【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は鉛蓄電池に関するも
のである。
【0002】
【従来の技術】自動車用鉛蓄電池において、自動車のエ
ンジンが駆動する際、それに伴って作動するオルトネー
タが鉛蓄電池の充電と各部分への負荷の供給とを同時に
行っている。したがって、一般的には自動車用鉛蓄電池
は放電頻度が比較的低く、満充電状態に保たれているこ
とが多い。したがって、自動車用鉛蓄電池の使用条件は
全体として充電が主体のモードであり、鉛蓄電池もそれ
に適した設計がなされていた。
【0003】しかしながら、近年、環境汚染の問題が大
きくクローズアップされてきて、自動車の排気ガスを少
しでも低減する試みがされてきている。その一つとして
自動車の一時停止時にはエンジンをストップさせる、い
わゆる、アイドリングストップをすることが多くなって
きている。この場合には鉛蓄電池は充電されない。特
に、夜では安全確保のためにハザードランプおよび車幅
灯が点灯されるが、この負荷は100%鉛蓄電池から供
給しなければならない。配達車のように荷物の積み降ろ
し頻度の高いケースでは鉛蓄電池の負担はますます大き
くなる傾向にある。さらに、都市区域では配達区間の距
離が短いためオルトネータによる充電機会が少なくな
る。そういった場合、充電、放電のバランスが崩れ、従
来の使用モードに適した設計をされていた鉛蓄電池は不
適当で、短寿命や充電不足といった問題が発生するよう
になった。
【0004】
【発明が解決しようとする課題】自動車用鉛蓄電池にお
いて、自動車のアイドリングストップを伴う一時停止頻
度が多い使用条件によって生じる放電頻度の増加に起因
する短寿命および充電機会の減少による充電不足を解決
することにある。
【0005】
【発明が解決するための手段】鉛蓄電池での充・放電に
よる劣化原因は、正極活物質の軟化に起因する。特に、
深放電では軟化がより促進される。したがって、放電頻
度が高い場合や深放電がされる場合の短寿命を改善する
ためには正極活物質の軟化を抑制する必要がある。
【0006】また、一時停止のアイドリングストップの
増加による充電機会の減少から生ずる充電不足に対して
は充電効率の改善が必要である。
【0007】さらに、放電生成物である硫酸鉛は不導体
であるため充電不足が進行すると、この不導体層が蓄積
され充電がますます困難な状態になるのでその対策が必
要である。
【0008】本発明の特徴は、正極活物質密度を3.5
〜4.5g/cc、電解液を比重1.240〜1.26
0(20℃)および負極板の添加剤であるカーボン量を
負極活物質量当たり0.5〜2.0%の範囲とすること
により上記鉛蓄電池の劣化要因に対する防止策を施した
ところにある。
【0009】
【発明の実施の形態】本発明の鉛蓄電池は以下のような
実施形態を有している。
【0010】(1)高密度活物質を有する正極板を使用
すると共に極板当たりの活物質量を増加させる。
【0011】正極活物質は多孔体であり、極板内に空洞
が多く存在し、充・放電の繰り返しにおける活物質の体
積変化の影響を受け軟化しやすい傾向にある。
【0012】従来では活物質密度3.0〜3.4g/c
cの低密度の正極板が使用されており、活物質内により
多くの空洞を有しているので充・放電によって軟化しや
すい傾向にある。放電頻度が低く、充電が主体であれば
問題ないが、放電頻度が高くなると活物質の軟化速度が
速くなり、短寿命になる。本発明ではこのような問題を
解決するために3.5〜4.5g/ccの高密度活物質
を有する正極板を採用する。このことによって正極活物
質の多孔度が減少し、充・放電による活物質の体積変化
による活物質の軟化が抑制でき、長寿命特性が得られ
る。
【0013】上述したように高密度活物質は多孔度が低
く、長寿命化に有効であるが、その反面、活物質利用率
が低下し、容量低下を招く恐れがある。それを補うため
に、本発明では極板当たりの活物質量を増加させてい
る。
【0014】(2)電解液である希硫酸の比重を満充電
状態で1.24〜1.26(20℃)のもの使用する。
【0015】自動車での鉛蓄電池の充電は、定電圧充電
方式である。定電圧充電では、充電器の設定されている
充電電圧と蓄電池の起電力の差によって充電電流が規制
される。したがって、蓄電池の起電力の低い方が充電さ
れやすい。すなわち、充電効率がよい。
【0016】一方、蓄電池の起電力は電解液である希硫
酸の比重と相関性を有している。すなわち、比重が高け
れば、蓄電池の起電力が高くなる。従来は、比重1.2
8以上の電解液を使用していたのに対して本発明では、
1.24から1.26のものを使用するので蓄電池の起
電力が低くなり、充電電流が大きくなる、すなわち充電
効率が改善される。
【0017】(3)負極板へのカーボン添加量を0.5
〜2.0重量%にする。
【0018】鉛蓄電池を放電すると、正・負極板に不導
体の硫酸鉛が生成される。硫酸鉛が多くなればなるほど
その後の充電が困難になる。特に、負極板で生成される
硫酸鉛は緻密であるため正極板以上に問題が大きい。そ
の対策として以前から負極板にカーボンが添加されてい
る。カーボンが存在することで、そこを核に充電が開始
される。従来は、カーボンの添加量は0.5%未満であ
る。正常な放電状態であればこの量で十分に充電される
が、放電頻度が高く、充電機会の少ない条件で使用され
充電不足状態が慢性化した場合には、0.5%未満の添
加量では充電ができないケースが発生する。それを解決
するためにはカーボン添加量を増加させるのが有効であ
る。
【0019】添加量の範囲は、さらに添加量を増やして
も充電回復性は飽和状態であり0.5〜2.0%が適当
である。
【0020】
【実施例】本発明の実施例を以下に示す。
【0021】表1は本発明の実施例の具体的内容を従来
品と比較して示す。
【0022】
【表1】
【0023】表1に示す内容の自動車用鉛蓄電池を製作
し、重負荷条件の寿命試験の比較を行った。その結果を
図1に示す。
[試験条件]
放電:0.4CA×1h
充電:14.8V×2h
環境温度:40℃
なお、Cは蓄電池の定格容量、Aは電流の単位、アンペ
アー、hは時間をそれぞれ示す。
【0024】上記充・放電を39回行う毎に541Aで
30秒間放電を行い、30秒目の電圧を測定する。30
秒目の電圧が7.2Vをきった時点を寿命とする。
[試験結果]従来品が200サイクルで寿命になったのに
対して、本発明品は700サイクル以上の寿命を示し、
改善効果が顕著である。
【0025】以上のように、本発明品は、従来品に比べ
て充・放電サイクル性能が大幅に改善され、放電頻度の
高い使用条件下でも十分に耐えられることを示してい
る。
【0026】また、電解液比重1.260の採用によっ
て充電効率が改善され、さらにカーボンの添加量を0.
5%と多くしたことによってたとえ厳しい充電不足状態
になっても充電可能でアイドリングストップの頻度が高
い条件においても十分に使用できるといえる。
【0027】
【発明の効果】正極活物質の密度を高くすると共に、活
物質量を増加させ、電解液比重を低くし、負極活物質へ
のカーボン添加量を増加させることによって、自動車用
鉛蓄電池おいて、アイドリングストップを伴う一時停止
が頻繁に入る厳しい使用条件においても十分な性能が確
保でき、その工業的効果は大である。
【0028】Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead storage battery. 2. Description of the Related Art In an automotive lead-acid battery, when an automobile engine is driven, an alternator that operates accordingly simultaneously charges the lead-acid battery and supplies a load to each part. Therefore, in general, lead-acid batteries for automobiles have a relatively low discharge frequency and are often maintained in a fully charged state. Therefore, the use condition of the lead storage battery for an automobile is a mode in which charging is mainly performed as a whole, and the lead storage battery is also designed appropriately. However, in recent years, the problem of environmental pollution has been greatly highlighted, and attempts have been made to reduce the exhaust gas of automobiles even to a small extent. As one of them, the so-called idling stop, in which the engine is stopped when the vehicle is temporarily stopped, is increasing. In this case, the lead storage battery is not charged. In particular, at night, the hazard lamp and the vehicle width lamp are turned on for safety, but this load must be supplied from a 100% lead storage battery. In the case of frequently loading and unloading luggage such as a delivery car, the burden of the lead storage battery tends to be further increased. Further, in urban areas, the distance of the delivery section is short, so that the chance of charging by the alternator is reduced. In such a case, the balance between charge and discharge is lost, and a lead storage battery that has been designed to be suitable for the conventional use mode is inappropriate, causing problems such as short life and insufficient charge. [0004] In a lead-acid battery for automobiles, short life due to an increase in the frequency of discharge caused by usage conditions in which automobiles are frequently stopped with an idling stop, and insufficient charging due to a decrease in charging opportunities. Is to solve. [0005] The cause of deterioration due to charge / discharge in a lead storage battery is due to softening of the positive electrode active material. In particular,
In deep discharge, softening is further promoted. Therefore, it is necessary to suppress the softening of the positive electrode active material in order to improve the short life when the discharge frequency is high or when deep discharge is performed. [0006] Further, it is necessary to improve charging efficiency with respect to insufficient charging caused by a reduction in charging opportunities due to an increase in the idling stop of the temporary stop. [0007] Furthermore, lead sulphate, which is a discharge product, is a non-conductor, and if insufficient charging progresses, this non-conductive layer is accumulated and charging becomes more and more difficult. [0008] A feature of the present invention is that the positive electrode active material density is 3.5.
-4.5 g / cc, specific gravity of electrolyte solution 1.240-1.26
0 (20 ° C.) and the amount of carbon, which is an additive of the negative electrode plate, are in the range of 0.5 to 2.0% based on the amount of the negative electrode active material. . DESCRIPTION OF THE PREFERRED EMBODIMENTS A lead storage battery of the present invention has the following embodiments. (1) Use a positive electrode plate having a high-density active material and increase the amount of active material per electrode plate. [0011] The positive electrode active material is a porous material, has many cavities in the electrode plate, and tends to soften under the influence of the volume change of the active material during repeated charging and discharging. Conventionally, the active material density is 3.0 to 3.4 g / c.
Since a low-density positive electrode plate of c is used and the active material has more cavities, it tends to be softened by charging and discharging. There is no problem if the discharge frequency is low and the charge is mainly performed, but if the discharge frequency is high, the softening rate of the active material is increased and the life is shortened. In the present invention, in order to solve such a problem, a positive electrode plate having a high-density active material of 3.5 to 4.5 g / cc is employed. As a result, the porosity of the positive electrode active material decreases, softening of the active material due to volume change of the active material due to charge / discharge can be suppressed, and long life characteristics can be obtained. As described above, the high-density active material has a low porosity and is effective for prolonging the service life. However, on the other hand, there is a possibility that the utilization rate of the active material is reduced and the capacity is reduced. To compensate for this, the present invention increases the amount of active material per electrode plate. (2) The specific gravity of dilute sulfuric acid as an electrolyte is 1.24 to 1.26 (20 ° C.) in a fully charged state. The charging of a lead storage battery in an automobile is a constant voltage charging method. In constant voltage charging, the charging current is regulated by the difference between the charging voltage set by the charger and the electromotive force of the storage battery. Therefore, the lower the electromotive force of the storage battery is, the easier it is to charge. That is, the charging efficiency is good. On the other hand, the electromotive force of the storage battery has a correlation with the specific gravity of dilute sulfuric acid as an electrolyte. That is, the higher the specific gravity, the higher the electromotive force of the storage battery. Conventionally, specific gravity 1.2
Whereas in the present invention, eight or more electrolytes were used,
Since the battery of 1.24 to 1.26 is used, the electromotive force of the storage battery is reduced, and the charging current is increased, that is, the charging efficiency is improved. (3) The amount of carbon added to the negative electrode plate is 0.5
To 2.0% by weight. When the lead storage battery is discharged, nonconductive lead sulfate is generated on the positive and negative electrode plates. As the amount of lead sulfate increases, the subsequent charging becomes more difficult. In particular, lead sulfate produced on the negative electrode plate is dense, and thus has a greater problem than the positive electrode plate. As a countermeasure, carbon has been added to the negative electrode plate. The presence of carbon initiates charging around the nucleus. Conventionally, the amount of carbon added is less than 0.5%. In a normal discharge state, the battery is sufficiently charged with this amount. However, when the discharge frequency is high and the battery is used under the condition that the charge opportunity is small and the insufficient charge state becomes chronic, the addition amount of less than 0.5% is used. In some cases, charging cannot be performed. To solve this, it is effective to increase the amount of carbon added. Regarding the range of the addition amount, even if the addition amount is further increased, the charge recovery property is in a saturated state, and 0.5 to 2.0% is appropriate. Examples of the present invention will be described below. Table 1 shows the specific contents of the embodiment of the present invention in comparison with a conventional product. [Table 1] A lead storage battery for an automobile having the contents shown in Table 1 was manufactured, and life tests under heavy load conditions were compared. The result is shown in FIG. [Test conditions] Discharge: 0.4 CA × 1 h Charge: 14.8 V × 2 h Ambient temperature: 40 ° C. C indicates the rated capacity of the storage battery, A indicates the unit of current, ampere, and h indicates time. Each time the charging / discharging is performed 39 times, discharging is performed at 541 A for 30 seconds, and the voltage at the 30th second is measured. 30
The point in time when the second voltage falls below 7.2 V is defined as the life. [Test results] While the conventional product has a life of 200 cycles, the product of the present invention has a life of 700 cycles or more.
The improvement effect is remarkable. As described above, the product of the present invention is significantly improved in charge / discharge cycle performance as compared with the conventional product, and shows that the product can withstand sufficiently under use conditions in which the frequency of discharge is high. The use of an electrolyte specific gravity of 1.260 improves the charging efficiency, and further reduces the amount of added carbon to 0.1.
By setting it to be as high as 5%, it can be said that the battery can be charged even under severe shortage of charge and can be sufficiently used even under the condition that the frequency of idling stop is high. According to the present invention, by increasing the density of the positive electrode active material, increasing the amount of the active material, lowering the specific gravity of the electrolytic solution, and increasing the amount of carbon added to the negative electrode active material, a lead-acid battery for automobiles is obtained. In this case, sufficient performance can be ensured even under severe use conditions in which a temporary stop accompanied by idling stop frequently occurs, and the industrial effect is great. [0028]
【図面の簡単な説明】
【図1】重負荷での充・放電試験結果[Brief description of the drawings]
Fig. 1 Results of charge / discharge test under heavy load