JP4180819B2 - Lead-acid battery charging method - Google Patents

Lead-acid battery charging method Download PDF

Info

Publication number
JP4180819B2
JP4180819B2 JP2001363334A JP2001363334A JP4180819B2 JP 4180819 B2 JP4180819 B2 JP 4180819B2 JP 2001363334 A JP2001363334 A JP 2001363334A JP 2001363334 A JP2001363334 A JP 2001363334A JP 4180819 B2 JP4180819 B2 JP 4180819B2
Authority
JP
Japan
Prior art keywords
charging
charge
lead
refresh
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001363334A
Other languages
Japanese (ja)
Other versions
JP2003163034A (en
Inventor
宣行 高見
亜矢子 平尾
英則 横山
武 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001363334A priority Critical patent/JP4180819B2/en
Publication of JP2003163034A publication Critical patent/JP2003163034A/en
Application granted granted Critical
Publication of JP4180819B2 publication Critical patent/JP4180819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池の充電方法に関し、特に、自動車に搭載されて、エンジン始動、ライト点灯、さらには、カーナビゲーション等の車両用電子装置(電子負荷)の電源として好適に用いられる鉛蓄電池の充電方法に関する。
【0002】
【従来の技術】
自動車には、エンジンの始動、ライトの点灯等のために、2次電池である鉛蓄電池が搭載されている。鉛蓄電池は、正極活物質に二酸化鉛(PbO2)、負極活物質に海綿状鉛(Pb)、電解液に希硫酸(H2SO4)が用いられており、通常、走行時に、オルタネーターと称される全波整流三相交流発電機によって、SOC(State Of Charge:充電状態)がほぼ100%になるように、一定の充電電圧によって充電されるようになっている。
【0003】
近年では、エアーコンディショナー、カーナビゲーション等が自動車に搭載されることによって鉛蓄電池の負荷が増大している。このような負荷の増大に対処するために、および、自動車の燃費の向上を考慮して、例えば、車両の減速時に生じる回生エネルギーを鉛蓄電池に充電してエネルギーを有効利用するシステムが提案されている。また、車両の走行が停止された場合にエンジンを停止させるアイドルストップシステムにおいて、アイドルストップ時に、鉛蓄電池から、車両に搭載されたエアーコンディショナー、カーステレオ、カーナビゲーション等の電子負荷に対して電力を供給するシステム、アイドルストップ後のエンジンの再始動と共に鉛蓄電池によりモーター駆動による走行アシストを行うシステム等も提案されている。
【0004】
これらのシステムにおいて、鉛蓄電池に対して回生エネルギーによって充電する場合には、蓄電池のSOCが100%未満の部分充電状態になるようにする必要がある。
【0005】
すなわち、鉛蓄電池を小さな電流によって、SOCが100%以上の過充電状態になるまで充電すると、鉛蓄電池では、正極格子と正極活物質との界面に硫酸鉛の不動態が形成されて、早期に容量が低下するおそれがある。この場合には、充電生成物である正極の二酸化鉛、あるいは負極の海綿状鉛の粒子が粗くなって活物質の比表面積が減少し、これによっても、容量低下が起こりやすくなる。
【0006】
また、前述したように、車両の走行停止時にエンジンを停止するアイドルストップ後のエンジンの再始動と共に、鉛蓄電池によってモーターを駆動して走行をアシストする場合には、電子負荷に対して電力供給を行っている鉛蓄電池の放電負荷が非常に大きくなり、鉛蓄電池のSOCが大きく低下した状態になる。このようにSOCが大きく低下した状態からSOCが100%になるように鉛蓄電池を充電するためには、大電流にて充電する必要があり、しかも、大電流での充電を頻繁に繰り返す必要がある。
【0007】
しかしながら、鉛蓄電池を大きな電流でSOCが100%の過充電状態とするためには、充電時間が長く、充電効率が低下するおそれがある。しかも、このように、大電流での過充電を頻繁に繰り返すと、負極に放電生成物である硫酸鉛が蓄積して、鉛蓄電池の寿命が低下するおそれもある。
【0008】
このように、鉛蓄電池を回生充電する場合には、SOCが100%よりも低くなった部分充電状態とすることが好ましい。
【0009】
特開平7−111162号公報には、充電電流が1CA以上であって充電電気量が放電電気量を上回らないような充放電サイクルにおいて、200サイクル以内に1度の割合で、0.3CA以下の電流によって、実質的にSOCが100%となる過充電状態とする充電制御方法が提案されている。また、特開平7−11163号公報には、1CA以上の充電電流によって、充放電サイクルにおいて、充電電圧が2.5±0.05V/セルに達した時点で充電を打ち切るとともに、200サイクル以内の充放電サイクルに1度の割合で、0.3CA以下の電流によって、実質的にSOCが100%になる過充電状態とする充電制御方法が提案されている。
