に制御弁式鉛蓄電池の製造方法に関するものである。   The present invention relates to a method for producing a lead storage battery, particularly a control valve type lead storage battery.

制御弁式鉛蓄電池は、未化成の極板を電槽内に収納して化成する電槽化成により製造される場合と、極板を専用の化成槽内で化成する即用化成により得た極板を電槽内収納し、その後初充電等実施して製造される場合がある。
即用化成により得た極板を用いる場合は、正負極板を個別に化成し得充分な化成を施し得ることや、蓄電池内に注液する電解液量の調整が容易なことから用いられる方法である。
Control valve-type lead-acid batteries are manufactured by battery formation in which an unformed electrode plate is housed in a battery case, and electrodes obtained by immediate chemical conversion in which a plate is formed in a dedicated conversion tank. In some cases, the plate is housed in the battery case and then charged for the first time.
When using electrode plates obtained by immediate chemical conversion, the positive and negative electrode plates can be individually formed and sufficient chemical conversion can be performed, and the method used because the amount of electrolyte to be injected into the storage battery can be easily adjusted It is.

一方、無停電電源システム(以下UPS)などのスタンバイユース(商用電源が停電した際の非常用に用いる為に、常時は使用されず待機している用いられ方)に使用される制御弁式鉛蓄電池は、蓄電池の自己放電を補い常時満充電状態に保つため常に定電圧によりフロート充電された状態となっている。そしてスタンバイユースでフロート充電された場合の制御弁式鉛蓄電池の寿命は、一般的に正極集電格子の腐食による導電性低下、腐食膨張による活物質と集電格子の密着性低下、電槽からの透湿による電解液減少のための内部抵抗の増大などが主な原因である。 On the other hand, control valve type lead used for standby use such as uninterruptible power supply system (hereinafter referred to as UPS) (how to use it for emergency use when commercial power supply fails) The storage battery is always in a state of being float-charged with a constant voltage in order to compensate for the self-discharge of the storage battery and keep the battery fully charged at all times. The life of a control valve type lead-acid battery when it is float-charged for standby use is generally reduced in conductivity due to corrosion of the positive electrode current collector grid, reduced adhesion between the active material and current collector grid due to corrosion expansion, The main cause is an increase in internal resistance due to a decrease in electrolyte due to moisture permeation.

フロート充電は自己放電を補うために実施されているが、実質的に鉛蓄電池には自己放電分以上の電流が流されるため、正極集電格子の腐食および水分解が促進され、発生した酸素ガス量が増加して負極での再結合反応に伴う蓄電池温度の上昇を招き、このためフロート電流が更に増大するという悪循環に陥り、著しい場合には電池が短期間に熱逸走を起こし、結果的に電池寿命に重大な悪影響を与えてしまう。 Float charging is carried out to compensate for self-discharge. However, since a current exceeding the self-discharge amount flows in the lead storage battery, corrosion and water decomposition of the positive electrode current collection grid are promoted, and the generated oxygen gas As the amount increases, the battery temperature rises due to the recombination reaction at the negative electrode, resulting in a vicious circle in which the float current further increases. It will have a serious adverse effect on battery life.

制御弁式鉛蓄電池はフロート充電を含む充電中に正極から発生した酸素の大部分は負極で吸収され酸化鉛となる。その後、酸化鉛は電解液である硫酸と反応して硫酸鉛に変化する。この硫酸鉛は充電されて鉛に戻る。従って、正極からの酸素の発生量が多く、負極板への吸収量が増加すると、硫酸鉛を還元するために多くのフロート電流が流れる。   In the control valve type lead-acid battery, most of the oxygen generated from the positive electrode during charging including float charging is absorbed by the negative electrode to become lead oxide. Thereafter, lead oxide reacts with sulfuric acid, which is an electrolytic solution, and changes to lead sulfate. This lead sulfate is charged and returns to lead. Therefore, when the amount of oxygen generated from the positive electrode is large and the amount absorbed by the negative electrode plate is increased, a large amount of float current flows to reduce lead sulfate.

