JP4055565B2 - Storage battery control method - Google Patents

Storage battery control method Download PDF

Info

Publication number
JP4055565B2
JP4055565B2 JP2002354090A JP2002354090A JP4055565B2 JP 4055565 B2 JP4055565 B2 JP 4055565B2 JP 2002354090 A JP2002354090 A JP 2002354090A JP 2002354090 A JP2002354090 A JP 2002354090A JP 4055565 B2 JP4055565 B2 JP 4055565B2
Authority
JP
Japan
Prior art keywords
soc
storage battery
range
control method
soc range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002354090A
Other languages
Japanese (ja)
Other versions
JP2004186087A (en
Inventor
一宏 杉江
利弘 井上
省三 室地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002354090A priority Critical patent/JP4055565B2/en
Publication of JP2004186087A publication Critical patent/JP2004186087A/en
Application granted granted Critical
Publication of JP4055565B2 publication Critical patent/JP4055565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はハイブリッド車両のようにエンジン等の他の動力源を用いて発電した電力や、燃料電池や太陽電池のような他の独立電源からの電力と二次電池からの電力を組み合せた電源システムにおける蓄電池の制御方法に関するものである。
【0002】
【従来の技術】
従来、車両に搭載される蓄電池はエンジンの始動、ライトの点灯、エアコンの駆動等に使用されており、車両の走行時には電池の充電状態(SOC:ステップState of Charge)は100%(満充電状態)となるように規定された電圧によって、定電圧充電されていた。
【0003】
近年、エンジンからの動力に加えてモータ動力で走行するハイブリッド車が燃費改善を目的として開発、実用化されている。このハイブリッド車では燃費をさらに改善するために、減速時のエネルギーを電気エネルギーに変換して蓄電池に蓄える回生充電システムが実用化されている。このような回生充電を効率よく行なうためには、蓄電池のSOCを100%未満の部分充電状態(PSOC:Partial State of charge)に制御する必要がある。
【0004】
しかしながら、蓄電池として鉛蓄電池を用いた場合、PSOC状態が長時間続くと急激に電池容量が低下することが知られている。このような電池容量の低下を抑制するために特許文献1にはPSOC状態で充放電される時間が所定時間を超えた場合にはリフレッシュ充電を行い、SOCを90%以上の状態とすることが示されている。このリフレッシュ充電によれば極板中に蓄積した放電生成物である硫酸鉛を強制的に充電することによって、容量低下をある程度まで抑制することができる。
【0005】
しかしながら、SOCの推移は車両の使用形態によって様々に異なるため、リフレッシュ充電による容量低下抑制効果が安定して得られないという課題があった。また、このような課題はハイブリッド車両用の電源システムのみならず、太陽光発電等の他の電源とSOCが100%未満の部分充電状態で制御される蓄電池を組み合わせた電源システムにおける共通の課題であった。
【0006】
【特許文献1】
特開2001−338696号公報
【0007】
【発明が解決しようとする課題】