【0010】
【発明が解決しようする課題】
これらの公報にて提案されている鉛蓄電池の充電制御方法によれば、充電および放電を繰り返す充放電サイクルでは、SOCが100%未満に低く抑制されており、しかも、回生エネルギーによって充電しているために、正極および負極の活物質反応生成物である硫酸鉛の蓄積が生じて鉛蓄電池が劣化することは抑制される。また、充放電サイクルが200サイクルに達するまでに、小電流によって過充電状態となるようにリフレッシュ充電しているために、充電が実施されないことにより正極板および負極板に蓄積される硫酸鉛によって充電効率が損なわれることも抑制される。
【0011】
しかしながら、いずれの場合も、充放電サイクルが200サイクルに達するまでにリフレッシュ充電が実施されて、鉛蓄電池をSOCが100%以上の過充電状態としているために、充電時間が長くなるという問題がある。充電時間が長くなると、充放電サイクルが制限されるために、回生エネルギーによる充電時間、アイドルストップ後の走行開始時におけるトルクアシスト等の時間が制限されるおそれがあり、その結果、自動車の燃費を改善することができなくなる。また、鉛蓄電池を過充電状態とするためのリフレッシュ充電の頻度が多くなると、充電エネルギーによって正極格子が腐食して電池寿命が低下するおそれもある。
【0012】
本発明は、このような問題を解決するものであり、その目的は、過充電状態でない中間充電状態で充放電を繰り返す際に、短時間での効率のよいリフレッシュ充電によって、寿命が低下することを抑制することができる鉛蓄電池の充電方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明の鉛蓄電池の充電方法は、中間充電状態にある鉛蓄電池に対してリフレッシュ充電を行う鉛蓄電池の充電方法であって、前記中間充電状態は、前記鉛蓄電池のSOCが所定の第1の値未満である状態であり、前記鉛蓄電池は、前記中間充電状態において充放電を繰り返し、前記リフレッシュ充電は、前記中間充電状態にある前記鉛蓄電池のSOCが所定の第2の値に到達するまで行われ、前記所定の第2の値は、前記所定の第1の値以上100%未満の値である
好ましくは、前記所定の第1の値は、70%未満の値であり、前記所定の第2の値は、70%以上85%以下の値である。
好ましくは、前記リフレッシュ充電は、定電圧充電によって実施され、前記リフレッシュ充電は、充電電流が前記所定の第2の値に対応した所定の充電電流に到達することによって停止される。
好ましくは、前記リフレッシュ充電は、200サイクル以下の充放電サイクル毎に行われる。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
【0018】
本発明の鉛蓄電池の充電方法は、自動車に搭載された鉛蓄電池を充電するために実施される。鉛蓄電池は、車両に搭載された各種電子負荷に対して電力を供給するようになっており、オルタネーターと称される全波整流三相交流発電機から供給される電力によって充電される。鉛蓄電池は、例えば、電圧12V、18Ahの弁制御式鉛蓄電池(VRLA:Valve Regulated Lead Aced Battery)であり、正極活物質に二酸化鉛(PbO2)、負極活物質に海綿状鉛(Pb)、電解液に希硫酸(H2SO4)が用いられている。
【0019】
このような鉛蓄電池は、例えば、SOC(State Of Charge:充電状態)が70%未満の中間充電状態(PSOC:Partial State Of Charge)で、回生エネルギーによる充電と、自動車に搭載された各種電子負荷等に対して電力を供給する放電とを繰り返すようになっている。そして、このような充放電サイクルが200サイクル以下で、充放電サイクルが実施される中間充電状態のSOC70%以上であって100%未満のSOC、例えば、70%〜85%のSOCとなるように、リフレッシュ充電が実施される。
【0020】
リフレッシュ充電において、100%よりも小さなSOCになるように充電することにより、SOCを100%とする過充電状態に充電する場合に比べて、充電時間は著しく短縮される。このように、リフレッシュ充電の充電時間が短縮されることにより、回生エネルギーの回収、あるいは、アイドルストップ後のエンジン始動時および走行時のトルクアシスト等の実施時間が制限されることが抑制される。また、過充電による正極格子の腐食、過充電による電解液減少による寿命低下も改善することができる。
【0021】
さらに、このように短時間のリフレッシュ充電を、例えば、200サイクル以下の充放電サイクル毎に実施することにより、充放電サイクルにおける放電によって生成した硫酸鉛が、リフレッシュ充電毎に、負極では鉛と、正極では二酸化鉛とされ、硫酸鉛の偏在化および固定化するおそれがなく、硫酸鉛の偏在化および固定化することによる内部抵抗の上昇、放電能力の低下および寿命の低下を抑制することができる。
【0022】
次に、本発明の鉛蓄電池の充電方法におけるリフレッシュ充電の充電時間について説明する。まず、前述した制御弁式鉛蓄電池(VRLA:電圧12V、5時間率容量18Ah)を、5時間率放電によって、SOCが55%となったPSOC(Partial State Of Charge:中間充電状態)に調整した後に、環境温度40℃、充電電圧14.6V、最大充電電流35Aとして、SOCが70%以上85%以下になるように、定電圧充電(リフレッシュ充電)した結果を図1に示す。