フロート電流を低減し、寿命特性を改善するために、負極細孔容積の制御(特許文献1)、官能基を限定したリグニンの負極活物質への添加(特許文献2)などが実施されている。これらは充電中の負極過電圧を大きくすることで、正極過電圧が減少して正極からの酸素発生が抑制され、負極への酸素吸収を少なくしてフロート電流を抑えることを目的としている。
特開平09-199115号公報 特開2002-117856号公報
In order to reduce the float current and improve the life characteristics, control of the negative electrode pore volume (Patent Document 1), addition of lignin with a limited functional group to the negative electrode active material (Patent Document 2), and the like have been implemented. . The purpose of these is to increase the negative electrode overvoltage during charging, thereby reducing the positive electrode overvoltage and suppressing the generation of oxygen from the positive electrode, reducing oxygen absorption into the negative electrode and suppressing the float current.
JP 09-199115 A JP 2002-117856 JP

近年、UPS等のスタンバイユースの制御弁式鉛蓄電池には25℃環境で10年以上の長寿命の要求が多く、更なる改良が望まれている。上記特許文献以外にも寿命特性の改善のために腐食減量を考慮した正極集電格子の鉛量の増量なども実施されているが、これはエネルギー密度の観点から好ましくない。 In recent years, control valve-type lead-acid batteries for standby use such as UPS have a long life requirement of 10 years or more in a 25 ° C. environment, and further improvements are desired. In addition to the above-mentioned patent documents, an increase in the amount of lead in the positive electrode current collector grid taking into account the weight loss due to corrosion has been implemented in order to improve the life characteristics, but this is not preferable from the viewpoint of energy density.

正極集電格子の鉛量を低く維持しながら、UPS等に要求される10年以上の長寿命を達成するためには、更なるフロート電流の低減が必要となる。 In order to achieve the long life of 10 years or more required for UPS or the like while maintaining the lead amount of the positive electrode current collecting grid low, it is necessary to further reduce the float current.

上記課題を解決するため、即用化成した正、負極板を用いて組み立てた蓄電池について、注液後の初回の放電と初充電の工程および、その後の活性化のための充放電の工程の少なくとも何れか一方の工程を周囲温度40℃以上とし、またいずれの場合も放電深度は50%以上とする方法を提供する。 In order to solve the above-described problems, at least a step of initial discharge and initial charge after injection and a step of charge and discharge for subsequent activation for a storage battery assembled using positively and negatively electrode plates formed immediately Provided is a method in which any one of the steps is performed at an ambient temperature of 40 ° C. or higher, and in either case, the depth of discharge is 50% or higher.

(作用)
本発明の方法によれば、初回の放電と初充電あるいはその後の活性化の充放電のいずれかを高温で行い、放電深度を大きくすることにより、負極での放電生成物である硫酸鉛の溶解量と拡散量が増大する。また放電後にも同一温度で充電することにより負極活物質である金属鉛の表面積が縮小する。この度合いは電池温度が高いほど、または放電深度が深いほど顕著に現れる。
(Function)
According to the method of the present invention, the first discharge and the first charge or the subsequent activation charge / discharge are performed at a high temperature, and by increasing the depth of discharge, dissolution of lead sulfate as a discharge product at the negative electrode is performed. The amount and the amount of diffusion increase. Moreover, the surface area of the metallic lead, which is the negative electrode active material, is reduced by charging at the same temperature after discharging. This degree becomes more conspicuous as the battery temperature is higher or the discharge depth is deeper.

負極活物質の表面積が減少することによりフロート充電時の負極過電圧が増大するので、フロート電流を小さくすることができる。 Since the negative electrode overvoltage at the time of float charge increases by reducing the surface area of the negative electrode active material, the float current can be reduced.

初充電とは放電後に最初に入れる充電のことで、放電に対する充電と、化成工程で発生した極板内のごく少量の未化成部分を充電することを目的としている。 The initial charge is the first charge after discharge, and is intended to charge against discharge and to charge a very small amount of unformed part in the electrode plate generated in the chemical conversion process.

活性化充放電とは放電、初充電後に電池特性の更なる安定化、向上を得る目的で適用している充放電である。 Activation charging / discharging is charging / discharging applied for the purpose of obtaining further stabilization and improvement of battery characteristics after discharging and initial charging.

本発明では放電深度を50%以上としたが、低率放電においては放電深度が98%を越えると硫酸鉛の溶解度が急上昇することによる負極デンドライト発生の危険も高まるため、通常は放電深度50から80%の範囲が望ましい。 In the present invention, the depth of discharge is set to 50% or more. However, in low rate discharge, if the depth of discharge exceeds 98%, the risk of negative electrode dendrite generation due to the rapid increase in the solubility of lead sulfate increases. A range of 80% is desirable.

また、充電は注液後に格子界面の密着性を確保する目的にも実施される。 Charging is also performed for the purpose of ensuring adhesion at the lattice interface after the injection.