本発明は前記したようなハイブリッド車両用電源や太陽光発電システムといった部分充電状態で充放電制御される蓄電池における容量低下を抑制するとともに、電源の使用条件が変化してもこの容量低下抑制効果を安定して得ることのできる蓄電池の制御方法を提供するものである。
【0008】
【課題を解決するための手段】
前記した課題を解決するために本発明の請求項1に係る発明は、蓄電池の充電状態(SOC)を第1のSOC範囲(C1)内で制御する電源システムに用いる二次電池の制御方法であって、前記SOCが前記第1のSOC範囲(C1)内であって、かつ前記第1のSOC範囲(C1)の下限もしくは下限近傍に設定される第2のSOC範囲(C2)内である回数(N2)を計測し、この回数(N2)に応じて前記二次電池のSOCを上昇させることを特徴とする蓄電池の制御方法を示すものである。
【0009】
また、本発明の請求項2に係る発明は、請求項1の蓄電池の制御方法において、前記SOCが前記第1のSOC範囲(C1)内の上限もしくは上限近傍に設定される第3のSOC範囲(C3)内になった時点で前記回数(N2)のカウントをリセットすることを特徴とするものである。
【0010】
次に、本発明の請求項3に係る発明は、蓄電池の充電状態(SOC)を第1のSOC範囲(C1)内で制御する電源システムに用いる蓄電池の制御方法であって、前記第1のSOC範囲(C1)内に設定され、かつ前記第1のSOC範囲(C1)の下限もしくは下限近傍に設定される第2のSOC範囲(C2)内である第2のSOC範囲(C2)内である時間(t2)を計測し、この時間(t2)の累積時間に応じて前記蓄電池のSOCを上昇させることを特徴とする蓄電池の制御方法を示すものである。
【0011】
また、本発明の請求項4に係る発明は、請求項3の蓄電池の制御方法において、前記SOCが前記第1のSOC範囲(C1)内の上限もしくは上限近傍に設定される第3のSOC範囲(C3)になった時点で前記時間(t2)とその累積時間をリセットすることを特徴とするものである。
【0012】
次に本発明の請求項5に係る発明は、蓄電池の充電状態(SOC)を第1のSOC範囲(C1)内で制御する電源システムに用いる蓄電池の制御方法であって、前記SOCが前記第1のSOC範囲(C1)内に設定され、かつ前記第1のSOC範囲(C1)の下限もしくは下限近傍に設定される第2のSOC範囲(C2)内である回数(N2)を計測するとともに前記SOCが前記第2のSOC範囲(C2)内である時間(t2)を計測し、前記回数(N2)と前記時間(t2)の累積時間に応じて蓄電池のSOCを上昇させることを特徴とする蓄電池の制御方法を示すものである。
【0013】
また、本発明の請求項6に係る発明は、請求項5の蓄電池の制御方法において、前記SOCが前記第1のSOC範囲(C1)内の上限もしくは上限近傍に設定される第3のSOC範囲(C3)になった時点で前記回数(N2)と前記時間(t2)とその累積時間をリセットすることを特徴とするものである。
【0014】
また、本発明の請求項7に係る発明は、請求項1ないし請求項6の蓄電池の制御方法において、前記蓄電池の電池電圧(W)を計測し、前記電池電圧(W)−前記SOCとの関係から前記SOCを検知することを特徴とするものである。
【0015】
さらに、本発明の請求項8に係る発明は、請求項1ないし請求項7の蓄電池の制御方法において、前記電源システムはエンジンを備えて車両に搭載され、前記蓄電池から前記エンジン始動用電力を供給し、前記エンジンの動力の一部を電力に変換して前記蓄電池を充電し、前記車両が停止状態の場合に所定条件下で前記エンジンの運転を停止するアイドルストップ機能を備え、前記アイドルストップ後の前記エンジンの再始動回数(RES)を計測し、この再始動回数(RES)に応じて前記蓄電池のSOCを上昇させることを特徴とするものである。
【0016】
本発明の請求項9に係る発明は、請求項8の蓄電池の制御方法において、前記エンジンの再始動時の前記蓄電池の電圧変化をエンジン始動電流で徐することによって得られる蓄電池の内部抵抗(R)を計測し、前記内部抵抗(R)に応じて前記蓄電池のSOCを上昇させることを特徴とするものである。
【0017】
【発明の実施の形態】
≪第1の発明の実施形態≫
以下、本発明の実施の形態を図面に基づいて説明する。
