JP2001028263A - Lead-acid battery formation method - Google Patents

Lead-acid battery formation method

Info

Publication number
JP2001028263A
JP2001028263A JP11199904A JP19990499A JP2001028263A JP 2001028263 A JP2001028263 A JP 2001028263A JP 11199904 A JP11199904 A JP 11199904A JP 19990499 A JP19990499 A JP 19990499A JP 2001028263 A JP2001028263 A JP 2001028263A
Authority
JP
Japan
Prior art keywords
active material
electrode active
formation
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11199904A
Other languages
Japanese (ja)
Inventor
Takao Omae
孝夫 大前
Shinji Ishimoto
信二 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11199904A priority Critical patent/JP2001028263A/en
Publication of JP2001028263A publication Critical patent/JP2001028263A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To efficiently conduct formation, even at high specific gravity formation with low efficiency and increase low rate discharge capacity and high rate discharge capacity by keeping electrolyte temperature during current supply in a specified range, and increasing the quantity of supply electricity for formation to specified times the theoretical capacity of a positive electrode active material. SOLUTION: Electrolyte temperature during current supply is kept at 50-70 deg.C, and the quantity of supply electricity is made 150-250% that of the theoretical capacity of a positive electrode active material in the formation of a lead-acid battery. The total current supply time for formation, or the time kept at high temperature is preferably at most 10 hours, and thereby, even in the lead-acid battery in which the weight ratio of a negative electrode active material to the positive electrode active material is 0.5 or more but less than 1.0, battery formation can surely be conducted. When an organic additives, for example, a natural polymer such as lignin or its derivative, or a synthetic organic material is contained in a negative electrode plate, the decomposition of these materials is retarded, the drop in discharge performance of the negative electrode is prevented, and a lead-acid battery with good high rate discharge performance can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の化成方
法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for forming a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池の化成は大きく分けて次の2種
類がある。最初低比重[比重1.1(20℃換算)前
後、以後比重はすべて20℃換算値]の電解液である希
硫酸を入れて通電しその後換液して所定の比重とする方
法(低比重化成)、および最初比較的高比重(比重1.
2前後)の電解液をいれて通電しそのまま所定の比重と
する方法(高比重化成)である。高比重化成は、化成効
率が悪いために過剰の電気量を通電しなければ化成が完
了しない。低比重化成は、化成効率が優れるために電気
量は少なくて済むが、電解液交換のために大きな設備が
必要になる。一方、次のような問題が起こってきた。従
来の鉛電池の負極活物質量は正極活物質量とほぼ同等か
それ以上になるように設計されるのが一般的であった。
これは負極活物質に余裕を持たせることで、正極板が寿
命の制限因子となるようにするためであった。ところが
最近では電池のエネルギー密度の向上要求が大きくなっ
てきたため、負極活物質量を減らしその分正極活物質量
を増量した電池が多くなってきた。負極活物質の利用率
は正極活物質に比べて大きいため、正極活物質が容量制
限因子となるためである。ただし、負極活物質量の正極
活物質量に対する比は、最小でも0.5程度である。こ
れ以下では負極が容量制限因子となるからである。この
ような電池では、正極と負極とのバランスがとれていな
いために高比重、低比重いずれの化成方法であってもう
まくいかず、電池容量が不十分になる場合がある。これ
は以下のような理由によるものである。負極板は化成が
完了すると水素発生が始まり、分極が急激に大きくな
る。負極活物質が正極活物質よりも少ない電池では、通
常の電池に比べ化成完了が早まるため分極開始が早くな
る。その結果通電終了までに大きい分極状態で置かれる
時間が通常の電池よりも長くなってしまう。負極活物質
には収縮を防止するために有機添加剤が一般的に使用さ
れており、この有機添加剤が水素発生電位に置かれるこ
とによって分解や溶出を生じて著しく減少し、負極活物
質中に存在する有機添加剤が通常の電池に比べて少なく
なって負極板の収縮が大きくなる。そして、この負極板
の収縮は、高率放電性能が負極制限であることから、高
率放電容量の低下を引き起こし、この負極活物質中の有
機添加剤の減少を抑えるために通電電気量を少なくする
と、正極の化成が不十分となり低率放電容量が低下して
しまうのである。
2. Description of the Related Art Lead storage batteries can be roughly classified into the following two types. A method in which dilute sulfuric acid, which is an electrolytic solution having a low specific gravity [specific gravity of 1.1 (converted to 20 ° C.), and thereafter, the specific gravity is all converted to 20 ° C.), is supplied with electricity, and then the liquid is changed to a predetermined specific gravity (low specific gravity). Chemical formation), and at first a relatively high specific gravity (specific gravity 1.
2) is a method (high specific gravity formation) in which an electrolytic solution is supplied and energized to obtain a specific gravity as it is. In the high specific gravity formation, the formation is not completed unless an excessive amount of electricity is supplied because the formation efficiency is poor. Low-density chemical conversion requires only a small amount of electricity due to excellent formation efficiency, but requires large equipment for electrolyte exchange. On the other hand, the following problems have occurred. Generally, the amount of the negative electrode active material of the conventional lead battery is designed to be substantially equal to or more than the amount of the positive electrode active material.
This was done so that the negative electrode active material had a margin so that the positive electrode plate became a life-limiting factor. However, recently, the demand for improving the energy density of the battery has increased, and the number of the batteries in which the amount of the negative electrode active material has been reduced and the amount of the positive electrode active material has been increased accordingly has increased. This is because the utilization rate of the negative electrode active material is higher than that of the positive electrode active material, and thus the positive electrode active material becomes a capacity limiting factor. However, the ratio of the amount of the negative electrode active material to the amount of the positive electrode active material is at least about 0.5. This is because below this, the negative electrode becomes a capacity limiting factor. In such a battery, since the positive electrode and the negative electrode are not balanced, either the high specific gravity or the low specific gravity conversion method does not work, and the battery capacity may be insufficient. This is due to the following reasons. When the formation of the negative electrode plate is completed, hydrogen generation starts, and the polarization rapidly increases. In a battery in which the amount of the negative electrode active material is smaller than that of the positive electrode active material, the completion of formation is earlier than in a normal battery, so that the start of polarization is earlier. As a result, the time during which the battery is left in a large polarization state until the end of the energization becomes longer than that of a normal battery. An organic additive is generally used in the negative electrode active material to prevent shrinkage, and when the organic additive is placed at a hydrogen generation potential, it decomposes and elutes to a remarkable decrease, and the organic additive in the negative electrode active material is reduced. The amount of the organic additive present in the negative electrode plate is smaller than that in a normal battery, and the contraction of the negative electrode plate is increased. The shrinkage of the negative electrode plate causes a decrease in the high-rate discharge capacity because the high-rate discharge performance is limited to the negative electrode. Then, the formation of the positive electrode becomes insufficient and the low-rate discharge capacity decreases.