以上のとおり、本発明によれば、鉛蓄電池の注液後の放電、初充電時あるいは、その後の活性化充放電時のいずれか一方の周囲温度を40℃以上、放電深度を50%以上とすることで、負極活物質の結晶成長が促進され、負極の比表面積が減少して充電時に負極過電圧が上昇するため、正極の過電圧が低下し、酸素の発生が抑制されてフロート電流が減少するという効果が得られる。   As described above, according to the present invention, the discharge temperature after injection of the lead-acid battery, the initial charge, or the subsequent activation charge / discharge, the ambient temperature is 40 ° C. or higher and the discharge depth is 50% or higher. As a result, the crystal growth of the negative electrode active material is promoted, the specific surface area of the negative electrode is reduced, and the negative electrode overvoltage is increased during charging. Therefore, the overvoltage of the positive electrode is reduced, the generation of oxygen is suppressed, and the float current is reduced. The effect is obtained.

このため、電池の熱逸走が防止でき、正極の腐食も抑制されてUPS等に長期間使用される鉛蓄電池の長寿命化が図れるという効果がある。 For this reason, the thermal escape of the battery can be prevented, the positive electrode corrosion is also suppressed, and there is an effect that the life of the lead storage battery used for a long time in UPS or the like can be extended.

以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

即用化成した正、負極板をセパレータを介して交互に積層して組み立て所定の電槽に収納し、規定の液量を注液して制御弁式鉛蓄電池を作製した。この鉛蓄電池につき温水あるいは温風にて加温して放電と初充電をし、更に、活性化の充放電を実施するものである。更に、その際、放電時はその放電深度をある一定量超えて行うものである。 Immediately formed positive and negative plates were alternately laminated through separators, assembled and stored in a predetermined battery case, and a prescribed amount of liquid was injected to produce a control valve type lead-acid battery. The lead storage battery is heated with warm water or warm air to be discharged and initially charged, and further, charge / discharge for activation is performed. Furthermore, at that time, during discharge, the depth of discharge exceeds a certain amount.

その後、各電池を周囲温度60℃、電圧13.65Vでフロート充電し、1週間後にフロート電流を測定し、また各電池は解体して負極活物質の比表面積をBET法で測定した。 Thereafter, each battery was float charged at an ambient temperature of 60 ° C. and a voltage of 13.65 V, and the float current was measured after one week. Each battery was disassembled and the specific surface area of the negative electrode active material was measured by the BET method.

ついで電池寿命改善効果の確認のため、寿命試験として1部の電池を劣化促進するべく周囲温度60℃、電圧13.65Vでフロート充電し、6ヵ月後に容量試験と正極格子腐食量の測定を行った。容量試験条件は周囲温度25℃、終止電圧10.2Vとし、放電電流1.75A(0.25CA)における放電時間を測定し、1ヶ月ごとに実施した。また腐食量は寿命試験後の正極格子試料からアルカリ性マンニット液により腐食物を除去して減少重量を測定して求めた。 Next, in order to confirm the battery life improvement effect, in order to promote the deterioration of a part of the battery as a life test, float charge was performed at an ambient temperature of 60 ° C. and a voltage of 13.65 V, and after 6 months, a capacity test and a measurement of the positive electrode grid corrosion were performed. It was. The capacity test conditions were an ambient temperature of 25 ° C. and a final voltage of 10.2 V. The discharge time at a discharge current of 1.75 A (0.25 CA) was measured and carried out every month. The amount of corrosion was determined by removing the corroded material from the positive electrode grid sample after the life test with an alkaline mannitol solution and measuring the reduced weight.