【0018】
図1は、本発明の蓄電池の制御方法を適用する電源システムの構成例を示す図である。太陽光発電装置、風力発電装置、ガスタービン発電機、燃料電池等の独立型の発電装置1からの出力が負荷2に供給される。この電源システムには鉛蓄電池4を備えている。発電装置1が負荷2に対して剰余出力を有している場合にはこの剰余出力が充放電制御装置3を介して鉛蓄電池4に充電される。また、負荷2の消費電力が急激に増大し、発電装置1の出力を超えて不足が生じた場合、この不足電力分が鉛蓄電池4から充放電制御手段3を介して負荷2に供給される。
【0019】
このような独立型電源と鉛蓄電池とを組み合わせた電源システムでは独立型電源からの剰余出力を効率よく鉛蓄電池に充電するために、鉛蓄電池の充電状態(以下、SOC(State of Charge))を100%未満とする必要がある。また、前記したように、独立型電源からの出力に不足が生じた場合に鉛蓄電池から不足電力を供給する必要から、SOCをある程度以上に制御する必要がある。以上のことから、SOCを90〜50%程度の範囲内で制御することが行われている。
【0020】
本発明は図1に示したような二次電池を併設した電源システムにおける二次電池の制御方法を示すものであり、その構成を説明する。前記したように鉛蓄電池のSOCは図2に示したような上限が100%未満であるSOC範囲(以下、第1のSOC範囲(C1))内で制御する。この第1のSOC範囲は例えば90〜60%で制御する。なお、このような制御はSOCが上限値に到達した時点で充電を停止したり、SOCが下限値に到達する以前に鉛蓄電池の放電を停止し強制的に充電を行うことによって行われる。
【0021】
本発明においてはこの第1のSOC範囲(C1)内の下限、もしくは下限近傍、例えば70〜60%に第2のSOC範囲(C2)を設定する。そしてSOCがこの第2のSOC範囲(C2)内となった回数(N2)を計測し、この回数(N2)が所定の回数を超えた場合に、鉛蓄電池のSOCを上昇させる制御を行う。この制御は例えば図1に示したような電源システムにおいては充放電制御手段3によって、鉛蓄電池4を強制充電することができる。但し、強制充電によってSOCを上昇させるよりも鉛蓄電池4の放電量の制限を充放電制御手段4によって行う方が強制充電による充電効率の低下を回避できる。
【0022】
なお、蓄電池の構成によっては極板内に蓄積した放電生成物(鉛蓄電池の場合では硫酸鉛に相当)が充電によって活物質へと活性化されずらく、充電回復性に劣るものがある。本発明においてこのような蓄電池を用いる場合、SOC上昇制御において、蓄電池のSOCを100%として満充電とし、さらにはその後も引き続いて過充電を行うことによって、放電生成物を強制的に活性化させる。
【0023】
本発明の制御方法は、蓄電池のSOCが低い状態にあった回数(N2)を把握し、この回数(N2)が所定回数に到達した時点で低SOCによる蓄電池の容量低下が進行したと検知し、蓄電池のSOCを上昇させる制御を行うことによって、容量低下が回復不能となるまで進行することを抑制する。従来の充電制御方法においてはSOCを上昇させる制御(特許文献1におけるリフレッシュ充電)が所定期間毎に行われる。したがって使用状態のばらつきによってはリフレッシュ充電が不足し、蓄電池の容量低下が進行することがあった。本発明の制御方法によれば使用者毎あるいは使用機器毎に使用条件がばらついたとしても、適切な頻度でSOC上昇制御を行うことによって蓄電池の回復不能なまでの容量低下を抑制する。
【0024】
また、SOCの上昇制御によってSOCがある程度まで上昇した場合には回数(N2)のリセットを行う。これは図2に示すような第1のSOC範囲(C1)の上限もしくは上限近傍に設定された第3のSOC範囲(C3)になった時点で、回数(N2)のリセットを行えば良い。第1のSOC範囲(C1)を90〜60%とした場合、第3のSOC範囲(C3)を例えば90〜85%に設定する。これら第2のSOC範囲(C2)と第3のSOC範囲(C3)はそれぞれ第1のSOC範囲(C1)の下限値と上限値を含んで設定されるが、制御の精度上、2〜3%程度の差異で下限値と上限値を含まない場合でも本発明の効果を得る上で差し支えない。ただし、これら第2のSOC範囲(C2)と第3のSOC範囲(C3)が重複することは許容できず、少なくとも第3のSOC範囲(C3)は第2のSOC範囲(C2)を超え、第3のSOC範囲(C3)の下限値は第2のSOC範囲(C2)の上限値を含まず、この上限値を超えた値でなければならない。