【0003】[0003]

【発明が解決しようとする課題】以上に鑑み、本発明
は、化成効率が悪い高比重化成においても高率の良い化
成を行うことが出来、十分な低率放電容量、高率放電容
量が得られる鉛蓄電池の化成方法を提供することを目的
とし、さらに、負極活物質量が正極活物質量よりも少な
い電池であっても確実に化成を行う事ができる化成方法
を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention enables a high-rate chemical conversion to be performed even in a high-density chemical conversion with low formation efficiency, and provides a sufficient low-rate discharge capacity and high-rate discharge capacity. It is another object of the present invention to provide a chemical conversion method for a lead storage battery, which is capable of reliably forming even a battery in which the amount of the negative electrode active material is smaller than the amount of the positive electrode active material. I do.

【0004】[0004]

【課題を解決するための手段】本発明の鉛蓄電池の化成
方法は、通電中の電解液温度を50〜70℃に維持し、
通電電気量を正極活物質理論容量の150〜250%と
することを特徴とし、例えば、電槽化成を行う場合に好
適に用いることが出来るものである。
According to the method for forming a lead storage battery of the present invention, the temperature of the electrolyte during energization is maintained at 50 to 70 ° C.
It is characterized in that the amount of electricity to be supplied is set to 150 to 250% of the theoretical capacity of the positive electrode active material, and can be suitably used, for example, in case of carrying out battery formation.

【0005】一般に電気量が低下すると正極板の化成性
は悪化するのであるが、温度と通電電気量を最適化した
このような方法により化成を行うことにより、正極板の
化成効率を向上させることが出来、全体として鉛蓄電池
の化成効率を向上させることが出来る。
In general, as the amount of electricity decreases, the chemical nature of the positive electrode plate deteriorates. However, by performing the chemical formation by such a method in which the temperature and the amount of supplied electricity are optimized, the formation efficiency of the positive electrode plate can be improved. Thus, the formation efficiency of the lead storage battery can be improved as a whole.

【0006】上記化成を行う場合の通電時間は適宜設定
されるものであるが、全通電時間(すなわち高温に置か
れる時間)は10h以下とするのが好ましく、このよう
にすることによって、特に有機添加剤、例えば、リグニ
ンやその誘導体などの天然高分子やナフタリン系化合物
などの合成有機物など、が負極板に含有されている場合
にこれの分解が抑制され、負極の放電性能の低下が防が
れて優れた高率放電性能を有する鉛蓄電池を製造するこ
とが可能となる。
The energizing time for the above-mentioned chemical conversion is appropriately set, but the total energizing time (that is, the time during which the battery is kept at a high temperature) is preferably 10 hours or less. When an additive, for example, a natural polymer such as lignin or a derivative thereof or a synthetic organic substance such as a naphthalene-based compound, is contained in the negative electrode plate, the decomposition of the additive is suppressed, and a decrease in the discharge performance of the negative electrode is prevented. As a result, a lead-acid battery having excellent high-rate discharge performance can be manufactured.

【0007】そして、上記のような化成方法は、負極電
位がより早く水素発生電位になり易い、正極活物質に対
する負極活物質の重量比が0.5以上、1.0未満であ
るような鉛蓄電池の化成方法として特に適しており、こ
のような化成方法、特に全通電時間を10h以下とする
方法によって、これまで高比重、低比重のいずれの場合
にもうまく化成できなかった正極活物質に対する負極活
物質の重量比が0.5以上、1.0未満であるような鉛
蓄電池をより確実に化成することが出来る。
[0007] The above-mentioned chemical conversion method is characterized in that a negative electrode potential tends to reach a hydrogen generation potential more quickly, and a lead such that the weight ratio of the negative electrode active material to the positive electrode active material is 0.5 or more and less than 1.0. It is particularly suitable as a method of forming a storage battery. Such a formation method, in particular, a method in which the total energization time is set to 10 hours or less, makes it possible to form a positive electrode active material which has not been successfully formed in any of high specific gravity and low specific gravity. A lead storage battery in which the weight ratio of the negative electrode active material is 0.5 or more and less than 1.0 can be more reliably formed.

【0008】[0008]

【発明の実施の形態】以下、具体例により本発明につい
てさらに説明する。 (具体例1)正極板の化成効率と温度との関係を以下に
示す。試験セルには、正極板1枚、負極板2枚を入れた
ものを用いた。試験条件を次に示す。 極板:未化成正極板(理論容量10Ah) 硫酸:比重1.20 通電電流:2A 通電電気量:10〜25Ah(理論容量の100〜25
0%) 電解液温度:20〜100℃ 図1は、縦軸に生成したPbO2量、横軸に電解液温度
をとった正極板の化成効率と温度との関係を示す図であ
る。同図より、50℃よりも下の範囲では、通電電気量
が多くなるほどPbO2生成量が増加し、50〜70℃では
PbO2生成量が多く、通電電気量による差が小さいことが
分かり、50〜70℃の温度範囲で化成効率が良好にな
る事が分かる。一方、70℃を超えると生成量は大きく
低下し、温度が高くなっても必ずしも正極板の化成効率
が良くならないことが分かる。これは、副反応である酸
素発生量が増加した事および活物質が高温で脱落してし
まったためと考えられる。この結果から、正極板の化成
効率をあげるためには、温度を50〜70℃の範囲に
し、充電電気量は150%以上とするのが良いことがわ
かる。なお、充電電気量は、250%以上にしてもPbO2
の生成量に変化がないことから、効率上250%以下と
するのが良い。 (具体例2)負極活物質中の有機添加剤の減少と温度、
時間との関係を以下に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be further described with reference to specific examples. (Specific Example 1) The relationship between the formation efficiency of the positive electrode plate and the temperature is shown below. A test cell containing one positive electrode plate and two negative electrode plates was used. The test conditions are shown below. Electrode plate: unformed positive electrode plate (theoretical capacity: 10 Ah) Sulfuric acid: specific gravity 1.20 Electric current: 2 A Electric current: 10 to 25 Ah (100 to 25 of theoretical capacity)
0%) Electrolyte temperature: 20 to 100 ° C. FIG. 1 is a diagram showing the relationship between the formation efficiency and the temperature of the positive electrode plate with the amount of generated PbO 2 on the vertical axis and the electrolyte temperature on the horizontal axis. From the figure, in the range below 50 ° C., the amount of PbO 2 generated increases as the amount of electricity supplied increases, and at 50 to 70 ° C.
It can be seen that the amount of generated PbO 2 is large, and the difference depending on the amount of energized electricity is small. On the other hand, it can be seen that when the temperature exceeds 70 ° C., the production amount is greatly reduced, and even when the temperature is increased, the formation efficiency of the positive electrode plate is not necessarily improved. This is probably because the amount of oxygen generated as a side reaction increased and the active material dropped off at high temperature. From these results, it can be seen that in order to increase the formation efficiency of the positive electrode plate, the temperature should be in the range of 50 to 70 ° C., and the amount of charged electricity should be 150% or more. In addition, even if the charged amount of electricity is 250% or more, PbO 2
Since there is no change in the generation amount of, it is better to set the efficiency to 250% or less. (Specific Example 2) Reduction of organic additive in negative electrode active material and temperature,
The relationship with time is shown below.

【0009】図2は、負極板を硫酸中で放置し、放置温
度を変えたときの負極活物質中の有機添加剤の残存量を
示したものである。試験は次の条件でおこなった。
FIG. 2 shows the amount of the organic additive remaining in the negative electrode active material when the negative electrode plate was left in sulfuric acid and the temperature was changed. The test was performed under the following conditions.

【0010】極板:化成済み負極板 有機添加剤:リグニンスルホン酸ナトリウム、負極活物
質に対して0.5重量%添加 硫酸:比重1.28 図2からわかるように、放置温度が、50℃以下では放
置期間が長くなっても有機添加剤の減少は少なかった。
70℃の場合は、10hを超えたところから減少が増加
した。80℃では放置開始直後から減少量は多かった。
この結果から、放置温度は高くとも70℃までとすべき
であり、その場合でも10hを超える放置は行なうべき
ではないことがわかる。
Electrode plate: chemically converted negative electrode plate Organic additive: sodium ligninsulfonate, 0.5% by weight added to negative electrode active material Sulfuric acid: specific gravity 1.28 As can be seen from FIG. In the following, the decrease in organic additives was small even when the standing period was prolonged.
In the case of 70 ° C., the decrease increased from beyond 10 h. At 80 ° C., the decrease was large immediately after the start of standing.
From this result, it is understood that the leaving temperature should be at most 70 ° C., and even in that case, the leaving should not be performed for more than 10 hours.

【0011】(具体例3)次に本発明の効果を電池に適
用して確認した例を示す。
(Example 3) Next, an example in which the effect of the present invention was applied to a battery and confirmed was described.

【0012】電池としては自動車用電池(55D23,
12V,48Ah/5hR)を作製し、試験を行った。
この電池は正極格子、負極格子ともPb−Ca−Sn系
合金からなるエキスパンド格子を用いている。正極のエ
キスパンド格子に用いる鉛合金圧延シートの合金組成
は、Pb−0.06wt%Ca−1.5wt%Sn、負
極用のシートの合金組成はPb−0.06wt%Ca−
0.5wt%Snである。いずれも圧延法により作製
し、その厚みは正極用で1.1mm、負極用で0.6m
mとした。これらの圧延シートを、ロータリー方式によ
るエキスパンド機により展開・切断を行い格子を作製し
た。このエキスパンド格子に自動車用鉛蓄電池用の一般
的なペーストを充填し、通常の方法で熟成を行ない正極
板を作製した。負極板についても有機添加剤としてリグ
ニンスルホン酸ナトリウムを含む一般的なものを用い
た。セル当たりの正極活物質量は理論値で96Ah相当
とした。負極活物質量については正極活物質に対して
0.8および1.1のものを作製した。
As the battery, an automotive battery (55D23,
12V, 48Ah / 5hR) was prepared and tested.
This battery uses an expanded grid made of a Pb-Ca-Sn-based alloy for both the positive grid and the negative grid. The alloy composition of the rolled lead alloy sheet used for the expanded lattice of the positive electrode is Pb-0.06 wt% Ca-1.5 wt% Sn, and the alloy composition of the sheet for the negative electrode is Pb-0.06 wt% Ca-
0.5 wt% Sn. Each was prepared by a rolling method, and the thickness was 1.1 mm for the positive electrode and 0.6 m for the negative electrode.
m. These rolled sheets were developed and cut by a rotary expanding machine to produce a lattice. The expanded grid was filled with a general paste for automotive lead-acid batteries, and aged in a usual manner to produce a positive electrode plate. As the negative electrode plate, a general one containing sodium ligninsulfonate as an organic additive was used. The amount of the positive electrode active material per cell was equivalent to 96 Ah in theoretical value. Regarding the amount of the negative electrode active material, 0.8 and 1.1 were prepared for the positive electrode active material.

【0013】次に正極板を、袋状の微孔性ポリエチレン
セパレータに入れた。正極板に当接する面である内側に
はリブが形成されている。今回は正極板を袋状セパレー
タに入れたが、負極板を入れてもよくその際にはリブが
外側にくるようにする。
Next, the positive electrode plate was placed in a bag-shaped microporous polyethylene separator. Ribs are formed on the inner side, which is the surface in contact with the positive electrode plate. In this case, the positive electrode plate is placed in the bag-shaped separator, but the negative electrode plate may be placed in such a case so that the ribs are on the outside.

【0014】セパレータに入れた正極板5枚、負極板6
枚を交互に重ね合わせエレメントを作製し、6個のエレ
メントを電槽に挿入後セル間接続を行い、ふたを溶着し
て電池とした。
[0014] Five positive plates and six negative plates placed in a separator
The elements were alternately overlapped to form an element, and the six elements were inserted into a battery case, then connected between cells, and the lid was welded to obtain a battery.

【0015】これらの電池について、次の手順で電槽化
成を行った。 1.電解液硫酸の電池への注液 2.電池を水槽にセット。端子接続。
For these batteries, a battery case was formed in the following procedure. 1. 1. Inject electrolyte sulfuric acid into battery Set the batteries in the aquarium. Terminal connection.

【0016】なお、通電電流の大きさによって化成中の
発熱量が変化するので、予備試験で通電電流値と電解液
温度との相関をあらかじめ調査し、各実施例においては
電解液温度が一定になるように水槽温度を調節した。 3.電解液が極板内部に拡散するまで放置。今回は1h
とした。 4.通電 5.通電終了 試験因子として、(A)電解液温度、(B)通電電気
量、(C)通電時間を検討した。化成が終了した電池
は、低率放電試験(25℃、9.6A放電、終止電圧1
0.2V)および高率放電試験(−15℃、300A放
電、終止電圧6.0V)に供しその性能を調査した。
Since the amount of heat generated during the formation varies depending on the magnitude of the flowing current, the correlation between the flowing current value and the temperature of the electrolytic solution is examined in advance in a preliminary test. The water bath temperature was adjusted to be as follows. 3. Leave until the electrolyte has spread inside the electrode plate. This time 1h
And 4. Energization 5. Termination of energization As test factors, (A) electrolyte temperature, (B) energization amount, and (C) energization time were examined. The battery after the formation was subjected to a low rate discharge test (25 ° C., 9.6 A discharge, cutoff voltage 1).
0.2 V) and a high-rate discharge test (−15 ° C., 300 A discharge, final voltage 6.0 V) to investigate the performance.

【0017】各因子の試験条件および試験結果を示す。 ・試験(A) 負極/正極活物質比:0.8、1.1 注液比重:1.20 電解液温度: 30〜80℃ 通電電気量:200%(正極活物質理論容量比) 通電時間:8h 低率放電容量および高率放電容量と電解液温度との関係
をそれぞれ図3、4に示した。低率放電容量は、正極活
物質が容量制限因子となっているために、活物質比を変
えてもほぼ同様の傾向を示し、活物質比0.8のもので
より重量当たりのエネルギー密度の大きな電池が得られ
た。そして、共に、正極の化成効率が良くなる50℃〜
70℃の領域で容量は最大となった。一方、高率放電容
量は負極活物質で容量が制限されるので、負極活物質量
の多い1.1のものが若干容量が大きかった。また温度
が高くなると容量が少なくなり、70℃以上では急激に
減少する。ただ、活物質比0.8の電池で若干容量が少
なくなるものの電解液温度70℃以下では問題になるレ
ベルではなかった。この結果から、低率放電容量を考慮
すると電解液温度は50〜70℃、高率放電容量を考慮
すると70℃以下とすることが望ましいことがわかっ
た。 ・試験(B) 負極/正極活物質比:0.8、1.1 注液比重:1.20 電解液温度:60℃ 通電電気量:100〜300%(正極活物質理論容量
比) 通電時間:8h 低率放電容量および高率放電容量と通電電気量との関係
をそれぞれ図5、6に示した。低率放電容量は、活物質
比を変えてもほぼ同様の傾向を示した。150%以上の
領域で容量は最大となり飽和した。一方、高率放電容量
は150〜250%で容量が最大となり、それ以上で容
量が低下した。容量低下の程度は活物質比0.8の方が
大きかった。しかし問題になるレベルではなかった。こ
の結果から、化成電気量は150〜250%とするのが
望ましいことがわかる。 ・試験(C) 負極/正極活物質比:0.8、1.1 注液比重:1.20 電解液温度: 60℃ 通電電気量:200%(正極活物質理論容量比) 通電時間:5〜15h 低率放電容量および高率放電容量と通電時間との関係を
それぞれ図7、8に示した。低率放電容量は、活物質比
を変えてもほぼ同様の傾向を示した。通電時間の影響は
ほとんどみられなかった。一方、高率放電容量は、活物
質比0.8の場合は10h以下ではほとんど変化しない
が、10h以上の領域で低下し始めた。活物質比1.1
では時間の影響は少なかった。通電時間は、10h以下
とするのが望ましいことがわかる。以上の具体例におい
ては、効果を明確にするために電解液温度を正確に制御
して試験を行ったが、実際に量産工程で実施する場合に
は、注液段階では常温にしておき通電電流による発熱で
所定温度範囲にもっていくという方法が考えられ、この
ほうがエネルギー的にも有利になる。この場合、初期の
温度上昇中のわずかな時間が本発明の範囲からはずれる
ことになるが、実質的に本発明と同一であるとみなすこ
とができる。また、電解液温度制御のために通電電流の
開閉を行ったり、電流値を変化させたりすることも考え
られるが、この場合も本質的には何ら本発明と変わると
ころがなく、本発明の範囲をはずれるものではない。
Test conditions and test results for each factor are shown. Test (A) Negative electrode / positive electrode active material ratio: 0.8, 1.1 Injection specific gravity: 1.20 Electrolyte temperature: 30 to 80 ° C Electricity of electricity: 200% (positive electrode active material theoretical capacity ratio) : 8h The relationship between the low-rate discharge capacity and the high-rate discharge capacity and the electrolyte temperature is shown in FIGS. The low-rate discharge capacity shows almost the same tendency even when the active material ratio is changed because the positive electrode active material is a capacity limiting factor. A large battery was obtained. In addition, in both cases, 50 ° C.
The capacity reached the maximum in the region of 70 ° C. On the other hand, since the capacity of the high-rate discharge capacity is limited by the negative electrode active material, the capacity of 1.1 having a large amount of the negative electrode active material was slightly larger. In addition, the capacity decreases as the temperature increases, and decreases rapidly at 70 ° C. or higher. However, although the capacity was slightly reduced in a battery having an active material ratio of 0.8, the level was not a problem at an electrolyte temperature of 70 ° C. or lower. From these results, it was found that the electrolyte temperature is desirably 50 to 70 ° C. in consideration of the low rate discharge capacity, and 70 ° C. or less in consideration of the high rate discharge capacity. Test (B) Negative electrode / positive electrode active material ratio: 0.8, 1.1 Injection specific gravity: 1.20 Electrolyte temperature: 60 ° C. Electricity of electricity: 100 to 300% (positive electrode active material theoretical capacity ratio) : 8h The relationship between the low rate discharge capacity and the high rate discharge capacity and the amount of energized electricity is shown in FIGS. The low rate discharge capacity showed almost the same tendency even when the active material ratio was changed. The capacity reached the maximum in the region of 150% or more and was saturated. On the other hand, the high-rate discharge capacity reached the maximum at 150 to 250%, and the capacity decreased at higher values. The degree of the capacity decrease was larger at the active material ratio of 0.8. But it was not at a problematic level. From this result, it is understood that it is desirable that the amount of formed electricity be 150 to 250%. Test (C) Negative electrode / positive electrode active material ratio: 0.8, 1.1 Injection specific gravity: 1.20 Electrolyte temperature: 60 ° C. Electricity of electricity: 200% (positive electrode active material theoretical capacity ratio) Current application time: 5 7 to 8 show the relationship between the low-rate discharge capacity and the high-rate discharge capacity and the energizing time, respectively, in FIGS. The low rate discharge capacity showed almost the same tendency even when the active material ratio was changed. The effect of the energization time was hardly observed. On the other hand, when the active material ratio is 0.8, the high-rate discharge capacity hardly changes at 10 h or less, but starts to decrease in the region of 10 h or more. Active material ratio 1.1
Then the effect of time was small. It is understood that the energization time is desirably 10 hours or less. In the above specific examples, tests were performed with the electrolyte temperature accurately controlled in order to clarify the effects. It is possible to consider a method of bringing the temperature to a predetermined temperature range by the heat generated by this, which is more advantageous in terms of energy. In this case, the slight time during the initial temperature rise will fall outside the scope of the present invention, but can be considered substantially the same as the present invention. In addition, it is conceivable to open and close the supplied current for controlling the temperature of the electrolytic solution, or to change the current value. Not out of the ordinary.

【0018】[0018]

【発明の効果】本発明の化成方法によれば、化成効率を
高めることが出来、低率・高率放電容量に優れた鉛蓄電
池が得られる。さらに、負極活物質量が正極活物質量よ
りも少ない電池であっても満足な容量を得ることができ
る。また、正極、負極それぞれを最適になるように組み
合わせることで、十分な低率放電容量、高率放電容量の
電池を製造することが可能となる。
According to the chemical conversion method of the present invention, it is possible to increase the chemical conversion efficiency and to obtain a lead storage battery having excellent low rate and high rate discharge capacity. Furthermore, a satisfactory capacity can be obtained even in a battery in which the amount of the negative electrode active material is smaller than the amount of the positive electrode active material. In addition, by combining each of the positive electrode and the negative electrode so as to be optimal, it becomes possible to manufacture a battery having a sufficiently low discharge capacity and a high discharge capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極板の電解液温度と化成効率との関係を示す
図。
FIG. 1 is a diagram showing the relationship between the electrolyte temperature of a positive electrode plate and the formation efficiency.

【図2】放置時間と負極活物質中の有機添加剤残存量と
の関係を示す図。
FIG. 2 is a graph showing a relationship between a standing time and a residual amount of an organic additive in a negative electrode active material.

【図3】低率放電容量と電解液温度との関係を示す図。FIG. 3 is a diagram showing a relationship between a low rate discharge capacity and an electrolyte temperature.

【図4】高率放電容量と電解液温度との関係を示す図。FIG. 4 is a diagram showing a relationship between a high rate discharge capacity and an electrolyte solution temperature.

【図5】低率放電容量と通電電気量との関係を示す図。FIG. 5 is a diagram showing a relationship between a low-rate discharge capacity and an amount of supplied electricity.

【図6】高率放電容量と通電電気量との関係を示す図。FIG. 6 is a diagram showing a relationship between a high-rate discharge capacity and an amount of supplied electricity.

【図7】低率放電容量と通電時間との関係を示す図。FIG. 7 is a diagram showing a relationship between a low-rate discharge capacity and a conduction time.