予め、化成槽内で極板を化成することで即用化成した正、負極板を、保液性セパレータ(リテーナマット)を介して極板群を組立て、これを隔壁により内部が6分割されて6つのセル室を有する電槽のそれぞれのセル室内におのおの収納した後、硫酸水溶液からなる電解液を、極板群に含浸する程度の規定量を注液して、12V、容量7Ahの制御弁式鉛蓄電池を作製した。この鉛蓄電池を、恒温槽内にて各周囲温度25℃、35℃、40℃、50℃のそれぞれの温度に保持して放電を、電流0.7A一定で、放電時間を3時間、4時間、5時間、7.5時間、10時間として放電深度をそれぞれ30%、40%、50%、75%、100%の条件で実施した。同じく初充電条件は、電流0.7A一定とし、充電時間は13時間、14時間、15時間、17.5時間、20時間とした。 The positive and negative plates formed immediately by forming the electrode plates in the chemical conversion tank are assembled in advance through a liquid retaining separator (retainer mat), and the electrode plate group is divided into six parts by partition walls. A control valve with a capacity of 12 V and a capacity of 7 Ah is prepared by pouring a specified amount so that the electrode plate group is impregnated with an electrolytic solution composed of an aqueous sulfuric acid solution after being accommodated in each cell chamber having six cell chambers. A lead acid battery was prepared. This lead-acid battery is held in a constant temperature bath at each ambient temperature of 25 ° C., 35 ° C., 40 ° C., and 50 ° C., and the discharge is performed at a constant current of 0.7 A and the discharge time is 3 hours and 4 hours. The discharge depth was set to 5%, 7.5 hours, and 10 hours under the conditions of 30%, 40%, 50%, 75%, and 100%, respectively. Similarly, the initial charging condition was a constant current of 0.7 A, and the charging time was 13 hours, 14 hours, 15 hours, 17.5 hours, and 20 hours.

その後、各鉛蓄電池につき周囲温度60℃で、電圧を13.65Vと一定にして1週間フロート充電し、1週間後のフロート電流と、解体後の負極活物質の比表面積を測定した結果を表1示す。 After that, each lead storage battery was float-charged for 1 week at an ambient temperature of 60 ° C. with a constant voltage of 13.65 V, and the float current after 1 week and the specific surface area of the negative electrode active material after disassembly were measured. 1 is shown.

この表1から明らかな通り、周囲温度を40℃以上とした本発明品の実施例A〜及び1〜6は比較例1〜1 0に比し、60℃フロート充電電流が低減されており、更に負極活物質の比表面積が小さくなっている。そして特に放電時における放電深度を50%以上とした場合の実施例1〜6はフロート電流および負極比表面積とも一段と小さくなっており優れている。 As apparent from Table 1, Examples A to C and 1 to 6 of the present invention in which the ambient temperature was 40 ° C. or higher had a 60 ° C. float charging current reduced as compared with Comparative Examples 1 to 10. Furthermore, the specific surface area of the negative electrode active material is reduced. In particular, Examples 1 to 6 in which the depth of discharge at the time of discharge is 50% or more are excellent because both the float current and the negative electrode specific surface area are further reduced.

これは実施例のほうが、蓄電池温度が高いため初充電時に硫酸鉛から鉛に還元される際に負極活物質結晶が大きく成長したためと考えられる。実施例は負極比表面積が小さいために充電中の負極過電圧が大きくなり、正極過電圧は小さくなり、酸素発生が減少し、このため負極の酸素吸収が減少して、フロート電流も減少したものと考えられる。放電深度を50%以上とした実施例1〜6は実施例A〜に比べて放電震度が深いため、その分硫酸鉛から鉛に還元される量も増加し、大きく成長した負極活物質量も多くなり、負極比表面積も減少しやすい。その為周囲温度を40℃以上で更に放電深度を50%以上とすることでフロート電流および負極比表面積が一段と小さくなったと考えられる。 This is considered to be because the negative electrode active material crystal grew larger when the Example was reduced from lead sulfate to lead during the initial charge because the storage battery temperature was higher. In the examples, since the negative electrode specific surface area is small, the negative electrode overvoltage during charging increases, the positive electrode overvoltage decreases, oxygen generation decreases, and therefore, the oxygen absorption of the negative electrode decreases and the float current also decreases. It is done. Since Examples 1 to 6 having a depth of discharge of 50% or more have a deeper seismic intensity than Examples A to C , the amount of lead sulfate reduced from lead sulfate to that extent is increased, and the amount of negative electrode active material that has grown greatly And the negative electrode specific surface area tends to decrease. Therefore, it is considered that the float current and the negative electrode specific surface area were further reduced by setting the ambient temperature to 40 ° C. or higher and the discharge depth to 50% or higher.

上記実施例では放電の電流は0.1CA(0.7Ah)で実施したが、これに限定されるものではなく、さらに大きな電流や小さな電流でも良い。 In the above embodiment, the discharge current is 0.1 CA (0.7 Ah). However, the present invention is not limited to this, and a larger or smaller current may be used.