【0025】
また、この回数(N2)に替えて蓄電池のSOCが第2のSOC範囲(C2)内となった場合毎にSOCがその範囲を維持した時間(t2)を計測し、この時間(t2)を累積することによって得た累積時間(Σt2)を用いることができる。この場合には累積時間(Σt2)が所定の時間を超えた場合に、SOCの上昇制御を行えば、より精度よく蓄電池の容量低下を抑制することができる。
【0026】
さらに好ましくは、回数(N2)と時間(t2)に応じて蓄電池のSOC上昇制御を行うことである。時間(t2)の累積時間が同一であっても回数(N2)の大小によって容量低下の進行度合いが異なるからである。時間(t2)の累積時間(Σt2)が同一とした場合、回数(N2)を多くしていくにしたがい、放電生成物である硫酸鉛の成長は途中の充電を挟んで不連続的に行われるので充電受入性が低い粗大結晶の成長が抑制される。したがって、容量低下はそれほど進行しない。反対に回数(N2)を少なくしていくに従い、硫酸鉛の成長は連続的に行われ、充電受入性の低い粗大結晶が成長しやすい条件となる。したがって、回数(N2)と時間(t2)に応じてSOCを上昇制御する場合、回数(N2)と累積時間(Σt2)が所定値に到達したかどうかに基く他、回数(N2)と累積時間(Σt2)の比率(Σt2/N2)を加味すればよい。例えば比率(Σt2/N2)が大きくなるにしたがい、回数(N2)と累積時間(Σt2)のSOC上昇制御に入る設定値を低下させることが好ましい。このような構成によれば(Σt2/N2)が大きいことによって硫酸鉛の固定化が進行しやすい場合には早期にSOC上昇制御を行うことによって、硫酸鉛の固定化とこれによる蓄電池の容量低下を効果的に抑制することができる。
【0027】
また、このような構成においては前記したような回数(N2)のリセットに加えて時間(t2)とその累積時間(Σt2)のリセットも蓄電池のSOCが第1のSOC範囲(C1)の上限もしくは上限近傍、もしくは少なくとも第2のSOC範囲(C2)よりもSOCが大きい範囲である第3のSOC範囲(C3)内に入った時点で行う。
【0028】
上記のような本発明の蓄電池の制御では蓄電池の性能が制御されるSOC範囲の下限値において蓄電池の劣化が進行しやすく、上限値では劣化の進行がおそいことに着目したものである。すなわち、第2のSOC範囲(C2)では活物質内の放電生成物の蓄積といった劣化を受けるが、蓄電池のSOCがこのような劣化現象が起こりやすいSOC領域内にある頻度や時間を計測し充放電制御を行うことで、蓄電池のSOC状態を第3のSOC範囲(C3)へ上昇させ放電生成物の蓄積を抑制することによって蓄電池の容量低下を抑制し、長寿命化をはかることができる。
【0029】
ここで蓄電池のSOCは様々な方法で計測されるが、SOCを電池電圧(W)と関連づけて検知する方法である。あらかじめ、SOCと電池電圧(W)との関係を把握しておき、電池電圧(W)を計測することによってSOCを検知する。また、電池電圧(W)によってSOCが一義的に推定可能であるので、SOC測定に替えて電池電圧測定を行うことができる。
【0030】
この場合には図3に示したように第1のSOC範囲(C1)、第2のSOC範囲(C2)および第3のSOC範囲(C3)にそれぞれ相当する第1の電池電圧範囲(W1)、第2の電池電圧範囲(W2)および第3の電池電圧範囲(W3)を設定し、第2の電池電圧範囲(W2)にある回数(N2)と時間(t2)を計測し、充放電制御を行う。また、これらに予め周囲温度のパラメータを追加すればより精度の高い判定を行うことができる。
【0031】
≪第2の実施の形態≫
本発明の第2の実施形態として、アイドルストップ機能を有した車両用電源システムに用いた例を図を用いて説明する。
【0032】
本発明の蓄電池の充放電制御を適用する電源システムは図4に示したように、エンジン5を備えて車両に搭載され、併設する鉛蓄電池6からエンジン始動用のセルモータ7に電力を供給するとともに、エンジン始動後はエンジン5の動力の一部をジェネレータ8で電力に変換し、充放電制御手段9を介して鉛蓄電池6を充電する構成を有している。ここでエンジン運転中に車両が停止した場合であって、車両停止時間が所定時間以上となった場合に、エンジンの運転を停止するいわゆるアイドルストップ機能を備えている。