【0023】
図1に示すように、リフレッシュ充電を開始してから5分が経過するまでは、最大充電電流35Aになっており、5分が経過した時点では、鉛蓄電池のSOCは、71.2%であった。充電を開始して5分が経過した後には、充電電流は順次低下しており、10分後には、鉛蓄電池のSOCは83.4%になった。その後は、充電時間に対するSOCの上昇が抑制され、充電開始から30分たっても、SOCは95%であり、SOCを100%とするために、約90分の時間が必要であった。
【0024】
従って、SOCが55%の鉛蓄電池を、SOCが70%〜85%とするために要する充電時間は、5〜10分程度でよく、リフレッシュ充電は短時間で終了する。なお、充電電圧および最大充電電流を変化させて、鉛蓄電池を充電する場合にも、70%以上85%以下のSOCとするために要する充電時間は、ほとんど変化しない。
【0025】
リフレッシュ充電において、鉛蓄電池のSOCを、70%〜85%とするためには、例えば、SOCが70%以上になる場合の充電電流を予め求めておいて、リフレッシュ充電を開始した後に、最大充電電流から予め求められたその充電電流になるまで充電を行って、その充電電流になった時点で充電を終了すればよい。
【0026】
次に、本発明の充電方法と電池寿命との関係について説明する。前述したVRLA(制御弁式鉛蓄電池:電圧12V、5時間率容量18Ah)を、5時間率放電によって、SOCを65%に調整して充放電サイクルを実施した。この場合の放電は、1CA相当の電流で18秒とした。また、充電は、環境温度40℃、充電電圧14.6V、最大充電電流5CAの条件で5秒間にわたって定電圧充電した。このような充放電サイクルを繰り返すとともに、200サイクル毎に5分間にわたるリフレッシュ充電を実施して、SOCを70%以上とした。この場合に、100サイクルの充放電サイクル毎に、5CA相当の電流で5秒間にわたって放電して5秒目の電圧を測定した。結果を、図2のグラフに、実施例1「a−1」として示す。また、100サイクルの充放電サイクル毎に測定される放電5秒目の放電電圧が7.2Vになったときを電池寿命とした。
【0027】
比較のために、3000サイクルの充放電サイクル毎に10分間のリフレッシュ充電を実施した場合の測定結果を、図2のグラフに、比較例1「b−1」として示す。そして、この場合の電池寿命を、寿命指数100としたところ、実施例1「a−1」における鉛蓄電池の寿命指数は、300であった。
【0028】
同様に、実施例2として、200サイクルの充放電サイクル毎に10分間のリフレッシュ充電を実施して、SOCを70%以上85%以下としたこと以外は、実施例1と同様にして、100サイクルの充放電サイクル毎に放電5秒目の放電電圧を測定した。その測定結果を、図2のグラフに、実施例2「a−2」として示す。この場合の寿命指数は、300以上であった。
【0029】
比較のために、リフレッシュ充電を全く実施しないこと以外は、比較例と同様にした場合の測定結果を、図2のグラフに、比較例2「b−2」として示す。この場合の寿命指数は、50程度であった。
【0030】
さらに、比較のために、3000サイクルの充放電サイクル毎に5分間にわたるリフレッシュ充電を実施して、SOCを70%以上85%以下としたこと以外は、実施例1と同様にして、100サイクルの充放電サイクル毎に放電5秒目の放電電圧を測定した。その測定結果を、図3のグラフに、比較例3「b−3」として示す。この場合の寿命指数は、100よりも小さくなっていた。
【0031】
また、参考のために、3000サイクルの充放電サイクル毎に30分間にわたるリフレッシュ充電を実施して、SOCを85より大きくしたこと以外は、実施例1と同様にして、100サイクルの充放電サイクル毎に放電5秒目の放電電圧を測定した。その測定結果を、図2のグラフに、参考例1「c−1」として示す。この場合は、寿命指数は300以上になるが、リフレッシュ充電が30分と長くなるために、充電効率が低下していた。
【0032】
さらに、参考のために、200サイクルの充放電サイクル毎に30分間にわたるリフレッシュ充電を実施して、SOCを85より大きくしたこと以外は、実施例1と同様にして、100サイクルの充放電サイクル毎に放電5秒目の放電電圧を測定した。その測定結果を、図3のグラフに、参考例2「c−2」として示す。この場合も、寿命指数は300以上になるが、リフレッシュ充電が30分と長くなるために、充電効率が低下していた。なお、図3のグラフに、実施例1「a−1」および実施例「a−2」を併記する。
【0033】
また、参考例3として、3000サイクルの充放電サイクル毎に90分間にわたるリフレッシュ充電を実施して、SOCをほぼ100としたこと以外は、実施例1と同様にして、100サイクルの充放電サイクル毎に放電5秒目の放電電圧を測定した結果を、図3のグラフに、参考例3「c−3」として示す。同様に、参考例4として、200サイクルの充放電サイクル毎に90分間にわたるリフレッシュ充電を実施して、SOCをほぼ100としたこと以外は、実施例1と同様にした測定結果を、図3のグラフに、参考例4「c−4」として示す。いずれの場合も、鉛蓄電池の寿命指数は300以上になるが、リフレッシュ充電が長くなるために、充電効率が低下していた。
【0034】
このように、鉛蓄電池を70%未満の中間充填状態として、充放電サイクルを繰り返す際に、200サイクル以下の充放電サイクル毎に、SOCが70%〜85%になるようにリフレッシュ充電することによって、硫酸塩の偏在等による寿命低下を防ぐことができる。しかも、リフレッシュ充電に要する充電時間も短くなるために、充放電サイクルにおける回生エネルギーによる充電時間および電子負荷への電力供給等の放電時間が制限されるおそれがない。