また、比較例、実施例ともに放電深度100%の場合の即用放電末期電圧は0.1CA放電時の目標終止電圧10.5V以下となってしまう。この場合には、電池は過放電状態であり、負極の酸化鉛が硫酸と反応して過剰の硫酸鉛となり、液の硫酸比重が異常に低下して硫酸鉛の溶解度が上昇する。このため、その後充電時に活物質からデンドライトが発生して極板の短絡を起こす危険性が増大する。したがって放電深度は80%以下がより適当と考えられる。 Further, in both the comparative example and the example, the immediate discharge end voltage when the discharge depth is 100% is equal to or lower than the target end voltage of 10.5 V at 0.1 CA discharge. In this case, the battery is in an overdischarged state, the lead oxide of the negative electrode reacts with sulfuric acid to become excess lead sulfate, and the sulfuric acid specific gravity of the liquid is abnormally lowered to increase the solubility of lead sulfate. For this reason, the danger that a dendrite will generate | occur | produce from an active material at the time of charge after that and will cause a short circuit of an electrode plate increases. Therefore, it is considered that the depth of discharge is 80% or less.

次に電池の長期寿命改善効果の確認のため、実施例1、4と比較例3の電池につき、さらに周囲温度60℃の寿命試験を6ヶ月間行った。この時の条件は、充電電圧を13.65V一定としてフロート充電を行い、6ケ月後25℃で、放電電流0.25CAで、放電終止電圧10.2Vまでの持続時間を測定し、併せて容量試験後の正極格子腐食量を測定した。結果を表2に示す。実施例のいずれも持続時間が比較例に比べて大きく、また、正極格子の腐食も抑制されていることが確認できる。 Next, in order to confirm the effect of improving the long-term life of the battery, the batteries of Examples 1 and 4 and Comparative Example 3 were further subjected to a life test at an ambient temperature of 60 ° C. for 6 months. The condition at this time is that the charging voltage is fixed at 13.65V, and after 6 months, the charging time is 25 ° C, the discharge current is 0.25CA, the duration until the discharge end voltage is 10.2V, and the capacity is The positive electrode lattice corrosion amount after the test was measured. The results are shown in Table 2. It can be confirmed that each of the examples has a longer duration than the comparative example, and the corrosion of the positive grid is also suppressed.

実施例1と同様に作製した12V、容量7Ahの制御弁式鉛蓄電池を、常温において電流1.5Aで2時間放電し、ついで電流0.7Aで14時間充電した。 その後、鉛蓄電池を恒温槽内にて周囲温度25、35、40、50℃のそれぞれの温度に保持して電流0.7A一定で放電した。放電時間は3時間、4時間、5時間、7.5時間、10時間として各電池の放電深度を30%、40%、50%、75%、100%とした。次いで同じ0.7Aの電流で放電量に対し120%の充電量となるように充電をして活性化充放電をおこなった。 A control valve type lead-acid battery having a capacity of 12 V and a capacity of 7 Ah produced in the same manner as in Example 1 was discharged at room temperature at a current of 1.5 A for 2 hours, and then charged at a current of 0.7 A for 14 hours. Thereafter, the lead storage battery was discharged at a constant current of 0.7 A while maintaining the ambient temperature at 25, 35, 40, and 50 ° C. in a thermostat. The discharge time was 3 hours, 4 hours, 5 hours, 7.5 hours, and 10 hours, and the discharge depth of each battery was 30%, 40%, 50%, 75%, and 100%. Next, the battery was charged and discharged at the same current of 0.7 A so that the charge amount was 120% of the discharge amount.

その後、各電池につき周囲温度60℃、電圧13.65Vで1週間充電後のフロート電流、解体後の負極活物質の比表面積を測定した結果が表3である。 Table 3 shows the results of measuring the float current after charging for 1 week at an ambient temperature of 60 ° C. and a voltage of 13.65 V for each battery, and the specific surface area of the negative electrode active material after disassembly.

本発明品の実施例E〜H、7〜12は比較例11〜20に対し、60℃充電電流が低減されており、負極活物質の比表面積が小さくなっている。そして特に放電時における放電深度を50%以上とした場合の実施例7〜12はフロート電流および負極比表面積とも一段と小さくなっており優れている。 In Examples E to H and 7 to 12 of the present invention, the charge current at 60 ° C. is reduced as compared with Comparative Examples 11 to 20, and the specific surface area of the negative electrode active material is reduced. In particular, Examples 7 to 12 when the depth of discharge at the time of discharge is 50% or more are excellent because both the float current and the negative electrode specific surface area are further reduced.