【0033】
このアイドルストップ機能はエンジンECU(図示せず)からの信号によって実現される。また、車両減速時の車輪10からの回転エネルギーをエネルギー変換手段11と充放電制御手段9を介して鉛蓄電池6に回収する、いわゆる回生機能を備えている。また、鉛蓄電池6の出力の一部は車両に付随する電気的負荷(総称して補機12)に供給される。
【0034】
このような車両用の電源システムにおいて、蓄電池6のSOCは図2に示したような100%未満である第1のSOC範囲(C1)で充放電制御手段9により制御される。以降、このような車両用電源システムに適用する本発明の蓄電池の制御方法を図5を用いて説明する。なお、ここでは電池電圧(W)−SOC間の相関関係に基き、SOC検出を電池電圧(W)測定によって行う場合の例を述べる。
【0035】
このような車両用電源システムにおいて、エンジン始動(ステップS1)を行い、車両走行の間、電池電圧(W)を測定する(ステップS2)。なお、電池電圧(W)は充放電制御手段9によって、図3に示したように第1のSOC範囲(C1)に対応した第1の電圧範囲(W1)で制御される。
【0036】
そして電池電圧(W)がどの範囲内にあるのかを判定する(ステップS3)。このWが第2のSOC範囲(C2)に相当する第2の電圧範囲(W2)内にある場合、この範囲内となった回数(N2)とその範囲内にある時間(t2)とその累積時間(Σt2)をカウント(ステップS3−2)し、後述するN2およびt2判定(ステップS4)へ移行する。
【0037】
電池電圧(W)が第3のSOC範囲(C3)に相当する第3の電圧範囲(W3)であった場合には回数(N2)と時間(t2)およびその累積時間(Σt2)をリセットし、アイドルストップ有無判定(ステップS5)へ移行する。
【0038】
電池電圧(W)が第2および第3の電圧範囲外であった場合にはN2およびt2判定(ステップS4)へ移行する。このN2およびt2判定(ステップS4)では第1の実施形態に記載したように、N2およびt2とその累積時間(Σt2)に応じてSOC上昇制御を行うかどうかの判定を行う。このステップでSOC上昇制御を行うと判定した場合はSOC上昇制御(ステップS10)へ移行する。
【0039】
SOC上昇制御が不要と判定された場合にはアイドルストップ有無判定(ステップS5)に移行する。このアイドルストップ有無判定(ステップS5)、車両がアイドルストップ状態にあるかどうかを判定する。アイドルストップはある所定条件下で車両停止時間がある所定時間に到達した時点でエンジンECUの制御により行われる。したがって、アイドルストップ有無判定(ステップS5)ではエンジンECUからのアイドルストップ指令の有無を参照する。ここで車両がアイドルストップ状態にない場合には再度電池電圧W測定(ステップS2)へ移行する。
【0040】
アイドルストップ状態であった場合にはエンジン再始動検出(ステップS6)で待機状態となる。エンジンECUからのアイドルストップ解除信号と、エンジン再始動信号によってエンジンが再始動した時点で、これらの信号によってエンジン再始動が検出され、エンジン再始動回数(RES)のカウントが行われる(ステップS7)。また、このステップでエンジン再始動電流(I)とその時の電池電圧変化(ΔW)と始動電流Iが計測され、これらの値から電池の内部抵抗R(=ΔW/I)が算出される(ステップS8)。
【0041】
次にN2、t2、RESおよびR値に基いてSOC上昇制御を行うかどうかの判定を行う(ステップS9)。このステップではN2、t2、RESおよびR値の組み合わせによって、SOC上昇制御(ステップS10)への移行指示の有り無しを判定するテーブルを参照してその移行指示を行う。移行指示のない場合には再び電池電圧W測定(ステップS2)へ移行する。
【0042】
ステップS4およびステップS9においてSOC上昇制御が必要と判定された場合はSOC上昇制御(ステップS10)において強制充電もしくは放電休止が行われ、SOCを上昇させる。この強制充電ではSOCを100%に到達させ、さらに過充電を行うこともできる。このような強制充電は極板に蓄積した不活性な放電生成物を活性化させるために有効な手段である。