【0035】
【発明の効果】
本発明の鉛蓄電池の充電制御方法は、このように、5分〜10分程度の短時間のリフレッシュ充電によって、硫酸鉛の偏在などによる電池寿命の低下等を抑制することができる。しかも、リフレッシュ充電の充電効率が向上するために、充放電サイクルにおける回生充電および電力供給が制限されることが抑制される。従って、その工業的価値は、極めて大きい。
【図面の簡単な説明】
【図1】本発明の鉛蓄電池の充電方法におけるリフレッシュ充電時の充電電流と時間との関係を示すグラフである。
【図2】本発明の鉛蓄電池の充電方法におけるリフレッシュ充電と電池寿命との関係を示すグラフである。
【図3】本発明の鉛蓄電池の充電方法におけるリフレッシュ充電と電池寿命との関係を示すグラフである。
【符号の説明】
a−1 実施例1
a−2 実施例2
b−1 比較例1
b−2 比較例2
b−3 比較例3
c−1 参考例1
c−2 参考例2
c−3 参考例3
c−4 参考例4
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for charging a lead storage battery, in particular, a lead storage battery that is mounted on an automobile and is suitably used as a power source for an electronic device for a vehicle (electronic load) such as engine starting, light lighting, and car navigation. It relates to a charging method.
[0002]
[Prior art]
A lead-acid battery, which is a secondary battery, is mounted on an automobile to start an engine, turn on a light, and the like. Lead storage batteries use lead dioxide (PbO 2 ) as the positive electrode active material, spongy lead (Pb) as the negative electrode active material, and dilute sulfuric acid (H 2 SO 4 ) as the electrolyte. A so-called full-wave rectification three-phase AC generator is charged with a constant charging voltage so that the SOC (State Of Charge) is almost 100%.
[0003]
In recent years, the load of lead-acid batteries has increased due to the mounting of air conditioners, car navigation systems and the like on automobiles. In order to cope with such an increase in load and in consideration of improvement in fuel efficiency of a vehicle, for example, a system has been proposed in which regenerative energy generated during deceleration of a vehicle is charged to a lead storage battery to effectively use the energy. Yes. In addition, in an idle stop system that stops the engine when the vehicle is stopped, power is supplied from the lead storage battery to an electronic load such as an air conditioner, a car stereo, or a car navigation mounted on the vehicle during the idle stop. There are also proposed a supply system, a system that assists driving by a motor using a lead-acid battery together with restarting the engine after an idle stop.
[0004]
In these systems, when the lead storage battery is charged by regenerative energy, it is necessary to make the storage battery have a partially charged state in which the SOC of the storage battery is less than 100%.
