JP2005294142A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2005294142A
JP2005294142A JP2004109809A JP2004109809A JP2005294142A JP 2005294142 A JP2005294142 A JP 2005294142A JP 2004109809 A JP2004109809 A JP 2004109809A JP 2004109809 A JP2004109809 A JP 2004109809A JP 2005294142 A JP2005294142 A JP 2005294142A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
electrode plate
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004109809A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sugie
一宏 杉江
Kazuhiko Shimoda
一彦 下田
Shinichi Iwasaki
真一 岩崎
Tsunenori Yoshimura
恒典 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004109809A priority Critical patent/JP2005294142A/en
Priority to TW094110275A priority patent/TWI251365B/en
Priority to EP05727619.8A priority patent/EP1742289B1/en
Priority to KR1020067015821A priority patent/KR101139665B1/en
Priority to US10/585,078 priority patent/US8197967B2/en
Priority to CN200580004546A priority patent/CN100583534C/en
Priority to PCT/JP2005/006475 priority patent/WO2005096431A1/en
Publication of JP2005294142A publication Critical patent/JP2005294142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead storage battery suitable for an idling stop vehicle and a vehicle mounting a regeneration brake system and the like wherein deep discharge life characteristics is drastically enhanced by improving deterioration of an anode for deep discharge and charge accepting characteristics of a cathode. <P>SOLUTION: As the lead storage battery is equipped with positive/negative plates consisting of a positive electrode grid and a negative electrode grid which do not contain Sb and a mat separator which is inserted between the positive/negative plates and a cathode active material contains 1 to 30ppm of Sb per cathode active material weight, deep discharge characteristics can be drastically enhanced in a high temperature environment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

車両のエンジン始動用やバックアップ電源用といった様々な用途に鉛蓄電池が用いられている。その中でも始動用の鉛蓄電池(以下、電池)は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給する。エンジン始動後、電池はオルタネータによって充電される。ここで、電池の充電と放電とがバランスし、電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for various purposes such as vehicle engine starting and backup power supply. Among them, a lead acid battery for starting (hereinafter referred to as a battery) supplies power to various electric / electronic devices mounted on the vehicle as well as supplying power to the cell motor for starting the engine. After the engine is started, the battery is charged by the alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the battery are balanced and the SOC (charged state) of the battery is maintained at 90 to 100%.

近年、環境保全の観点から、車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、車両の減速を車両の運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, idle-stop cars that stop the engine while the vehicle is temporarily stopped, and regenerative braking systems that convert the vehicle's kinetic energy into electrical energy and store this electrical energy are put into practical use. ing.

前記したような、アイドルストップ車ではエンジン停止中、電池は充電されない一方で、搭載機器へは、電力供給をし続ける必要があるため、必然的に放電深度は深くなる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、電池のSOCを従来より低い50〜90%程度に制御する必要がある。   In the idling stop vehicle as described above, the battery is not charged while the engine is stopped. On the other hand, since it is necessary to continue to supply power to the on-board equipment, the depth of discharge inevitably increases. Further, in a vehicle equipped with a regenerative braking system, it is necessary to control the SOC of the battery to about 50 to 90%, which is lower than the conventional one, in order to store electric energy during regeneration.

従って、これらのシステムを搭載した車両において、電池はより深い放電深度、低いSOCで使用されることになり、このような車両に適用するために、電池は深い放電が行われた時の寿命特性が要求される。このような深放電寿命における電池の劣化要因は深放電による正極における活物質の劣化と活物質−格子界面の高抵抗層の形成によるインピーダンスの増加および負極活物質の充電受入性低下が主であった。   Therefore, in a vehicle equipped with these systems, the battery is used at a deeper discharge depth and a lower SOC. For application to such a vehicle, the battery has a life characteristic when the deep discharge is performed. Is required. The main causes of battery degradation in such a deep discharge life are the deterioration of the active material in the positive electrode due to deep discharge, the increase in impedance due to the formation of a high resistance layer at the active material-lattice interface, and the decrease in charge acceptance of the negative electrode active material. It was.

鉛蓄電池の深放電による正極の劣化を抑制するために、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。このような特許文献1のような構成は、従来のSOCが90%を超えるような充電状態で用いられる始動用鉛蓄電池において非常に有効であり、寿命特性を飛躍的に改善するものであった。   In order to suppress the deterioration of the positive electrode due to the deep discharge of the lead storage battery, for example, Patent Document 1 discloses that a lead alloy layer containing tin and antimony is formed on the surface of the positive electrode lattice of a lead-calcium-tin alloy. . Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface. Such a configuration as disclosed in Patent Document 1 is very effective in a start-up lead-acid battery used in a charged state in which the conventional SOC exceeds 90%, and dramatically improves the life characteristics. .