【0043】
ステップS10後、電池電圧W測定(ステップS11)とその値がどの領域にあるかの判定が行われる(ステップS12)。その後、電池電圧Wが第3のSOC範囲(C3)に相当する第3の電圧範囲(W3)の範囲外である場合には再びステップS10へ移行する。電池電圧Wが第3の電圧範囲内(W3)にある場合には回数(N2)、時間(t2)とその累積時間(Σt2)、エンジン再始動回数(RES)と内部抵抗(R)のそれぞれの値をリセットし、ステップS2の電池電圧(W)測定に移行する。
【0044】
このような本発明の蓄電池の制御方法によれば、第1の実施形態に加えて、電池劣化の主要因の一つであるエンジン再始動の影響を含めた充放電制御が行われるため、特にアイドルストップ機能を有した車両用電源システムの二次電池の長寿命化に有効である。
【0045】
なお、蓄電池の充電電圧は周囲温度変化により、通常みられるように充電制御電圧に温度係数を用いた補正を行なうことが望ましく、本発明にかかる蓄電池の公称電圧は12Vに限ることなく、任意の公称電圧の電池を用いることができる。また、本発明は蓄電池として鉛蓄電池の場合が最もその効果を顕著に得ることができるが、他の蓄電池、特に電池電圧とSOCとの相関関係が強いリチウム二次電池にも適用することができる。
【0046】
また本実施形態にはエンジン再始動回数(RES)の計測(S7)および内部抵抗(R)の計測(S8)も含まれているが、これらはシステム価格の要請に応じて省略することも可能である。本発明の効果を得るためには最小限、回数(N2)の計測とこれによるSOC上昇制御、好ましくは時間(t2)とその累積時間(Σt2)に応じてSOC上昇制御を行えばよい。さらに、蓄電池雰囲気温度(Ta)をSOC上昇制御判定に含むことも何ら差し支えなく、蓄電池の長寿命化のためには合理的であることは言うまでもない。
【0047】
また、本発明の実施形態において、車両用電源システムを例示したが、燃料電池、風力発電および太陽光発電といった独立型電源と蓄電池とを連係動作させる、すなわち、蓄電池のSOCを中間状態で制御する電源システムに適用できることは言うまでもない。
【0048】
【発明の効果】
以上、説明してきたように本発明の構成によれば、本発明は前記したようなハイブリッド車両のようにエンジン等の他の動力源を用いて発電した電力や、太陽光発電のように他の発電源からの電力と連係動作するために、充電状態(SOC)が所定範囲内で制御される蓄電池を備えた電源システムにおいて、蓄電池の充放電制御を比較的簡便に実施でき、電池の長寿命化が可能となることから、工業上、極めて有効である。
【図面の簡単な説明】
【図1】本発明の蓄電池の制御方法を適用する電源システムの構成例を示す図
【図2】本発明の蓄電池の制御方法におけるSOCの経時変化を示す図
【図3】本発明の蓄電池の制御方法における電池電圧の経時変化を示す図
【図4】本発明の蓄電池の制御方法を適用する車両用の電源システムの構成例を示す図
【図5】本発明の蓄電池の制御方法における制御フローを示す図
【符号の説明】
1 発電装置
2 負荷
3 充放電制御手段
4 鉛蓄電池
5 エンジン
6 鉛蓄電池
7 セルモータ
8 ジェネレータ
9 充放電制御手段
10 車輪
11 エネルギー変換手段
12 補機
[0001]
BACKGROUND OF THE INVENTION
The present invention is a power supply system that combines electric power generated by using another power source such as an engine such as a hybrid vehicle, electric power from another independent power source such as a fuel cell or a solar cell, and electric power from a secondary battery. It relates to the control method of the storage battery.
[0002]
[Prior art]
Conventionally, a storage battery mounted on a vehicle is used for starting an engine, turning on a light, driving an air conditioner, etc., and the state of charge of the battery (SOC: Step State of Charge) is 100% (full charge state) when the vehicle is running. ) Was charged at a constant voltage by a voltage specified to be
[0003]
In recent years, hybrid vehicles that run on motor power in addition to power from an engine have been developed and put to practical use for the purpose of improving fuel efficiency. In this hybrid vehicle, in order to further improve fuel efficiency, a regenerative charging system that converts energy during deceleration into electric energy and stores it in a storage battery has been put into practical use. In order to efficiently perform such regenerative charging, it is necessary to control the SOC of the storage battery to a partial state of charge (PSOC) of less than 100%.
[0004]
However, when a lead storage battery is used as the storage battery, it is known that the battery capacity rapidly decreases when the PSOC state continues for a long time. In order to suppress such a decrease in battery capacity, Patent Document 1 states that refresh charging is performed when the charge / discharge time in the PSOC state exceeds a predetermined time, and the SOC is set to a state of 90% or more. It is shown. According to this refresh charging, a reduction in capacity can be suppressed to some extent by forcibly charging lead sulfate, which is a discharge product accumulated in the electrode plate.
[0005]
However, since the transition of the SOC varies depending on the usage form of the vehicle, there has been a problem that the capacity reduction suppressing effect by refresh charging cannot be obtained stably. Such a problem is not only a power supply system for a hybrid vehicle, but also a common problem in a power supply system that combines other power sources such as photovoltaic power generation and a storage battery that is controlled in a partially charged state where the SOC is less than 100%. there were.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-338696
[Problems to be solved by the invention]
The present invention suppresses capacity reduction in a storage battery that is charged and discharged in a partially charged state, such as a hybrid vehicle power supply and a photovoltaic power generation system as described above, and also has the effect of suppressing this capacity decrease even when the use condition of the power supply changes. A storage battery control method that can be obtained stably is provided.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention according to claim 1 of the present invention provides a control method for a secondary battery used in a power supply system that controls the state of charge (SOC) of the storage battery within the first SOC range (C 1 ). a is, the SOC is a first SOC range (C 1) in, and the first lower or second SOC range set to the lower limit near the SOC range (C 1) (C 2 ) the number (N 2) is in the measuring illustrates a control method of the storage battery, characterized in that to increase the SOC of the secondary battery in accordance with the number (N 2).
[0009]
The invention according to claim 2 of the present invention is the storage battery control method according to claim 1, wherein the SOC is set at or near the upper limit in the first SOC range (C 1 ). The count of the number of times (N 2 ) is reset when it falls within the range (C 3 ).
[0010]
Next, the invention according to claim 3 of the present invention is a storage battery control method used in a power supply system for controlling a state of charge (SOC) of a storage battery within a first SOC range (C 1 ), wherein the set within SOC range (C 1), and the first SOC range (C 1) second SOC range (C 2) is in the second SOC range set to the lower limit or the lower limit near the ( C 2) a time that is the (t 2) is measured, it shows a control method of the storage battery, characterized in that to increase the SOC of the battery according to the accumulated time of the time (t 2).
[0011]
According to a fourth aspect of the present invention, in the storage battery control method of the third aspect, the SOC is set at or near an upper limit within the first SOC range (C 1 ). it is characterized in that when it becomes in the range (C 3) resetting the time (t 2) and the accumulated time.
[0012]
Next, an invention according to claim 5 of the present invention is a storage battery control method used in a power supply system that controls a state of charge (SOC) of a storage battery within a first SOC range (C 1 ), wherein the SOC is number first set to SOC range (C 1) in, and is the first of the second SOC range (C 2) in which is set to the lower limit or the lower limit near the SOC range (C 1) (N 2 ) And the time (t 2 ) during which the SOC is within the second SOC range (C 2 ), and the storage battery according to the accumulated number of times (N 2 ) and time (t 2 ) The storage battery control method is characterized by increasing the SOC of the battery.
[0013]
According to a sixth aspect of the present invention, in the storage battery control method of the fifth aspect, the SOC is set to an upper limit in the first SOC range (C 1 ) or in the vicinity of the upper limit. When the range (C 3 ) is reached, the number of times (N 2 ), the time (t 2 ), and the accumulated time are reset.
[0014]
According to a seventh aspect of the present invention, in the storage battery control method according to the first to sixth aspects, the battery voltage (W) of the storage battery is measured, and the battery voltage (W) −the SOC is calculated. The SOC is detected from the relationship.