[0005]
That is, when a lead storage battery is charged with a small current until the SOC reaches an overcharged state of 100% or more, in the lead storage battery, a lead sulfate passivation is formed at the interface between the positive electrode grid and the positive electrode active material, and the Capacity may be reduced. In this case, particles of the positive electrode lead dioxide or the negative electrode spongy lead, which are the charge products, become coarse and the specific surface area of the active material is reduced, which also causes a reduction in capacity.
[0006]
In addition, as described above, when driving the motor with a lead-acid battery to assist the running with the restart of the engine after the idling stop that stops the engine when the running of the vehicle is stopped, the electric load is supplied with electric power. The discharge load of the lead storage battery currently performed becomes very large, and the SOC of the lead storage battery is greatly reduced. Thus, in order to charge the lead storage battery so that the SOC becomes 100% from the state where the SOC is greatly reduced, it is necessary to charge with a large current, and it is necessary to frequently charge with a large current. is there.
[0007]
However, in order to bring the lead-acid battery into an overcharged state with a large current and an SOC of 100%, the charging time is long and the charging efficiency may be reduced. In addition, if overcharging with a large current is frequently repeated in this manner, lead sulfate as a discharge product accumulates on the negative electrode, which may reduce the life of the lead-acid battery.
[0008]
Thus, when regeneratively charging a lead storage battery, it is preferable to set it as the partial charge state in which SOC became lower than 100%.
[0009]
In JP-A-7-111162, in a charge / discharge cycle in which the charge current is 1 CA or more and the charge electricity amount does not exceed the discharge electricity amount, 0.3 CA or less at a rate of 1 degree within 200 cycles. A charge control method has been proposed in which an overcharge state is obtained in which the SOC is substantially 100% by current. Japanese Patent Laid-Open No. 7-11163 discloses that charging is stopped when the charging voltage reaches 2.5 ± 0.05 V / cell in a charging / discharging cycle with a charging current of 1 CA or more, and within 200 cycles. There has been proposed a charge control method in which an overcharge state in which the SOC becomes substantially 100% by a current of 0.3 CA or less at a rate of once in a charge / discharge cycle.
[0010]
[Problems to be solved by the invention]
According to the charge control method for a lead storage battery proposed in these publications, in a charge / discharge cycle in which charging and discharging are repeated, the SOC is suppressed to less than 100%, and charging is performed by regenerative energy. Therefore, accumulation of lead sulfate, which is an active material reaction product of the positive electrode and the negative electrode, is prevented from deteriorating the lead storage battery. In addition, refresh charging is performed so as to be overcharged by a small current until the charging / discharging cycle reaches 200 cycles. Therefore, charging is not performed and charging is performed by lead sulfate accumulated in the positive electrode plate and the negative electrode plate. It is suppressed that efficiency is impaired.
[0011]
However, in any case, the refresh charge is performed before the charge / discharge cycle reaches 200 cycles, and the lead storage battery is in an overcharged state with an SOC of 100% or more, so that there is a problem that the charge time becomes long. . If the charging time is long, the charging / discharging cycle is limited, so there is a risk that the charging time due to regenerative energy, torque assist at the start of driving after idle stop, etc. may be limited. It becomes impossible to improve. In addition, when the frequency of refresh charging for bringing the lead storage battery into an overcharged state is increased, the positive electrode grid may be corroded by the charging energy and the battery life may be reduced.
[0012]
The present invention solves such a problem, and its purpose is to shorten the life by efficient refresh charging in a short time when charging and discharging are repeated in an intermediate charging state that is not an overcharged state. It is in providing the charge method of the lead storage battery which can suppress it.
[0013]
[Means for Solving the Problems]
A method for charging a lead storage battery according to the present invention is a method for charging a lead storage battery in which refresh charging is performed on a lead storage battery in an intermediate charge state, wherein the intermediate charge state includes a first predetermined SOC of the lead storage battery. The lead storage battery is repeatedly charged and discharged in the intermediate charging state, and the refresh charging is performed until the SOC of the lead storage battery in the intermediate charging state reaches a predetermined second value. The predetermined second value is a value that is greater than or equal to the predetermined first value and less than 100% .
Preferably, the predetermined first value is a value less than 70%, and the predetermined second value is a value between 70% and 85%.
Preferably, the refresh charging is performed by constant voltage charging, and the refresh charging is stopped when a charging current reaches a predetermined charging current corresponding to the predetermined second value.
Preferably, the refresh charging is performed every charging / discharging cycle of 200 cycles or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0018]
The charging method of the lead acid battery of this invention is implemented in order to charge the lead acid battery mounted in the motor vehicle. The lead storage battery supplies electric power to various electronic loads mounted on the vehicle, and is charged by electric power supplied from a full-wave rectification three-phase AC generator called an alternator. The lead acid battery is, for example, a valve-regulated lead accumulator (VRLA) having a voltage of 12 V and 18 Ah, lead dioxide (PbO 2 ) as a positive electrode active material, and spongy lead (Pb) as a negative electrode active material, Dilute sulfuric acid (H 2 SO 4 ) is used for the electrolytic solution.
[0019]
Such a lead storage battery is, for example, in an intermediate charge state (PSOC: Partial State Of Charge) with an SOC (State Of Charge) of less than 70%, charging with regenerative energy, and various electronic loads mounted on an automobile. And the like, and the discharge for supplying electric power to the same is repeated. And, such a charge / discharge cycle is 200 cycles or less, so that the SOC is 70% or more and less than 100% SOC in the intermediate charge state in which the charge / discharge cycle is performed, for example, 70% to 85% SOC. Refresh charging is performed.
[0020]
In refresh charging, charging is performed so that the SOC is smaller than 100%, so that the charging time is remarkably shortened as compared with the case of charging in an overcharged state where the SOC is 100%. As described above, by shortening the charging time for the refresh charging, it is possible to suppress the time for performing the recovery of regenerative energy or the torque assist at the time of engine start and running after the idle stop. In addition, corrosion of the positive electrode grid due to overcharging, and life reduction due to electrolyte reduction due to overcharging can also be improved.
[0021]
Furthermore, by performing refresh charging for such a short time every charge / discharge cycle of 200 cycles or less, for example, lead sulfate generated by discharge in the charge / discharge cycle is changed to lead at the negative electrode for each refresh charge, In the positive electrode, lead dioxide is used, and there is no fear that lead sulfate is unevenly distributed and fixed, and it is possible to suppress an increase in internal resistance, a decrease in discharge capacity, and a decrease in life due to the uneven distribution and fixation of lead sulfate. .
[0022]
Next, the charge time of the refresh charge in the charge method of the lead acid battery of this invention is demonstrated. First, the above-described control valve type lead-acid battery (VRLA: voltage 12V, 5 hour rate capacity 18Ah) was adjusted to PSOC (Partial State Of Charge) in which the SOC became 55% by 5 hour rate discharge. Later, FIG. 1 shows the result of constant voltage charging (refresh charging) so that the SOC is 70% or more and 85% or less at an environmental temperature of 40 ° C., a charging voltage of 14.6 V, and a maximum charging current of 35 A.
[0023]
As shown in FIG. 1, the maximum charging current is 35 A until 5 minutes have passed since the start of refresh charging. At the time when 5 minutes have elapsed, the SOC of the lead-acid battery is 71.2%. there were. After 5 minutes have passed since the start of charging, the charging current gradually decreased, and after 10 minutes, the SOC of the lead storage battery was 83.4%. Thereafter, the increase in the SOC with respect to the charging time was suppressed, and even after 30 minutes from the start of charging, the SOC was 95%, and it took about 90 minutes to make the SOC 100%.
[0024]
Therefore, the charge time required for a lead storage battery with an SOC of 55% to have an SOC of 70% to 85% may be about 5 to 10 minutes, and the refresh charge is completed in a short time. Even when the lead storage battery is charged by changing the charging voltage and the maximum charging current, the charging time required to obtain an SOC of 70% or more and 85% or less hardly changes.
[0025]
In the refresh charging, in order to set the SOC of the lead storage battery to 70% to 85%, for example, the charging current when the SOC becomes 70% or more is obtained in advance, and after the refresh charging is started, the maximum charging is performed. Charging is performed until the charging current obtained in advance from the current is reached, and charging is terminated when the charging current is reached.
[0026]
Next, the relationship between the charging method of the present invention and the battery life will be described. The above-mentioned VRLA (control valve type lead-acid battery: voltage 12 V, 5 hour rate capacity 18 Ah) was subjected to a charge / discharge cycle with SOC adjusted to 65% by 5 hour rate discharge. The discharge in this case was 18 seconds with a current equivalent to 1 CA. The charging was performed at a constant voltage for 5 seconds under the conditions of an environmental temperature of 40 ° C., a charging voltage of 14.6 V, and a maximum charging current of 5 CA. While repeating such a charge / discharge cycle, refresh charge over 5 minutes was performed every 200 cycles, so that the SOC was 70% or more. In this case, every 100 charge / discharge cycles, the battery was discharged at a current equivalent to 5 CA for 5 seconds, and the voltage at the 5th second was measured. The results are shown as Example 1 “a-1” in the graph of FIG. Further, the battery life was defined as the discharge voltage at discharge 5 seconds measured every 100 charge / discharge cycles being 7.2V.
[0027]
For comparison, the measurement result when refresh charging for 10 minutes is performed every 3000 charge / discharge cycles is shown as Comparative Example 1 “b-1” in the graph of FIG. 2. And when the battery life in this case was made into the life index 100, the life index of the lead acid battery in Example 1 “a-1” was 300.
[0028]
Similarly, as Example 2, 100 cycles were performed in the same manner as in Example 1 except that refresh charging was performed for 10 minutes every 200 charge / discharge cycles, and the SOC was set to 70% to 85%. The discharge voltage at the 5th discharge was measured for each charge / discharge cycle. The measurement result is shown as Example 2 “a-2” in the graph of FIG. The life index in this case was 300 or more.
[0029]
For comparison, the measurement result in the same manner as in the comparative example except that no refresh charging is performed is shown as a comparative example 2 “b-2” in the graph of FIG. In this case, the life index was about 50.
[0030]
For comparison, 100 cycles of 100 cycles were performed in the same manner as in Example 1 except that refresh charging was performed for 5 minutes every 3000 charge / discharge cycles, and the SOC was set to 70% to 85%. The discharge voltage at the fifth discharge was measured for each charge / discharge cycle. The measurement result is shown as Comparative Example 3 “b-3” in the graph of FIG. The life index in this case was smaller than 100.
[0031]
Further, for reference, every 100 charge / discharge cycles are performed in the same manner as in Example 1 except that refresh charge is performed for 30 minutes every 3000 charge / discharge cycles, and the SOC is larger than 85. The discharge voltage at 5 seconds after discharge was measured. The measurement results are shown as Reference Example 1 “c-1” in the graph of FIG. In this case, the life index is 300 or more, but the refresh charge is as long as 30 minutes, so that the charging efficiency is lowered.
[0032]
Further, for reference, refresh charge is performed for 30 minutes for every 200 charge / discharge cycles, and the SOC is made larger than 85, and the charge / discharge cycle is repeated every 100 charge / discharge cycles in the same manner as in Example 1. The discharge voltage at 5 seconds after discharge was measured. The measurement results are shown as Reference Example 2 “c-2” in the graph of FIG. In this case as well, the life index is 300 or more, but the refresh charge is as long as 30 minutes, so the charging efficiency is reduced. In addition, Example 1 "a-1" and Example "a-2" are written together on the graph of FIG.
[0033]
Further, as Reference Example 3, every charge / discharge cycle of 100 cycles was performed in the same manner as Example 1 except that refresh charge was performed for 90 minutes every charge / discharge cycle of 3000 cycles, and the SOC was set to almost 100. The results of measuring the discharge voltage at 5 seconds after discharge are shown as Reference Example 3 “c-3” in the graph of FIG. Similarly, as Reference Example 4, a refresh charge over 90 minutes was performed every 200 charge / discharge cycles, and the measurement result was the same as that of Example 1 except that the SOC was approximately 100. This is shown in the graph as Reference Example 4 “c-4”. In either case, the life index of the lead-acid battery is 300 or more, but the charging efficiency is lowered because the refresh charge becomes longer.
[0034]
In this way, when the charge storage / discharge cycle is repeated with the lead-acid battery in an intermediate filling state of less than 70%, refresh charging is performed so that the SOC becomes 70% to 85% every charge / discharge cycle of 200 cycles or less. Further, it is possible to prevent a decrease in life due to uneven distribution of sulfate. In addition, since the charging time required for refresh charging is also shortened, there is no possibility that the charging time due to regenerative energy in the charging / discharging cycle and the discharging time such as power supply to the electronic load are limited.
[0035]
【The invention's effect】
Thus, the charge control method for a lead storage battery according to the present invention can suppress a decrease in battery life due to uneven distribution of lead sulfate or the like, by refresh charging in a short time of about 5 to 10 minutes. In addition, since the charging efficiency of refresh charging is improved, it is possible to suppress regenerative charging and power supply in the charge / discharge cycle. Therefore, its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between charging current and time during refresh charging in a lead storage battery charging method of the present invention.
FIG. 2 is a graph showing the relationship between refresh charging and battery life in the method for charging lead-acid batteries of the present invention.
FIG. 3 is a graph showing the relationship between refresh charging and battery life in the method for charging lead-acid batteries of the present invention.