【図8】高率放電容量と通電時間との関係を示す図。FIG. 8 is a diagram showing a relationship between a high-rate discharge capacity and an energization time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉛蓄電池の化成方法であって、通電中の
電解液温度を50〜70℃に維持し、通電電気量を正極
活物質理論容量の150〜250%とすることを特徴と
する鉛蓄電池の化成方法。
1. A method for forming a lead storage battery, wherein the temperature of an electrolyte during energization is maintained at 50 to 70 ° C., and the amount of energized electricity is 150 to 250% of the theoretical capacity of the positive electrode active material. How to form lead storage batteries.
【請求項2】 上記通電における全通電時間を10h以
下とすることを特徴とする請求項1記載の鉛蓄電池の化
成方法。
2. The method for forming a lead storage battery according to claim 1, wherein a total energization time in said energization is 10 hours or less.
【請求項3】 上記鉛蓄電池が、正極活物質に対する負
極活物質の重量比が0.5以上、1.0未満であること
を特徴とする請求項1または2記載の鉛蓄電池の電槽化
成方法。
3. The battery case for a lead storage battery according to claim 1, wherein the weight ratio of the negative electrode active material to the positive electrode active material is 0.5 or more and less than 1.0. Method.
JP11199904A 1999-07-14 1999-07-14 Lead-acid battery formation method Pending JP2001028263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11199904A JP2001028263A (en) 1999-07-14 1999-07-14 Lead-acid battery formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11199904A JP2001028263A (en) 1999-07-14 1999-07-14 Lead-acid battery formation method

Publications (1)

Publication Number Publication Date
JP2001028263A true JP2001028263A (en) 2001-01-30

Family

ID=16415547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11199904A Pending JP2001028263A (en) 1999-07-14 1999-07-14 Lead-acid battery formation method

Country Status (1)

Country Link
JP (1) JP2001028263A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192870A (en) * 2002-12-09 2004-07-08 Japan Storage Battery Co Ltd Lead-acid battery and its manufacturing method
KR100468957B1 (en) * 2000-11-17 2005-01-29 한국타이어 주식회사 Method for the formation of positive plate of a lead storage battery
JP2007294124A (en) * 2006-04-21 2007-11-08 Furukawa Battery Co Ltd:The Manufacturing method of lead-acid battery
KR100782986B1 (en) 2006-12-19 2007-12-07 한국타이어 주식회사 Pulse formation of a cell
JP2009170234A (en) * 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2009289595A (en) * 2008-05-29 2009-12-10 Furukawa Battery Co Ltd:The Sealed lead acid storage battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery
JP2014191976A (en) * 2013-03-27 2014-10-06 Furukawa Battery Co Ltd:The Sealed lead acid battery
JP2015008151A (en) * 2014-09-08 2015-01-15 株式会社Gsユアサ Lead-acid battery
JP2017183160A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Lead storage battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468957B1 (en) * 2000-11-17 2005-01-29 한국타이어 주식회사 Method for the formation of positive plate of a lead storage battery
JP2004192870A (en) * 2002-12-09 2004-07-08 Japan Storage Battery Co Ltd Lead-acid battery and its manufacturing method
JP2007294124A (en) * 2006-04-21 2007-11-08 Furukawa Battery Co Ltd:The Manufacturing method of lead-acid battery
KR100782986B1 (en) 2006-12-19 2007-12-07 한국타이어 주식회사 Pulse formation of a cell
JP2009170234A (en) * 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2009289595A (en) * 2008-05-29 2009-12-10 Furukawa Battery Co Ltd:The Sealed lead acid storage battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery
JP2014191976A (en) * 2013-03-27 2014-10-06 Furukawa Battery Co Ltd:The Sealed lead acid battery
JP2015008151A (en) * 2014-09-08 2015-01-15 株式会社Gsユアサ Lead-acid battery
JP2017183160A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Lead storage battery

Similar Documents

Publication Publication Date Title
JP5061451B2 (en) Anode current collector for lead acid battery
JP2001028263A (en) Lead-acid battery formation method
JP2003123760A (en) Negative electrode for lead-acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP2003051334A (en) Sealed lead-acid battery
JP5196732B2 (en) Method for producing lead-acid battery
TW200409393A (en) Valve regulated lead acid battery
JP2011070870A (en) Lead-acid battery
JP7128482B2 (en) lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP2003338310A (en) Lead storage battery
JP5283429B2 (en) Sealed lead acid battery
JP4178442B2 (en) Control valve type lead acid battery manufacturing method
JP2004327299A (en) Sealed lead-acid storage battery
JP2017117758A (en) Lead storage battery
JP4812386B2 (en) Method for producing lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP4827452B2 (en) Method for producing lead-acid battery
JP2005294142A (en) Lead storage battery
JP4560849B2 (en) Control valve type lead storage battery manufacturing method
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP4556250B2 (en) Lead acid battery
JP2016081736A (en) Lead battery
JP2016152192A (en) Lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213