また、特許文献2には、正極における活物質の劣化を抑制するために、ガラス繊維等の耐酸性のマットセパレータで正極板を加圧することが有効であることが示されている。
特開平3−37962号公報 特開平7−94205号公報
Patent Document 2 shows that it is effective to pressurize the positive electrode plate with an acid-resistant mat separator such as glass fiber in order to suppress deterioration of the active material in the positive electrode.
JP-A-3-37962 JP-A-7-94205

しかしながら、特許文献1に示す構成の鉛蓄電池では、上述したようなアイドルストップ車や回生ブレーキシステムを搭載した車両、すなわち放電深度がより深く、SOCがより低い状態で用いられる頻度が高い場合、その寿命特性は十分なものとは言えなかった。   However, in the lead storage battery having the configuration shown in Patent Document 1, when the vehicle is equipped with an idle stop vehicle or a regenerative brake system as described above, that is, when the discharge depth is deeper and the SOC is lower, the frequency is higher. The life characteristics were not sufficient.

また、特許文献2に示す構成の鉛蓄電池では、正極板と負極板間にマットセパレータを介在させた場合、始動用鉛蓄電池で一般的に用いられている微孔性ポリエチレンシートを
用いた場合に比較して、セパレータによる内部インピーダンスが増加する。この内部インピーダンスの増加により、負極の充電受入性が低下する。この負極の充電受入性の低下は充電電流を減少させ、正極の充電不足を引き起こす。鉛蓄電池の正極が連続して充電不足状態におかれた場合、正極の放電容量が急激に低下し、充電しても容量が回復しない結果、電池の短寿命となるという問題があった。
Moreover, in the lead acid battery of the structure shown in patent document 2, when the mat separator is interposed between the positive electrode plate and the negative electrode plate, when the microporous polyethylene sheet generally used in the lead acid battery for starting is used In comparison, the internal impedance due to the separator increases. Due to the increase in internal impedance, the charge acceptability of the negative electrode is lowered. This decrease in charge acceptability of the negative electrode decreases the charging current and causes insufficient charge of the positive electrode. When the positive electrode of the lead storage battery is continuously in a state of insufficient charging, the discharge capacity of the positive electrode is drastically reduced, and the capacity is not recovered even after charging, resulting in a short battery life.

このようなマットセパレータを用いることによる負極の充電受入性の低下とこれによって引き起こされる正極の容量低下は、極板群に全ての電解液を含浸させることによって、極板群から遊離した遊離電解液を全く有さない制御弁式鉛蓄電池においては顕著に発生しないものである。このような、遊離電解液を全く有さない制御弁式鉛蓄電池では、電池内部のガス吸収反応は活発に進行し、その結果、充電電流が増加するため、前記したような負極の充電受入性の低下とこれによる正極の劣化はそれほど深刻なものではない。   A decrease in charge acceptance of the negative electrode due to the use of such a mat separator and a decrease in the capacity of the positive electrode caused thereby can be obtained by impregnating the electrode group with all of the electrolyte solution, thereby freeing the electrolyte from the electrode group. It does not occur remarkably in a control valve type lead storage battery that does not have any. In such a valve-regulated lead acid battery having no free electrolyte, the gas absorption reaction inside the battery proceeds actively, and as a result, the charging current increases. The deterioration of the positive electrode and the deterioration of the positive electrode are not so serious.

ところが、極板群がすべて電解液に浸漬した開放式の液式鉛蓄電池や極板群の下部が遊離電解液に浸漬した制御弁式鉛蓄電池では、ガス吸収反応が起こらない、もしくは起こっても正極の充電電気量を確保するには不充分であるため、マットセパレータを用いた電池において発生する負極の充電受入性低下とこれによる正極の容量低下は、深刻なものであった。   However, in an open type liquid lead acid battery in which all electrode plates are immersed in an electrolytic solution and in a control valve type lead acid battery in which the lower part of the electrode plate group is immersed in a free electrolyte, gas absorption reaction does not occur or does not occur. Since it is insufficient to secure the amount of charge electricity of the positive electrode, the decrease in charge acceptability of the negative electrode and the resulting decrease in the capacity of the positive electrode which occurred in the battery using the mat separator were serious.

本発明は、前記したような、深放電における正極の劣化と負極における充電受入性を改善することによって、深放電寿命特性を飛躍的に改善した、アイドルストップ車や回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することを目的とする。   The present invention is suitable for an idle stop vehicle, a vehicle equipped with a regenerative brake system, and the like that have drastically improved the deep discharge life characteristics by improving the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode as described above. An object is to provide a lead-acid battery.

上記目的を達成するために本発明の液式の鉛蓄電池は、Sb(アンチモン)を含まない正極格子及び負極格子からなる正極・負極板と、前記正極・負極板間に介挿されたマットセパレータとを備え、前記正極・負極板の極板面全面が電解液に浸漬されており、負極活物質中にSbを負極活物質重量あたり1〜30ppm含むことを特徴とするものである。これにより、液式の鉛蓄電池において、深放電における正極の劣化と負極における充電受入性を改善でき、深放電寿命特性を顕著に改善することができる。   In order to achieve the above object, the liquid lead-acid battery of the present invention comprises a positive electrode / negative electrode plate composed of a positive electrode grid and a negative electrode grid not containing Sb (antimony), and a mat separator interposed between the positive electrode and negative electrode plates. And the whole electrode plate surface of the positive electrode / negative electrode plate is immersed in an electrolytic solution, and the negative electrode active material contains 1 to 30 ppm of Sb per weight of the negative electrode active material. Thereby, in a liquid type lead-acid battery, the deterioration of the positive electrode in deep discharge and the charge acceptability in the negative electrode can be improved, and the deep discharge life characteristics can be remarkably improved.

また本発明の制御弁式の鉛蓄電池は、Sb(アンチモン)を含まない正極格子及び負極格子からなる正極・負極板と、前記正極・負極板間に介挿されたマットセパレータとを備え、前記正極・負極板の極板面の下部30%以上85%以下が電解液に浸漬されており、負極活物質中にSbを負極活物質重量あたり1〜30ppm含むことを特徴とするものである。   The control valve-type lead-acid battery of the present invention includes a positive electrode / negative electrode plate composed of a positive electrode lattice and a negative electrode lattice not containing Sb (antimony), and a mat separator interposed between the positive electrode and the negative electrode plate, The lower 30% to 85% of the lower electrode plate surface of the positive electrode / negative electrode plate is immersed in the electrolytic solution, and the negative electrode active material contains 1 to 30 ppm of Sb per weight of the negative electrode active material.

これにより、制御弁式の鉛蓄電池において、深放電における正極の劣化と負極における充電受入性を改善でき、深放電寿命特性を顕著に改善することができる。   Thereby, in the control valve type lead-acid battery, the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode can be improved, and the deep discharge life characteristics can be remarkably improved.

さらに好ましくは、負極活物質中に含むSbを負極活物質重量あたり1〜10ppmとすることで、より良い深放電寿命特性を得ることができる。   More preferably, a better deep discharge life characteristic can be obtained by setting Sb contained in the negative electrode active material to 1 to 10 ppm per weight of the negative electrode active material.

本発明によれば、鉛蓄電池の深放電における正極の劣化と負極における充電受入性を改善することによって、深放電寿命特性を顕著に改善する効果を奏することから、工業上、極めて有用である。   According to the present invention, since the effect of remarkably improving the deep discharge life characteristics is achieved by improving the deterioration of the positive electrode in the deep discharge of the lead storage battery and the charge acceptability in the negative electrode, it is extremely useful industrially.

以下、本発明の実施の形態を説明する。本発明の鉛蓄電池に用いる正極格子体は実質上
Sbを含まない鉛合金により作成される。Sbを含まない鉛合金としては、強度および耐腐食性の面でPb−Ca−Sn合金を用いる。正極格子中のCaの量としては格子強度の観点から、0.03〜0.10質量%、Snの量としては格子強度および耐腐食性の観点より、0.60〜1.80質量%が適切である。なお、本発明において、正極格子中に、実質上Sbを含まないとは、0.002質量%以下を意味する。この程度の含有量のSbが正極格子に含まれたとしても、負極には移行せず、結果として負極における自己放電量や、電解液の減液といった電池のメンテナンスフリー性能に影響を与えることはない。
Embodiments of the present invention will be described below. The positive grid used in the lead storage battery of the present invention is made of a lead alloy substantially free of Sb. As a lead alloy not containing Sb, a Pb—Ca—Sn alloy is used in terms of strength and corrosion resistance. The amount of Ca in the positive electrode lattice is 0.03 to 0.10% by mass from the viewpoint of lattice strength, and the amount of Sn is 0.60 to 1.80% by mass from the viewpoint of lattice strength and corrosion resistance. Is appropriate. In the present invention, the fact that the positive electrode lattice does not substantially contain Sb means 0.002 mass% or less. Even if this amount of Sb is included in the positive electrode grid, it does not migrate to the negative electrode, and as a result, it affects the battery's maintenance-free performance such as the amount of self-discharge in the negative electrode and the reduction of the electrolyte. Absent.

また、格子の作成方法としては、従来から知られている鋳造格子、連続鋳造格子あるいは、上記鉛合金の圧延体にパンチング加工やエキスパンド加工を施した格子体を用いることができる。   In addition, as a method of creating a lattice, a conventionally known cast lattice, continuous cast lattice, or a lattice body obtained by subjecting a rolled body of the lead alloy to punching or expanding can be used.

また、正極の過放電に対する耐久性を考慮し、正極格子表面の一部に2.0〜7.0質量%程度のSnを含むPb−Sn合金層を形成することもできる。   In consideration of durability against overdischarge of the positive electrode, a Pb—Sn alloy layer containing about 2.0 to 7.0 mass% of Sn can be formed on a part of the positive electrode lattice surface.

上記の正極格子体に正極活物質ペーストを充填後、熟成乾燥することにより、未化成状態の正極板を得る。なお、正極活物質ペーストとしては、従来から知られているように、鉛酸化物および金属鉛を成分とする鉛粉を水と希硫酸で練合して得ることができる。   The positive electrode grid is filled with a positive electrode active material paste and then aged and dried to obtain an unformed positive electrode plate. As known in the art, the positive electrode active material paste can be obtained by kneading lead powder containing lead oxide and metal lead as components with water and dilute sulfuric acid.

次に、負極格子体も、正極格子体と同様、実質上、Sbを含まない鉛合金により作成される。正極格子と同様、Pb−Ca−Sn合金を用いることができるが、負極格子では正極に比較して腐食の影響を受けないので、Snの添加は必ずしも必要ではない。但し、Snは前述のように格子強度を向上したり、鋳造格子作成時の溶融鉛の湯流れ性を向上するので、0.2質量%〜0.6質量%程度添加してもよい。なお、負極格子体中のCa量は正極と同様、格子強度を確保することを主目的として0.03〜0.10質量%添加する。なお、負極格子体におけるSbの存在は直接負極の自己放電と電解液の減液に影響を及ぼすので、0.001質量%以下とする。また、負極格子体の製造方法は、正極格子体と同様の方法により、得ることができる。   Next, the negative electrode lattice body is also made of a lead alloy substantially not containing Sb, like the positive electrode lattice body. As with the positive electrode lattice, a Pb—Ca—Sn alloy can be used. However, since the negative electrode lattice is not affected by corrosion as compared with the positive electrode, the addition of Sn is not always necessary. However, Sn improves the lattice strength as described above, and improves the molten lead flow of molten lead at the time of forming the cast lattice, so it may be added in an amount of about 0.2 mass% to 0.6 mass%. In addition, the amount of Ca in the negative electrode lattice is added in an amount of 0.03 to 0.10% by mass for the purpose of ensuring the lattice strength as in the case of the positive electrode. Note that the presence of Sb in the negative electrode lattice directly affects the self-discharge of the negative electrode and the reduction of the electrolyte solution, so the content is made 0.001% by mass or less. Moreover, the manufacturing method of a negative electrode grid body can be obtained by the method similar to a positive electrode grid body.

上述により得た負極格子体に負極活物質ペーストを充填し、熟成乾燥して未化成状態の負極板を作成する。本発明においては、化成後の負極活物質中に1〜30ppmのSbを含有させる。   A negative electrode active material paste is filled in the negative electrode grid obtained as described above, and aged and dried to prepare an unformed negative electrode plate. In the present invention, 1 to 30 ppm of Sb is contained in the negative electrode active material after chemical conversion.

この負極板および上述の正極板とガラス繊維やポリプロピレン樹脂繊維等の耐酸性繊維で構成したマットセパレータとを組み合わせて極板群を構成する。この極板群を用いて鉛蓄電池を構成することにより、本発明の鉛蓄電池を得ることができる。   The negative electrode plate and the positive electrode plate described above are combined with a mat separator made of acid-resistant fibers such as glass fiber and polypropylene resin fiber to constitute an electrode plate group. The lead storage battery of this invention can be obtained by comprising a lead storage battery using this electrode group.

請求項1の実施形態では、電解液量は一般的な液式鉛蓄電池と同様に電解液密度1.2〜1.35g/cm程度の希硫酸を使用することができ、図2に示すように、極板群を構成する正極板および負極板の極板面は電解液に浸漬された状態となる液量とした。また、電解液には過放電回復特性を考慮して電解液1リットルあたり5〜15gの硫酸ナトリウムといったアルカリ金属あるいはアルカリ土類金属の硫酸塩を添加することもできる。 In the embodiment of claim 1, dilute sulfuric acid having an electrolyte density of about 1.2 to 1.35 g / cm 3 can be used for the amount of the electrolyte as in a general liquid lead-acid battery, as shown in FIG. As described above, the electrode plate surfaces of the positive electrode plate and the negative electrode plate constituting the electrode plate group were set to a liquid amount that is immersed in the electrolytic solution. In addition, in consideration of overdischarge recovery characteristics, an alkaline metal or alkaline earth metal sulfate such as sodium sulfate of 5 to 15 g per liter of the electrolytic solution can be added to the electrolytic solution.

請求項3の実施形態では、電解液量は一般的な制御弁式鉛蓄電池と同様に電解液密度1.2〜1.35g/cm程度の希硫酸を使用することができ、図3に示すように、少なくとも正極板から発生した酸素ガスを負極板で吸収できる程度に負極板を電解液から露出させるために極板群の高さ方向に30%以上85%以下となるように作成し、電解液には電解液液1リットルあたり5〜15gの硫酸ナトリウムといったアルカリ金属あるいはアルカリ土類金属の硫酸塩を添加することもできる。これにより極板群を構成する正極板および負極板の極板面の下部のみが電解液に浸漬し、極板群上部が電解液から露出し、負極板の電解液面から露出した部分において、正極から発生した酸素ガスを吸収する、負極吸収式の制御弁式鉛蓄電池を構成した。 In the embodiment of claim 3, the amount of the electrolytic solution can use dilute sulfuric acid having an electrolyte density of about 1.2 to 1.35 g / cm 3 as in a general control valve type lead-acid battery. As shown, at least 30% to 85% in the height direction of the electrode plate group is formed in order to expose the negative electrode plate from the electrolyte so that at least oxygen gas generated from the positive electrode plate can be absorbed by the negative electrode plate. In addition, an alkaline metal or alkaline earth metal sulfate such as 5 to 15 g of sodium sulfate per liter of the electrolytic solution may be added to the electrolytic solution. Thereby, only the lower part of the electrode plate surface of the positive electrode plate and the negative electrode plate constituting the electrode plate group is immersed in the electrolytic solution, the upper part of the electrode plate group is exposed from the electrolytic solution, and the portion exposed from the electrolytic solution surface of the negative electrode plate, A control valve type lead storage battery of negative electrode absorption type that absorbs oxygen gas generated from the positive electrode was constructed.

なお、負極活物質中のSbの添加方法として、負極活物質ペーストの練合時に硫酸アンチモン、アンチモン酸塩といった、アンチモン酸化物やその塩といったアンチモン化合物として添加することができる。また、他の方法としては、化成充電工程の以前に希硫酸電解液中に上述のアンチモン化合物を添加し、化成充電を行うことにより、負極活物質にSbを電析させることも極めて有効な方法である。   As a method of adding Sb in the negative electrode active material, it can be added as an antimony compound such as antimony oxide or a salt thereof such as antimony sulfate or antimonate when kneading the negative electrode active material paste. In addition, as another method, it is also an extremely effective method to deposit Sb on the negative electrode active material by adding the above-described antimony compound to the dilute sulfuric acid electrolyte before the chemical charging step and performing chemical charging. It is.

そして、本発明の鉛蓄電池を、通常の公称電圧12Vの自動車用鉛蓄電池とする場合、上述の極板群の6個を電槽に収納して極板群間を直列に接続した後、電槽開口部を蓋で覆うとともに、直列接続において両端に位置する極板群から導出した極柱を蓋にインサート成形された端子ブッシングに挿通し、端子ブッシングと極柱先端を溶接すれば良い。その後、蓋に設けた注液口より希硫酸電解液を注液して、化成充電を行えば良い。なお、化成充電後において、本発明の鉛蓄電池は極板群を構成する正極板および負極板の少なくとも充放電反応に寄与する極板表面がすべて、もしくはその高さ方向の30%以上が電解液に浸漬した構成を有する。   And when making the lead acid battery of this invention into the lead acid battery for motor vehicles of the normal nominal voltage of 12V, after storing six above-mentioned electrode plate groups in a battery case and connecting between electrode plate groups in series, electric The tank opening may be covered with a lid, and pole columns derived from the electrode plate groups located at both ends in series connection may be inserted into a terminal bushing that is insert-molded into the lid, and the terminal bushing and the tip of the pole column may be welded. Thereafter, dilute sulfuric acid electrolyte may be injected from a liquid inlet provided on the lid, and chemical charging may be performed. In addition, after chemical charging, the lead storage battery of the present invention is such that at least 30% or more of the electrode plate surface contributing to the charge / discharge reaction of the positive electrode plate and the negative electrode plate constituting the electrode plate group is at least 30% in the height direction. It has the structure immersed in.

Pb−Ca正極板、Pb−Ca負極板を用い、負極活物質中にSbが図1に示した割合となるように、硫酸アンチモンを電解液中に添加し、正極板5枚と負極板6枚と本発明のセパレータとしてガラスを主体とするマット状セパレータを使用して極板群を作成した。比較例としてPEを主体とするセパレータを使用して極板群を作成した。それぞれの群を電槽に入れて常法により充電することで、図1に示す液式および制御弁式の鉛蓄電池を作成した。   Using a Pb—Ca positive electrode plate and a Pb—Ca negative electrode plate, antimony sulfate was added to the electrolyte so that Sb in the negative electrode active material had the ratio shown in FIG. A plate group was prepared using a sheet and a mat-like separator mainly composed of glass as the separator of the present invention. As a comparative example, an electrode plate group was prepared using a separator mainly composed of PE. The liquid type and control valve type lead storage batteries shown in FIG.

次にそれぞれ作成した電池のサイクル寿命試験を行った。サイクル試験は、40℃、60℃の環境温度下において、定電流放電:1CA×1分、定電圧充電:14.5V・1CA×1.5分を1サイクルとして試験を行った。その結果を図1に示している。   Next, a cycle life test of each of the batteries prepared was performed. The cycle test was performed under the environmental temperature of 40 ° C. and 60 ° C. with constant current discharge: 1 CA × 1 minute and constant voltage charge: 14.5 V · 1 CA × 1.5 minutes as one cycle. The result is shown in FIG.

図1からアンチモンが0.01ppm以下の電池、A000、B000、C000、D000の結果を比較すると、40℃では電解液量の少ない制御弁式鉛蓄電池が最も長寿命であった。これは、電解液量の多い電池では、正極で発生した酸素ガスを負極板が吸収する「ガス吸収反応」がなく、充電反応時に負極板の電位が大きくマイナス側にシフトして定電圧充電では十分な充電電流が流れないために充電不足となり、寿命が短くなっていると考えられる。しかし、高温60℃では、電解液量の少ない制御弁式鉛蓄電池の寿命は大きく低下した。これは、電解液量の少ない制御弁式鉛蓄電池では、電解液量の多い電池に比べ、ガス吸収反応により電池内部温度が上昇し、40℃の時に比べ電解液の蒸発量が多くなり短寿命になったと考えられる。このようにアンチモンが0.01ppm以下で電解液量の少ない制御弁式鉛蓄電池では、高温下での使用が想定されるアイドルストップ車や回生ブレーキシステムを搭載したような車両に用いるには、深放電寿命特性が充分とは言い難い。   Comparing the results of batteries having antimony of 0.01 ppm or less, A000, B000, C000, and D000 from FIG. 1, the control valve type lead-acid battery having a small amount of electrolyte at 40 ° C. had the longest life. This is because, in a battery with a large amount of electrolyte, there is no “gas absorption reaction” in which the negative electrode plate absorbs the oxygen gas generated at the positive electrode, and the negative electrode plate potential greatly shifts to the negative side during the charging reaction, and constant voltage charging It is considered that the charging is insufficient due to insufficient charging current and the life is shortened. However, at a high temperature of 60 ° C., the life of the control valve type lead storage battery with a small amount of electrolyte was greatly reduced. This is because the control valve type lead-acid battery with a small amount of electrolyte solution has a short life because the internal temperature of the battery rises due to the gas absorption reaction compared to a battery with a large amount of electrolyte solution, and the amount of evaporation of the electrolyte solution increases at 40 ° C. It is thought that it became. As described above, in a control valve type lead-acid battery having an antimony of 0.01 ppm or less and a small amount of electrolyte, it is necessary to use it in an idling stop vehicle or a vehicle equipped with a regenerative brake system that is expected to be used at high temperatures. It is difficult to say that the discharge life characteristics are sufficient.

また電解液量の少ない制御弁式鉛蓄電池では、アンチモンの添加量が増えると寿命特性は低下した。それに対して、電解液量の多い液式および制御弁式鉛蓄電池では、添加しない場合と添加量が40ppm以上では寿命が短く、添加量が1ppm〜30ppmでは寿命特性が飛躍的に向上する傾向となった。中でも1〜10ppmのアンチモンを添加した場合が最も長寿命となった。これは上記で述べたアンチモンが0.01ppm未満の電池に比べ、アンチモンが添加されることにより、負極の電位のマイナス側へのシフトが抑制され充電受入性が向上したためであると考えられる。   Moreover, in the control valve type lead-acid battery with a small amount of electrolyte, the life characteristics deteriorated as the amount of antimony added increased. In contrast, in liquid type and control valve type lead acid batteries with a large amount of electrolytic solution, the life is short when not added and when the added amount is 40 ppm or more, and when the added amount is 1 ppm to 30 ppm, the life characteristics tend to improve dramatically. became. Among them, the case where 1 to 10 ppm of antimony was added had the longest lifetime. This is considered to be because the shift of the negative electrode potential to the negative side is suppressed and the charge acceptability is improved by adding antimony as compared with the above-described battery having an antimony of less than 0.01 ppm.

また、セパレータとしては、ポリエチレンを主体とするセパレータに対し、ガラスを主体とするマット状セパレータを使用することで寿命特性が向上していることがわかる。中でも、アンチモンを1〜30ppm添加することにより飛躍的に寿命特性が向上していることがわかる。   Moreover, as a separator, it turns out that the lifetime characteristic is improved by using the mat-like separator which has glass as a main body with respect to the separator which has polyethylene as a main component. In particular, it can be seen that the life characteristics are drastically improved by adding 1 to 30 ppm of antimony.

これらから、アンチモンを含まない正極格子及び負極格子からなる正極・負極板とマットセパレータとからなる液式の鉛蓄電池もしくは正極・負極板の極板面の下部30%以上85%以下が電解液に浸漬された制御弁式の鉛蓄電池に負極活物質中にアンチモンを負極活物質重量あたり1〜30ppm含ませることにより、深放電における正極の劣化と負極における充電受入性を改善でき、深放電寿命特性を顕著に改善することができる。特に負極活物質中にアンチモンを負極活物質重量あたり1〜10ppmとすると、60度におけるサイクル寿命が7万サイクルを越えており、特に良好な結果となった。   From these, a liquid type lead-acid battery comprising a positive electrode / negative electrode plate comprising a positive electrode grid and a negative electrode lattice not containing antimony and a mat separator or a lower part of the electrode plate surface of the positive electrode / negative electrode plate of 30% to 85% is the electrolyte. By including 1-30 ppm of antimony in the negative electrode active material in the negative electrode active material in the submerged control valve type lead-acid battery, the deterioration of the positive electrode in deep discharge and the charge acceptability in the negative electrode can be improved, and the deep discharge life characteristics Can be remarkably improved. In particular, when antimony was 1 to 10 ppm per weight of the negative electrode active material in the negative electrode active material, the cycle life at 60 degrees exceeded 70,000 cycles, and particularly good results were obtained.

本発明にかかる鉛蓄電池は、高温下における深放電寿命特性が飛躍的に改善するので、高温下における深放電寿命を求められる用途に用いる蓄電池として有用である。特にアイドルストップ車や回生ブレーキシステム搭載車等に用いる蓄電池として有用である。   Since the lead-acid battery according to the present invention drastically improves the deep discharge life characteristics at high temperatures, the lead-acid battery is useful as a storage battery used for applications requiring a deep discharge life at high temperatures. In particular, it is useful as a storage battery used in an idle stop vehicle or a vehicle equipped with a regenerative brake system.

深放電寿命特性図Deep discharge life characteristics 極板群が電解液中に浸漬された液式鉛蓄電池を示す図The figure which shows the liquid type lead acid battery in which the electrode plate group is immersed in the electrolytic solution 極板群の高さ方向の30%が電解液中に浸漬された制御弁式鉛蓄電池を示す図The figure which shows the control valve type lead acid battery by which 30% of the height direction of an electrode group was immersed in electrolyte solution

符号の説明Explanation of symbols

1 電極
2 電解液
3 集電棚
4 セパレータ
5 負極板
6 正極板
7 極板群高さ
8 電解液高さ

DESCRIPTION OF SYMBOLS 1 Electrode 2 Electrolyte 3 Current collector shelf 4 Separator 5 Negative electrode plate 6 Positive electrode plate 7 Electrode plate group height 8 Electrolyte height

Claims (4)

Sbを含まない正極格子及び負極格子からなる正極・負極板と、前記正極・負極板間に介挿されたマットセパレータとを備え、前記正極・負極板の極板面全面が電解液に浸漬されており、負極活物質中にSbを負極活物質重量あたり1〜30ppm含むことを特徴とする液式の鉛蓄電池。   A positive electrode / negative electrode plate composed of a positive electrode grid and a negative electrode lattice not containing Sb, and a mat separator interposed between the positive electrode / negative electrode plate, and the whole electrode plate surface of the positive electrode / negative electrode plate is immersed in an electrolyte. A liquid lead-acid battery comprising 1 to 30 ppm of Sb in the negative electrode active material per weight of the negative electrode active material. 負極活物質中に含むSbを負極活物質重量あたり1〜10ppmとすることを特徴とする請求項1記載の液式の鉛蓄電池。   The liquid lead-acid battery according to claim 1, wherein Sb contained in the negative electrode active material is 1 to 10 ppm per weight of the negative electrode active material. Sbを含まない正極格子及び負極格子からなる正極・負極板と、前記正極・負極板間に介挿されたマットセパレータとを備え、前記正極・負極板の極板面の下部30%以上85%以下が電解液に浸漬されており、負極活物質中にSbを負極活物質重量あたり1〜30ppm含むことを特徴とする制御弁式の鉛蓄電池。   A positive electrode / negative electrode plate comprising a positive electrode lattice and a negative electrode lattice not containing Sb; and a mat separator interposed between the positive electrode / negative electrode plate, and 30% or more and 85% of the lower part of the electrode plate surface of the positive electrode / negative electrode plate The following is a control valve type lead-acid battery, wherein the following is immersed in an electrolytic solution and contains 1 to 30 ppm of Sb in the negative electrode active material per weight of the negative electrode active material. 負極活物質中に含むSbを負極活物質重量あたり1〜10ppmとすることを特徴とする請求項3記載の制御弁式の鉛蓄電池。   4. The valve-regulated lead-acid battery according to claim 3, wherein Sb contained in the negative electrode active material is 1 to 10 ppm per weight of the negative electrode active material.
JP2004109809A 2004-04-02 2004-04-02 Lead storage battery Pending JP2005294142A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004109809A JP2005294142A (en) 2004-04-02 2004-04-02 Lead storage battery
TW094110275A TWI251365B (en) 2004-04-02 2005-03-31 Lead-acid battery
EP05727619.8A EP1742289B1 (en) 2004-04-02 2005-04-01 Lead storage battery
KR1020067015821A KR101139665B1 (en) 2004-04-02 2005-04-01 Lead storage battery
US10/585,078 US8197967B2 (en) 2004-04-02 2005-04-01 Long life and low corrosion lead storage battery with a separator including silica and oil
CN200580004546A CN100583534C (en) 2004-04-02 2005-04-01 Lead storage battery
PCT/JP2005/006475 WO2005096431A1 (en) 2004-04-02 2005-04-01 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004109809A JP2005294142A (en) 2004-04-02 2004-04-02 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2005294142A true JP2005294142A (en) 2005-10-20

Family

ID=35326828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109809A Pending JP2005294142A (en) 2004-04-02 2004-04-02 Lead storage battery

Country Status (2)

Country Link
JP (1) JP2005294142A (en)
CN (1) CN100583534C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031263A1 (en) * 2011-09-01 2013-03-07 新神戸電機株式会社 Lead storage cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097516A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead storage battery
JP6528436B2 (en) * 2015-02-12 2019-06-12 株式会社Gsユアサ Lead storage battery, negative electrode plate thereof and method of manufacturing lead storage battery
JP6136080B2 (en) * 2015-02-18 2017-05-31 株式会社Gsユアサ Lead acid battery
WO2017062461A1 (en) * 2015-10-05 2017-04-13 Daramic, Llc Functionalized lead acid battery separators, improved lead acid batteries, and related methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2847761B2 (en) * 1989-06-12 1999-01-20 株式会社ユアサコーポレーション Sealed lead-acid battery and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031263A1 (en) * 2011-09-01 2013-03-07 新神戸電機株式会社 Lead storage cell

Also Published As

Publication number Publication date
CN100583534C (en) 2010-01-20
CN1918740A (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP5079324B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
EP3635805B1 (en) Lead-acid battery
JPWO2005107004A1 (en) Lead acid battery
WO2010058240A1 (en) Low water loss battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2005302395A (en) Lead storage battery
JP6043734B2 (en) Lead acid battery
JP6525167B2 (en) Lead storage battery
JP4647722B1 (en) Lead acid battery
JP2006185678A (en) Lead-acid storage battery
JP2005294142A (en) Lead storage battery
JP5116331B2 (en) Lead acid battery
JP2007035339A (en) Control valve type lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP2006210059A (en) Lead acid storage battery
JP4904675B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP4904674B2 (en) Lead acid battery
JP2006318658A (en) Lead-acid battery
JP4483308B2 (en) Lead acid battery
JP2005268061A (en) Lead storage cell
JP2005353516A (en) Lead-acid storage battery