[Explanation of symbols]
a-1 Example 1
a-2 Example 2
b-1 Comparative Example 1
b-2 Comparative Example 2
b-3 Comparative Example 3
c-1 Reference Example 1
c-2 Reference Example 2
c-3 Reference Example 3
c-4 Reference Example 4

Claims (4)

中間充電状態にある鉛蓄電池に対してリフレッシュ充電を行う鉛蓄電池の充電方法であって、
前記中間充電状態は、前記鉛蓄電池のSOCが所定の第1の値未満である状態であり、前記鉛蓄電池は、前記中間充電状態において充放電を繰り返し、
前記リフレッシュ充電は、前記中間充電状態にある前記鉛蓄電池のSOCが所定の第2の値に到達するまで行われ、前記所定の第2の値は、前記所定の第1の値以上100%未満の値である、鉛蓄電池の充電方法。
A lead storage battery charging method for performing refresh charging on a lead storage battery in an intermediate charge state,
The intermediate charge state is a state where the SOC of the lead storage battery is less than a predetermined first value, and the lead storage battery repeats charging and discharging in the intermediate charge state,
The refresh charging is performed until the SOC of the lead storage battery in the intermediate charge state reaches a predetermined second value, and the predetermined second value is not less than the predetermined first value and less than 100%. The lead acid battery charging method , which is the value of .
前記所定の第1の値は、70%未満の値であり前記所定の第2の値は、70%以上85%以下の値である請求項1に記載の鉛蓄電池の充電方法。 Said predetermined first value is a value of less than 70%, the predetermined second value is a value of 85% or less 70%, the charging method for lead acid battery according to claim 1. 前記リフレッシュ充電は、定電圧充電によって実施され、前記リフレッシュ充電は、充電電流が前記所定の第2の値に対応した所定の充電電流に到達することによっ停止される請求項1または2に記載の鉛蓄電池の充電方法。 The refresh charge is performed by constant voltage charging, the refresh charge, depending on the charging current reaches a predetermined charging current corresponding to the predetermined second value is stopped, according to claim 1 or 2 Charge method of lead acid battery as described in 2. 前記リフレッシュ充電は、200サイクル以下の充放電サイクル毎に行われる請求項1〜3のいずれかに記載の鉛蓄電池の充電方法。 The refresh charge is 200 cycles are performed for each following charge and discharge cycles, charging method for lead acid battery according to claim 1.
JP2001363334A 2001-11-28 2001-11-28 Lead-acid battery charging method Expired - Lifetime JP4180819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363334A JP4180819B2 (en) 2001-11-28 2001-11-28 Lead-acid battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363334A JP4180819B2 (en) 2001-11-28 2001-11-28 Lead-acid battery charging method

Publications (2)

Publication Number Publication Date
JP2003163034A JP2003163034A (en) 2003-06-06
JP4180819B2 true JP4180819B2 (en) 2008-11-12

Family

ID=19173694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363334A Expired - Lifetime JP4180819B2 (en) 2001-11-28 2001-11-28 Lead-acid battery charging method

Country Status (1)

Country Link
JP (1) JP4180819B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953600B2 (en) * 2005-08-29 2012-06-13 古河電池株式会社 Lead acid battery
CN102074765B (en) * 2010-12-21 2012-10-17 江苏永达电源股份有限公司 Charging process for prolonging cycle life of lead acid battery

Also Published As

Publication number Publication date
JP2003163034A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
CN105936248B (en) Power supply system
CN102237706B (en) Power supply unit having plurality of secondary batteries
US20120098501A1 (en) Efficient lead acid battery charging
JP6073901B2 (en) Vehicle battery system and vehicle equipped with the same
CN109314399B (en) Vehicle-mounted power supply system
JP4055565B2 (en) Storage battery control method
Yahmadi et al. Failures analysis and improvement lifetime of lead acid battery in different applications
Moseley et al. Partial state-of-charge duty: A challenge but not a show-stopper for lead-acid batteries!
CN105191057A (en) Charging system for vehicle and vehicle including same
JP2003151617A (en) Lead-acid battery
JP2005302395A (en) Lead storage battery
JP3839382B2 (en) Control device for in-vehicle power storage device
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle
JP4180819B2 (en) Lead-acid battery charging method
JP2004248465A (en) Apparatus and method for controlling charging of battery
JP4715075B2 (en) Control valve type lead acid battery
Manjitha et al. Lead acid based low voltage mild hybrid application in India—merits and challenges
JP4566334B2 (en) Charge / discharge control method and charge / discharge control device for lead-acid battery
JP2005067293A (en) Control method for lead storage battery
JP2003346913A (en) Control method for lead storage battery
JP2003052129A (en) Battery-charging method
JP2003164073A (en) Charging and discharging device
JP6956698B2 (en) Liquid lead-acid battery
JP2015214167A (en) Vehicular battery system and vehicle equipped with the same
JP2006079973A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Ref document number: 4180819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term