次に電池の長期寿命改善効果の確認のため、実施例7、10と比較例13の電池につき周囲温度60℃の寿命試験を6ヶ月間行い、前記条件により0.25CA容量試験と正極格子腐食量を測定した。その結果を表4に示す。実施例のいずれも電池容量の低下が比較例に比べて小さく、正極格子の腐食が抑制されていることが確認できる。 Next, in order to confirm the effect of improving the long-term life of the battery, the batteries of Examples 7 and 10 and Comparative Example 13 were subjected to a life test at an ambient temperature of 60 ° C. for 6 months. The amount was measured. The results are shown in Table 4. In all of the examples, the decrease in the battery capacity is small compared to the comparative example, and it can be confirmed that the corrosion of the positive electrode grid is suppressed.

なお、上記各実施例においては、放電と初充電時または活性化充放電時に40℃以上に加温した例を示したが、両方の工程において40℃以上に加温しても同様の結果が得られた。
In each of the above-described embodiments, an example in which heating is performed at 40 ° C. or higher at the time of discharge and initial charge or activation charge / discharge is shown. Obtained.

Claims (2)

即用化成した正、負極板を用いて組み立てた鉛蓄電池の製造方法において、電解液を注液した後の放電と初充電の工程あるいは、その後の活性化充放電工程の少なくとも何れか一方の工程を、周囲温度40℃以上で実施することを特徴とする鉛蓄電池の製造方法。   In a method for producing a lead-acid battery assembled using positively and negatively electrode plates prepared immediately, at least one of the steps of discharging and initial charging after injecting an electrolytic solution, or the subsequent activation charging / discharging step Is carried out at an ambient temperature of 40 ° C. or higher. 放電深度を50%以上とすることを特徴とする請求項1に記載の鉛蓄電池の製造方法。
The method for producing a lead-acid battery according to claim 1, wherein the depth of discharge is 50% or more.
JP2005211615A 2005-07-21 2005-07-21 Method for producing lead-acid battery Expired - Fee Related JP4827452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211615A JP4827452B2 (en) 2005-07-21 2005-07-21 Method for producing lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211615A JP4827452B2 (en) 2005-07-21 2005-07-21 Method for producing lead-acid battery

Publications (2)

Publication Number Publication Date
JP2007027057A JP2007027057A (en) 2007-02-01
JP4827452B2 true JP4827452B2 (en) 2011-11-30

Family

ID=37787541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211615A Expired - Fee Related JP4827452B2 (en) 2005-07-21 2005-07-21 Method for producing lead-acid battery

Country Status (1)

Country Link
JP (1) JP4827452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410290A (en) * 2016-11-16 2017-02-15 双登集团股份有限公司 Method for controlling charge potential of lead-acid storage battery positive electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729594A (en) * 1993-07-09 1995-01-31 Japan Storage Battery Co Ltd Retainer type sealed lead-acid battery
JP2004199913A (en) * 2002-12-17 2004-07-15 Shin Kobe Electric Mach Co Ltd Manufacturing method for control valve type lead storage battery

Also Published As

Publication number Publication date
JP2007027057A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP2017063001A (en) Lead storage battery
JP4798972B2 (en) Control valve type lead-acid battery for standby
JP6836315B2 (en) Control valve type lead acid battery
JPWO2017159299A1 (en) Lead acid battery
JPWO2013114822A1 (en) Lead acid battery
JP4325153B2 (en) Control valve type lead acid battery
JP4827452B2 (en) Method for producing lead-acid battery
JP2001028263A (en) Lead-acid battery formation method
JP2011070904A (en) Separator for lead-acid battery and lead-acid battery using it
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP5283429B2 (en) Sealed lead acid battery
JP4812386B2 (en) Method for producing lead-acid battery
JP2003338310A (en) Lead storage battery
JP5196732B2 (en) Method for producing lead-acid battery
JP7060858B2 (en) Judgment method of liquid reduction performance of lead-acid battery, and lead-acid battery and its charging method
JP2004327299A (en) Sealed lead-acid storage battery
JP2008259260A (en) Charging method of power supply
JP6830615B2 (en) Control valve type lead acid battery
JP2005294142A (en) Lead storage battery
JP2001085046A (en) Sealed lead-acid battery
Buengeler et al. Lead-Acid–Still the Battery Technology with the Largest Sales
JP6519793B2 (en) Method of charging control valve type lead storage battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP4742424B2 (en) Control valve type lead acid battery
JP2021096900A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees