JP2005302395A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2005302395A
JP2005302395A JP2004113827A JP2004113827A JP2005302395A JP 2005302395 A JP2005302395 A JP 2005302395A JP 2004113827 A JP2004113827 A JP 2004113827A JP 2004113827 A JP2004113827 A JP 2004113827A JP 2005302395 A JP2005302395 A JP 2005302395A
Authority
JP
Japan
Prior art keywords
negative electrode
lead
positive electrode
lattice
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004113827A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sugie
一宏 杉江
Kazuhiko Shimoda
一彦 下田
Shinichi Iwasaki
真一 岩崎
Tsunenori Yoshimura
恒典 吉村
Michio Kurematsu
道男 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004113827A priority Critical patent/JP2005302395A/en
Priority to KR1020067017135A priority patent/KR101128586B1/en
Priority to EP05728390A priority patent/EP1737062B1/en
Priority to CNB2005800104279A priority patent/CN100446330C/en
Priority to TW094110987A priority patent/TWI254478B/en
Priority to US10/587,186 priority patent/US8071239B2/en
Priority to DE602005009814T priority patent/DE602005009814D1/en
Priority to PCT/JP2005/006869 priority patent/WO2005099020A1/en
Publication of JP2005302395A publication Critical patent/JP2005302395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead storage battery used for an automobile like an idle stop vehicle or a regenerative break system mounting vehicle frequently used at at low SOC area, prevented from corrosion of an anode grating ear, with long life and high reliability. <P>SOLUTION: The battery comprises a cathode plate made of a cathode grating not containing Sb, an anode plate structured of an anode grating not containing Sb and forming an anode surface layer containing Sb at at least a part of the surface in contact with an anode active material, and a separator interposed between the cathode and the anode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

車両のエンジン始動用やバックアップ電源用といった様々な用途に鉛蓄電池が用いられている。その中でも始動用の鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給する。エンジン始動後、鉛蓄電池はオルタネータによって充電される。ここで、鉛蓄電池の充電と放電とがバランスし、鉛蓄電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for various purposes such as vehicle engine starting and backup power supply. Among them, the lead acid battery for starting supplies power to various electric / electronic devices mounted on the vehicle as well as supplying power to the cell motor for starting the engine. After the engine is started, the lead storage battery is charged by an alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the lead storage battery are balanced and the SOC (charged state) of the lead storage battery is maintained at 90 to 100%.

近年、環境保全の観点から、車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、車両の減速を車両の運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, idle-stop cars that stop the engine while the vehicle is temporarily stopped, and regenerative braking systems that convert the vehicle's kinetic energy into electrical energy and store this electrical energy are put into practical use. ing.

前記したような、アイドルストップ車ではエンジン停止中、鉛蓄電池は充電されない一方で、搭載機器へは電力供給をし続ける必要があるため、必然的に放電深度は深くなる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、鉛蓄電池のSOCを従来より低く、50〜90%程度に制御する必要がある。   In the idling stop vehicle as described above, the lead storage battery is not charged while the engine is stopped. On the other hand, it is necessary to continue to supply power to the on-board equipment, which inevitably increases the depth of discharge. In addition, in a vehicle equipped with a regenerative braking system, it is necessary to control the SOC of the lead storage battery to about 50 to 90%, which is lower than before, in order to store electric energy during regeneration.

従って、これらのシステムを搭載した車両において、鉛蓄電池はより深い放電深度、低いSOCで使用されることになり、このような車両に適用するために、鉛蓄電池は深い放電が行われた時の寿命特性が要求される。このような深放電寿命における鉛蓄電池の劣化要因は深放電による正極における活物質の劣化と活物質−格子界面の高抵抗層の形成によるインピーダンスの増加および負極活物質の充電受入性低下とこれによる正極活物質の充電不足による劣化が主要因であった。   Therefore, in a vehicle equipped with these systems, the lead storage battery is used at a deeper discharge depth and lower SOC, and for application to such a vehicle, the lead storage battery is used when a deep discharge is performed. Life characteristics are required. The deterioration factors of lead-acid batteries in such a deep discharge life are due to the deterioration of the active material in the positive electrode due to deep discharge, the increase in impedance due to the formation of a high resistance layer at the active material-lattice interface, and the decrease in charge acceptance of the negative electrode active material. The main factor was deterioration due to insufficient charging of the positive electrode active material.

鉛蓄電池の深放電による正極の劣化を抑制するために、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。   In order to suppress the deterioration of the positive electrode due to the deep discharge of the lead storage battery, for example, Patent Document 1 discloses that a lead alloy layer containing tin and antimony is formed on the surface of the positive electrode lattice of a lead-calcium-tin alloy. . Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface.

また、特許文献1の鉛蓄電池のような正極格子表面に配置したアンチモンは、蓄電池の充放電を繰り返すうちに負極活物質表面に電析し、負極の充電電位を貴に移行させる。これにより、蓄電池の充電電圧は低下する。その結果、自動車用をはじめ、鉛蓄電池で一般に用いられている定電圧充電を行った場合、充電電圧の低下に伴い、充電電流は増加する。従って、正極での充電電気量が増加するため、正極活物質の劣化が抑制されるという効果もあった。
特開平3−37962号公報
In addition, antimony arranged on the surface of the positive electrode lattice like the lead storage battery of Patent Document 1 is electrodeposited on the surface of the negative electrode active material while repeatedly charging and discharging the storage battery, and the charge potential of the negative electrode is transferred preciously. Thereby, the charging voltage of a storage battery falls. As a result, when the constant voltage charging generally used for lead storage batteries is performed, including for automobiles, the charging current increases as the charging voltage decreases. Therefore, since the amount of charged electricity at the positive electrode increases, there is also an effect that the deterioration of the positive electrode active material is suppressed.
JP-A-3-37962

しかしながら、正極格子表面に存在するアンチモンは負極活物質のみならず、負極格子耳部にも析出する。従来の車両にように、鉛蓄電池のSOCが高頻度で90%以上である場合には、負極格子耳部に移行したアンチモンは鉛蓄電池に殆ど悪影響を及ぼすことがなく、問題とはならなかった。しかしながら、アイドルストップ車や回生ブレーキシステム
を搭載したような車両は前記したようにSOCが90%未満〜80%の低SOC領域で用いられる頻度が高く、負極格子耳部に析出したアンチモンが、負極格子耳部の腐食に影響することがわかってきた。この負極格子耳部の腐食により、負極格子の集電性が低下し、最終的には断線することによって、蓄電池容量が急激に低下する可能性があった。
However, antimony present on the surface of the positive electrode lattice is deposited not only on the negative electrode active material but also on the negative electrode lattice ears. When the SOC of the lead storage battery is 90% or more as in the conventional vehicle, the antimony that has migrated to the negative electrode grid ears has almost no adverse effect on the lead storage battery and did not cause a problem. . However, as described above, an idling stop vehicle or a vehicle equipped with a regenerative braking system is frequently used in a low SOC region where the SOC is less than 90% to 80%. It has been found to affect the lattice ear corrosion. Due to the corrosion of the negative electrode grid ears, the current collecting property of the negative electrode grid is lowered, and eventually the storage battery capacity may be rapidly reduced by disconnection.

一方、Sbの負極格子耳部への析出を抑制するため、正極格子表面に含Sb層を設けない場合、負極活物質へのSbの移行がないので、充電電圧は低下せず、その結果、充電電流が低下し、正極が充電不足となり、短寿命となっていた。   On the other hand, when the Sb-containing layer is not provided on the surface of the positive electrode lattice in order to suppress the precipitation of Sb on the negative electrode lattice edges, there is no transition of Sb to the negative electrode active material, so the charging voltage does not decrease. The charging current decreased, the positive electrode became insufficiently charged, and the life was short.

本発明は、前記したような、アイドルストップ車や回生ブレーキシステム搭載車等に用いられるような低SOC領域で用いられる頻度が高い自動車用鉛蓄電池における、負極格子耳の腐食を抑制し、長寿命で信頼性の高い鉛蓄電池を提供することを目的とする。   The present invention suppresses the corrosion of the negative electrode grid ear in the automobile lead-acid battery that is frequently used in the low SOC region such as used in an idle stop vehicle or a vehicle equipped with a regenerative brake system, and has a long service life. The purpose is to provide a highly reliable lead-acid battery.

上記目的を達成するために本発明の鉛蓄電池は、Sbを含まない正極格子からなる正極板と、Sbを含まない負極格子で構成され負極活物質と接する表面の少なくとも一部にSbを含む負極表面層を形成する負極板と、前記正極・負極板間に介挿されたセパレータとからなることを特徴とするものである。   In order to achieve the above object, a lead storage battery according to the present invention includes a positive electrode plate made of a positive electrode lattice not containing Sb, and a negative electrode containing Sb on at least a part of a surface in contact with the negative electrode active material, the negative electrode lattice not containing Sb. It consists of the negative electrode plate which forms a surface layer, and the separator inserted between the said positive electrode and negative electrode plates.

これにより、アイドルストップ車や回生ブレーキシステム搭載車等に用いられるような低SOC領域で用いられる頻度が高い自動車用鉛蓄電池における、負極格子耳の腐食を抑制し、長寿命で信頼性の高い鉛蓄電池を提供することができる。   As a result, the lead grid battery for automobiles, which is frequently used in low-SOC areas, such as those used in idle stop cars and regenerative braking systems, suppresses corrosion of the negative electrode grid ears and has a long life and high reliability. A storage battery can be provided.

また、負極表面層に含むSb量を40〜500ppmとすることで、更に好適な鉛蓄電池を提供することができる。   Moreover, the more suitable lead acid battery can be provided because the amount of Sb contained in a negative electrode surface layer shall be 40-500 ppm.

また、負極表面層にSnを1.0〜10.0質量%含むことで、更に好適な鉛蓄電池を提供することができる。   Moreover, a more suitable lead acid battery can be provided by including 1.0-10.0 mass% of Sn in a negative electrode surface layer.

また、負極表面層を負極格子の下部に設けることで、更に好適な鉛蓄電池を提供することができる。   Moreover, a more suitable lead storage battery can be provided by providing a negative electrode surface layer below the negative electrode grid.

さらに、Pb−Ca−Sn合金からなる正極格子で構成され、正極活物質と接する表面の少なくとも一部に前記正極格子より高濃度のSnを含む正極表面層を形成すると、更に好適な鉛蓄電池を提供することができる。   Furthermore, when a positive electrode surface layer comprising a positive electrode lattice made of a Pb—Ca—Sn alloy and containing Sn at a higher concentration than the positive electrode lattice is formed on at least a part of the surface in contact with the positive electrode active material, a more suitable lead-acid battery is obtained. Can be provided.

本発明の鉛蓄電池によれば、アイドルストップ車や回生ブレーキシステム搭載車等に用いられるような低SOC領域で用いられる頻度が高い自動車用鉛蓄電池において、負極格子耳の腐食を抑制し、長寿命で信頼性の高い鉛蓄電池を提供することができることから、工業上、極めて有用である。   According to the lead acid battery of the present invention, in a lead acid battery for automobiles frequently used in a low SOC region such as used in an idle stop car or a car equipped with a regenerative brake system, corrosion of the negative electrode grid ear is suppressed, and a long life is achieved. In addition, it is possible to provide a highly reliable lead storage battery, which is extremely useful industrially.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。本発明の鉛蓄電池に用いる正極格子の母材は実質上Sbを含まない鉛合金により作成される。Sbを含まない鉛合金としては、強度および耐腐食性の面でPb−Ca−Sn合金を用いる。正極格子中のCaの量としては格子強度の観点から、0.03〜0.10質量%、Snの量としては格子強度および耐腐食性の観点より、0.60〜1.80質量%が適切であり、1.20〜1.80質量%であれば更に良い。なお、本発明において、正極格子中に、実質上Sbを含まないとは、0.002質量%以下を意味する。この程度の含有量
のSbが正極格子に含まれたとしても、負極にには移行せず、結果として負極における自己放電量や、電解液の減液といった鉛蓄電池のメンテナンスフリー性能に影響を与えることはない。
The best mode for carrying out the present invention will be described below with reference to the drawings. The base material of the positive electrode lattice used in the lead storage battery of the present invention is made of a lead alloy substantially free of Sb. As a lead alloy not containing Sb, a Pb—Ca—Sn alloy is used in terms of strength and corrosion resistance. The amount of Ca in the positive electrode lattice is 0.03 to 0.10% by mass from the viewpoint of lattice strength, and the amount of Sn is 0.60 to 1.80% by mass from the viewpoint of lattice strength and corrosion resistance. It is appropriate, and it is better if it is 1.20 to 1.80% by mass. In the present invention, the fact that the positive electrode lattice does not substantially contain Sb means 0.002 mass% or less. Even if this amount of Sb is contained in the positive electrode grid, it does not shift to the negative electrode, and as a result, it affects the self-discharge amount in the negative electrode and the maintenance-free performance of the lead-acid battery such as the reduction of the electrolyte. There is nothing.

また、格子の作成方法としては、従来から知られている鋳造格子、連続鋳造格子あるいは、上記鉛合金の圧延体にパンチング加工やエキスパンド加工を施した格子体を用いることができる。   In addition, as a method of creating a lattice, a conventionally known cast lattice, continuous cast lattice, or a lattice body obtained by subjecting a rolled body of the lead alloy to punching or expanding can be used.

上記の正極格子に正極活物質ペーストを充填後、熟成乾燥することにより、未化成状態の正極板を得る。なお、正極活物質ペーストとしては、従来から知られているように、鉛酸化物および金属鉛を成分とする鉛粉を水と希硫酸で練合して得ることができる。   After filling the positive electrode grid with the positive electrode active material paste, the positive electrode plate in an unformed state is obtained by aging and drying. As known in the art, the positive electrode active material paste can be obtained by kneading lead powder containing lead oxide and metal lead as components with water and dilute sulfuric acid.

次に、負極格子は母材合金として実質上Sbを含まない鉛合金により作成される。負極格子に連設される集電耳部におけるSbの存在は腐食の要因となるので、Sbは0.001質量%以下とする。また、この母材合金として、正極格子と同様のPb−Ca−Sn合金やPb−Ca合金を用いることができる。なお、Pb−Ca−Sn合金において、Snは前述のように、格子強度を向上したり、鋳造格子作成時の溶融鉛の湯流れ性を向上するので、0.2質量%〜0.6質量%程度添加してもよい。なお、負極格子中のCa量は正極と同様、格子強度を確保することを主目的として0.03〜0.10質量%添加する。   Next, the negative electrode lattice is made of a lead alloy substantially free of Sb as a base material alloy. Since the presence of Sb in the current collecting ear portion connected to the negative electrode grid causes corrosion, Sb is set to 0.001% by mass or less. Moreover, as this base material alloy, the same Pb-Ca-Sn alloy and Pb-Ca alloy as a positive electrode grid can be used. Note that, in the Pb—Ca—Sn alloy, Sn improves the lattice strength and improves the molten metal flowability of molten lead at the time of forming the cast lattice, as described above. About% may be added. The amount of Ca in the negative electrode lattice is 0.03 to 0.10% by mass for the main purpose of securing the lattice strength, as in the positive electrode.

本発明では、負極格子の負極活物質と接する表面の少なくとも一部にSbを含む表面層を形成する。なお、この表面層の形成方法として、負極格子の中骨表面にPb−Sb合金を溶射することができる。また、負極格子の母材合金スラブにPb−Sb合金箔を重ね合わせ、圧延一体化したシートをパンチング加工あるいはエキスパンド加工により、格子体を作成すればよい。   In the present invention, a surface layer containing Sb is formed on at least a part of the surface of the negative electrode grid contacting the negative electrode active material. As a method for forming this surface layer, a Pb—Sb alloy can be sprayed onto the inner surface of the negative electrode lattice. In addition, a Pb—Sb alloy foil is superposed on the base metal alloy slab of the negative electrode lattice, and a rolled and integrated sheet may be formed by punching or expanding.

また、本発明において、好ましくはこの表面層中のSb濃度を40〜500ppmとする。また、Pb−Sb合金箔を負極格子表面上に圧延時に貼り合わせる場合には、Pb−Sb合金箔中に1〜10質量%のSnを含むPb−Sn−Sb合金とすることが好ましい。Snの添加により、合金箔の機械的強度が向上するため、製造工程において合金箔が切断してしまうといった問題を回避できる。また、合金箔の機械的強度向上に伴い、合金箔と負極格子合金母材スラブとを圧延一体化する際、合金箔の張力をより高く設定できるため、合金箔の母材スラブ上での蛇行を抑制し、寸法精度を確保して両者を一体化できる。   In the present invention, the Sb concentration in the surface layer is preferably 40 to 500 ppm. Moreover, when bonding Pb-Sb alloy foil on the negative electrode lattice surface at the time of rolling, it is preferable to set it as the Pb-Sn-Sb alloy which contains 1-10 mass% Sn in Pb-Sb alloy foil. Since the mechanical strength of the alloy foil is improved by adding Sn, the problem that the alloy foil is cut in the manufacturing process can be avoided. In addition, as the mechanical strength of the alloy foil is improved, when the alloy foil and the negative electrode grid alloy base material slab are rolled and integrated, the tension of the alloy foil can be set higher, so that the meandering of the alloy foil on the base material slab Can be suppressed, and dimensional accuracy can be secured and both can be integrated.

また、合金箔の厚みは0.1〜0.2mm程度が取扱い上、好ましい。このような厚みの合金箔を10.0mm厚の母材合金スラブと重ね合わせ、最終厚みを0.8mmまで圧延した場合、0.8mmの圧延シート上に5.0〜10.0μm程度の厚みでPb−Sb層が形成される。   The thickness of the alloy foil is preferably about 0.1 to 0.2 mm for handling. When the alloy foil having such a thickness is overlapped with a base metal alloy slab having a thickness of 10.0 mm and rolled to a final thickness of 0.8 mm, the thickness is about 5.0 to 10.0 μm on a 0.8 mm rolled sheet. Thus, a Pb—Sb layer is formed.

上述により得た負極格子に負極活物質ペーストを充填し、熟成乾燥して未化成状態の負極板を作成する。負極活物質ペーストとして、従来から知られているような鉛粉を水、希硫酸で練合して得ることができる。また、負極活物質中に通常添加する、リグニン、硫酸バリウム、カーボン等の添加剤の添加ももちろん差し支えない。また、リグニンにかえて、ビスフェノールスルホン酸系化合物(例えば、日本製紙株式会社製ビスパース(商品名))を用いることができる。   The negative electrode grid obtained as described above is filled with a negative electrode active material paste and aged and dried to prepare an unformed negative electrode plate. As a negative electrode active material paste, a conventionally known lead powder can be obtained by kneading with water or dilute sulfuric acid. Of course, additives such as lignin, barium sulfate and carbon which are usually added to the negative electrode active material may be added. Further, in place of lignin, a bisphenolsulfonic acid compound (for example, Nippon Paper Industries Co., Ltd. Bispers (trade name)) can be used.

この負極板および上述の正極板とガラス繊維やポリプロピレン樹脂繊維等の耐酸性繊維で構成したマットセパレータもしくはポリエチレンセパレータとを組み合わせて極板群を構成する。この極板群を用いて鉛蓄電池を構成することにより、本発明の鉛蓄電池を得ることができる。   The negative electrode plate and the positive electrode plate described above are combined with a mat separator or polyethylene separator made of acid-resistant fibers such as glass fibers and polypropylene resin fibers to constitute an electrode plate group. The lead storage battery of this invention can be obtained by comprising a lead storage battery using this electrode group.

通常の公称電圧12Vの自動車用鉛蓄電池とする場合、上述の極板群の6個を電槽に収納し、極板群間を直列に接続した後、電槽開口部を蓋で覆うとともに、直列接続において両端に位置する極板群から導出した極柱を蓋にインサート成形された端子ブッシングに挿通し、端子ブッシングと極柱先端を溶接すれば良い。その後、蓋に設けた注液口より希硫酸電解液を注液して、化成充電を行うことにより、完成した蓄電池を得る。   When it is set as a lead acid battery for automobiles having a normal nominal voltage of 12 V, six of the electrode plate groups described above are housed in a battery case, and the electrode plate groups are connected in series, and then the battery case opening is covered with a lid, What is necessary is just to insert the pole pillar derived | led-out from the electrode group located in both ends in series connection in the terminal bushing insert-molded by the lid | cover, and to weld a terminal bushing and a pole pillar front-end | tip. Then, the completed storage battery is obtained by injecting dilute sulfuric acid electrolyte from the injection port provided in the lid, and performing chemical charging.

なお、Sbを含む表面層は負極格子耳部には形成せず、負極活物質と接する表面の少なくとも一部とする。好ましくは、Sbを含む表面層を形成する位置は蓄電池を構成したときに、負極格子の重力方向の下部とする。これは、以下に述べる理由による。   Note that the surface layer containing Sb is not formed on the negative electrode lattice tab but is at least part of the surface in contact with the negative electrode active material. Preferably, the position where the surface layer containing Sb is formed is the lower part in the gravitational direction of the negative electrode lattice when the storage battery is configured. This is for the reason described below.

深い充放電の繰返しにより、電解液中の硫酸濃度は重力方向下部が高く、重力方向上部が低くなる、成層化現象が発生する。硫酸濃度が高い部分では正・負極ともに硫酸鉛が蓄積しやすくなる。これは負極において特に顕著である。下部にSbを集中して配置すれば、下部での水素ガス発生が顕著になるので、水素ガス発生による液攪拌が行われ、成層化現象が解消しやすくなり、電池寿命に良い影響を与えるためである。   Due to repeated deep charge and discharge, the sulfuric acid concentration in the electrolytic solution causes a stratification phenomenon in which the lower part in the gravitational direction is higher and the upper part in the gravitational direction is lower. In areas where the sulfuric acid concentration is high, lead sulfate tends to accumulate in both positive and negative electrodes. This is particularly noticeable in the negative electrode. If Sb is concentrated in the lower part, hydrogen gas generation in the lower part becomes remarkable, so liquid agitation is performed by hydrogen gas generation, and the stratification phenomenon is easily eliminated, which has a positive effect on battery life. It is.

図1に正極箔、負極箔、箔貼付位置をパラメータとして鉛蓄電池を作成した時のサイクル寿命特性、耳腐食量、減液量を示す。   FIG. 1 shows the cycle life characteristics, the amount of ear corrosion, and the amount of liquid reduction when a lead-acid battery was prepared with the positive electrode foil, the negative electrode foil, and the foil attachment position as parameters.

電池形式はJIS D5301「始動用鉛蓄電池」に規定する34B19形鉛蓄電池(12V27Ah)とした。   The battery type was a 34B19 type lead acid battery (12V27Ah) defined in JIS D5301 “lead acid battery for starting”.

サイクル寿命特性試験はJIS D5301「始動用鉛蓄電池」に規定する軽負荷寿命試験を行った。   The cycle life characteristic test was a light load life test defined in JIS D5301 “Lead-Starting Storage Battery”.

耳腐食量(%)は、25A放電60秒と15V定電圧充電60秒とを150サイクル繰り返した後に、14.5Vの定電圧充電を1時間行い、6週間保存して、試験前後の耳部断面積の減少割合を比較している。さらに減液量は、40℃環境下において27A放電60秒と14.5V充電(最大電流27A)90秒とを500サイクル繰り返した後の電解液体積減量(%)を比較している。   The ear corrosion amount (%) was obtained by repeating 25 cycles of 60 seconds of 25A discharge and 60 seconds of 15V constant voltage charge, followed by 14.5 V constant voltage charge for 1 hour and storing for 6 weeks. The rate of decrease in cross-sectional area is compared. Furthermore, the amount of liquid reduction compares the volume reduction (%) of the electrolyte after 500 cycles of 27 A discharge 60 seconds and 14.5 V charge (maximum current 27 A) 90 seconds in a 40 ° C. environment.

同図の電池A、Bから、負極の表面層にSbを有していないと、サイクル寿命特性もしくは耳腐食量の点で特性が悪く、アイドルストップ車や回生ブレーキシステム搭載車等に用いられるような低SOC領域で用いられる頻度が高い自動車用鉛蓄電池において用いるには適していないことがわかる。   From the batteries A and B in the figure, if the surface layer of the negative electrode does not have Sb, the cycle life characteristic or the ear corrosion amount is poor, so that it can be used for an idle stop vehicle or a vehicle equipped with a regenerative brake system. It can be seen that it is not suitable for use in an automotive lead-acid battery that is frequently used in a low SOC region.

同図の電池C−1からC−5を見ると、負極表面層のSb量が増えるほどサイクル寿命特性が向上することがわかる。しかしながら、負極表面層のSb量が600ppmまで増えると耳腐食量及び減液量の面で若干劣る。従って、負極表面層のSb量は40ppm〜500ppmであることが特に好ましいことがわかる。   From the batteries C-1 to C-5 in the figure, it can be seen that the cycle life characteristics improve as the Sb amount of the negative electrode surface layer increases. However, when the amount of Sb in the negative electrode surface layer increases to 600 ppm, the ear corrosion amount and the liquid reduction amount are slightly inferior. Therefore, it can be seen that the Sb content of the negative electrode surface layer is particularly preferably 40 ppm to 500 ppm.

また、同図の電池C−6、C−7を比較すると、正極格子より高濃度のSnを含む正極表面層を形成することで、サイクル寿命特性が向上することがわかる。なお、耳腐食量及び減液量の点では変化はない。   In addition, when the batteries C-6 and C-7 in the figure are compared, it can be seen that the cycle life characteristics are improved by forming a positive electrode surface layer containing Sn at a higher concentration than the positive electrode lattice. There is no change in the amount of ear corrosion and liquid reduction.

図2に負極格子に負極表面層を設ける位置のイメージ図を示す。電池C−3とC−3−1〜C−3−3とを比較すると、その負極表面層を設ける位置により、特性に変化が出ることがわかる。負極格子の下部1/3に負極表面層を設けた場合、負極表面層を全面に設
けたものと遜色のないサイクル寿命特性を得ることができる。これは、下部にSbを集中して配置すれば、下部での水素ガス発生が顕著になるので、水素ガス発生による液攪拌が行われ、成層化現象が解消しやすくなり、電池寿命に良い影響を与えるためである。また、負極表面層を設ける位置を下部1/3のみとすれば、材料費を削減でき、電池製造コストを低減できる。
FIG. 2 shows an image diagram of a position where the negative electrode surface layer is provided on the negative electrode lattice. Comparing batteries C-3 and C-3-1 to C-3-3 shows that the characteristics change depending on the position where the negative electrode surface layer is provided. When the negative electrode surface layer is provided on the lower third of the negative electrode lattice, cycle life characteristics comparable to those provided on the entire surface of the negative electrode surface layer can be obtained. This is because, if Sb is concentrated in the lower part, hydrogen gas generation at the lower part becomes remarkable, so liquid agitation is performed by hydrogen gas generation, and the stratification phenomenon is easily eliminated, which has a positive effect on the battery life. Is to give. Further, if the position where the negative electrode surface layer is provided is only the lower third, the material cost can be reduced and the battery manufacturing cost can be reduced.

さらに、電池DからFを比較すると、負極表面層に含むSn量を1〜10質量%にしておくと、サイクル寿命特性の点で特に好ましいことがわかる。Sn量は10質量%を越えてもサイクル寿命特性の点で不都合はないが、製造コストの面で10%以下にすることが好ましい。   Further, when batteries D to F are compared, it is found that it is particularly preferable in terms of cycle life characteristics when the amount of Sn contained in the negative electrode surface layer is 1 to 10% by mass. Even if the Sn amount exceeds 10% by mass, there is no inconvenience in terms of cycle life characteristics, but it is preferably 10% or less in terms of production cost.

本発明によれば、負極格子耳の腐食を抑制し、長寿命で信頼性の高い鉛蓄電池を提供することができることから、アイドルストップ車や回生ブレーキシステム搭載車等に用いられるような低SOC領域で用いられる頻度が高い自動車用鉛蓄電池において有用である。   According to the present invention, it is possible to provide a lead-acid battery having a long life and high reliability by suppressing the corrosion of the negative electrode grid ear, and therefore, a low SOC region used in an idle stop vehicle, a vehicle equipped with a regenerative brake system, and the like. This is useful in lead-acid batteries for automobiles that are frequently used in

本発明と比較例とを示す特性図Characteristic diagram showing the present invention and a comparative example 負極格子に負極表面層を設ける位置のイメージ図Image of the position where the negative electrode surface layer is provided on the negative electrode grid

Claims (5)

Sbを含まない正極格子からなる正極板と、Sbを含まない負極格子で構成され負極活物質と接する表面の少なくとも一部にSbを含む負極表面層を形成する負極板と、前記正極・負極板間に介挿されたセパレータとからなる鉛蓄電池。   A positive electrode plate comprising a positive electrode lattice not containing Sb; a negative electrode plate comprising a negative electrode lattice not containing Sb and forming a negative electrode surface layer containing Sb on at least a part of the surface in contact with the negative electrode active material; and the positive electrode / negative electrode plate A lead-acid battery comprising a separator interposed therebetween. 負極表面層に含むSb量を40〜500ppmとすることを特徴とする請求項1記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the amount of Sb contained in the negative electrode surface layer is 40 to 500 ppm. 負極表面層にSnを1.0〜10.0質量%含む請求項1または2に記載の鉛蓄電池。   The lead acid battery of Claim 1 or 2 which contains Sn-10.0 mass% in a negative electrode surface layer. 負極表面層を負極格子の下部に設けたことを特徴とする請求項1〜3いずれかに記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 3, wherein a negative electrode surface layer is provided below the negative electrode grid. Pb−Ca−Sn合金からなる正極格子で構成され、正極活物質と接する表面の少なくとも一部に前記正極格子より高濃度のSnを含む正極表面層を形成したことを特徴とする請求項1〜4いずれかに記載の鉛蓄電池。

A positive electrode surface layer comprising a positive electrode lattice made of a Pb-Ca-Sn alloy and having a higher concentration of Sn than the positive electrode lattice is formed on at least a part of a surface in contact with the positive electrode active material. 4. Lead acid battery in any one of 4.

JP2004113827A 2004-04-08 2004-04-08 Lead storage battery Pending JP2005302395A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004113827A JP2005302395A (en) 2004-04-08 2004-04-08 Lead storage battery
KR1020067017135A KR101128586B1 (en) 2004-04-08 2005-04-07 Lead storage battery
EP05728390A EP1737062B1 (en) 2004-04-08 2005-04-07 Lead storage battery
CNB2005800104279A CN100446330C (en) 2004-04-08 2005-04-07 Lead storage battery
TW094110987A TWI254478B (en) 2004-04-08 2005-04-07 Lead-acid battery
US10/587,186 US8071239B2 (en) 2004-04-08 2005-04-07 Long life and low corrosion lead storage battery
DE602005009814T DE602005009814D1 (en) 2004-04-08 2005-04-07 lead-acid battery
PCT/JP2005/006869 WO2005099020A1 (en) 2004-04-08 2005-04-07 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113827A JP2005302395A (en) 2004-04-08 2004-04-08 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2005302395A true JP2005302395A (en) 2005-10-27

Family

ID=35333644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113827A Pending JP2005302395A (en) 2004-04-08 2004-04-08 Lead storage battery

Country Status (2)

Country Link
JP (1) JP2005302395A (en)
CN (1) CN100446330C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153464A1 (en) * 2011-05-12 2012-11-15 パナソニック株式会社 Lead-acid battery anode and lead-acid battery
JP2013140678A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery, battery system using the same and usage of liquid lead-acid battery
JP2014203678A (en) * 2013-04-05 2014-10-27 パナソニック株式会社 Lead storage battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
US10096862B2 (en) 2013-11-29 2018-10-09 Gs Yuasa International Ltd. Lead-acid battery
CN112542654A (en) * 2014-01-02 2021-03-23 达拉米克有限责任公司 Multilayer separator and methods of making and using

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077621A1 (en) * 2009-12-27 2011-06-30 テルモ株式会社 Electronic thermometer
WO2013031263A1 (en) * 2011-09-01 2013-03-07 新神戸電機株式会社 Lead storage cell
KR20150126903A (en) * 2013-03-07 2015-11-13 다라믹 엘엘씨 Laminated oxidation protected separator
CN106784536B (en) * 2017-01-22 2019-05-21 江西纳宇纳米新材料有限公司 A kind of preparation method of the AGM partition of high-specific surface area
CN107046119B (en) * 2017-01-22 2020-01-21 江西纳宇纳米新材料有限公司 AGM separator capable of dissolving out colloid and application thereof
CN106684297B (en) * 2017-01-22 2020-07-07 江西纳宇纳米新材料有限公司 AGM separator with high specific surface area and application thereof
CN106784540B (en) * 2017-01-22 2019-05-21 江西纳宇纳米新材料有限公司 A kind of preparation method of the AGM partition of high-specific surface area

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358508B2 (en) * 1997-09-09 2002-12-24 松下電器産業株式会社 Expanded grid for lead-acid battery
JP4686808B2 (en) * 2000-04-05 2011-05-25 パナソニック株式会社 Lead acid battery
JP4815665B2 (en) * 2000-11-27 2011-11-16 パナソニック株式会社 Lead acid battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153464A1 (en) * 2011-05-12 2012-11-15 パナソニック株式会社 Lead-acid battery anode and lead-acid battery
JP2013140678A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Liquid lead-acid battery, battery system using the same and usage of liquid lead-acid battery
JP2014203678A (en) * 2013-04-05 2014-10-27 パナソニック株式会社 Lead storage battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
US10096862B2 (en) 2013-11-29 2018-10-09 Gs Yuasa International Ltd. Lead-acid battery
CN112542654A (en) * 2014-01-02 2021-03-23 达拉米克有限责任公司 Multilayer separator and methods of making and using

Also Published As

Publication number Publication date
CN1938893A (en) 2007-03-28
CN100446330C (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP5079324B2 (en) Lead acid battery
JP4953600B2 (en) Lead acid battery
EP1717896B1 (en) Lead acid battery
EP3635805B1 (en) Lead-acid battery
WO2014162674A1 (en) Lead acid storage battery
JP2005302395A (en) Lead storage battery
JP2003151617A (en) Lead-acid battery
JP2008243493A (en) Lead acid storage battery
JP4647722B1 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
JP4904675B2 (en) Lead acid battery
JP4892827B2 (en) Lead acid battery
JP2006210059A (en) Lead acid storage battery
JP6197426B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP2006318658A (en) Lead-acid battery
JP4529707B2 (en) Lead acid battery
JP4470381B2 (en) Lead acid battery
JP4904686B2 (en) Lead acid battery
JP2005327491A (en) Lead-acid battery
JP4904674B2 (en) Lead acid battery
JP2019207786A (en) Lead acid battery
JP2005268061A (en) Lead storage cell