[0015]
Further, according to an eighth aspect of the present invention, in the storage battery control method according to the first to seventh aspects, the power supply system includes an engine and is mounted on a vehicle, and supplies the engine starting power from the storage battery. An idle stop function that converts part of the engine power into electric power to charge the storage battery, and stops the operation of the engine under a predetermined condition when the vehicle is in a stopped state, after the idle stop The number of restarts (RES) of the engine is measured, and the SOC of the storage battery is raised according to the number of restarts (RES).
[0016]
According to a ninth aspect of the present invention, in the storage battery control method according to the eighth aspect, the internal resistance (R) of the storage battery obtained by slowing the voltage change of the storage battery at the time of restarting the engine with the engine starting current. ) Is measured, and the SOC of the storage battery is raised according to the internal resistance (R).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
<< Embodiment of First Invention >>
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a diagram showing a configuration example of a power supply system to which the storage battery control method of the present invention is applied. Output from an independent power generator 1 such as a solar power generator, a wind power generator, a gas turbine generator, or a fuel cell is supplied to the load 2. This power supply system includes a lead storage battery 4. When the power generation device 1 has a surplus output with respect to the load 2, the surplus output is charged to the lead storage battery 4 via the charge / discharge control device 3. Moreover, when the power consumption of the load 2 increases rapidly and the shortage occurs beyond the output of the power generation device 1, the shortage is supplied from the lead storage battery 4 to the load 2 via the charge / discharge control means 3. .
[0019]
In such a power supply system that combines a stand-alone power supply and a lead-acid battery, in order to efficiently charge the lead-acid battery with a surplus output from the stand-alone power supply, the charge state of the lead-acid battery (hereinafter referred to as SOC (State of Charge)) is set. It is necessary to make it less than 100%. Further, as described above, when the output from the stand-alone power source is insufficient, it is necessary to supply the insufficient power from the lead storage battery, so it is necessary to control the SOC to some extent. From the above, the SOC is controlled within a range of about 90 to 50%.
[0020]
The present invention shows a control method of a secondary battery in a power supply system provided with a secondary battery as shown in FIG. 1, and its configuration will be described. As described above, the SOC of the lead-acid battery is controlled within the SOC range (hereinafter referred to as the first SOC range (C 1 )) whose upper limit is less than 100% as shown in FIG. The first SOC range is controlled at 90 to 60%, for example. Such control is performed by stopping charging when the SOC reaches the upper limit value or by forcibly charging by stopping discharging of the lead storage battery before the SOC reaches the lower limit value.
[0021]
In the present invention, the second SOC range (C 2 ) is set to the lower limit in the first SOC range (C 1 ) or near the lower limit, for example, 70 to 60%. Then, the number of times (N 2 ) that the SOC is within the second SOC range (C 2 ) is measured, and when this number (N 2 ) exceeds a predetermined number, the control for increasing the SOC of the lead storage battery I do. This control can forcibly charge the lead storage battery 4 by the charge / discharge control means 3 in the power supply system as shown in FIG. However, a reduction in charging efficiency due to forced charging can be avoided by limiting the discharge amount of the lead storage battery 4 by the charge / discharge control means 4 rather than increasing the SOC by forced charging.
[0022]
Depending on the configuration of the storage battery, the discharge product (corresponding to lead sulfate in the case of a lead storage battery) accumulated in the electrode plate is not easily activated into an active material by charging, and the charge recovery performance is inferior. In the case where such a storage battery is used in the present invention, in the SOC increase control, the SOC of the storage battery is fully charged with the SOC being 100%, and further, the overcharge is subsequently performed to forcibly activate the discharge product. .
[0023]
The method of the present invention is to grasp the number of times the SOC of the battery was in a low state (N 2), lowering the capacity of the storage battery due to low SOC has progressed at the time the number (N 2) has reached a predetermined number of times and By detecting and performing control to increase the SOC of the storage battery, it is possible to prevent the capacity decrease from progressing until it cannot be recovered. In the conventional charge control method, the control for increasing the SOC (refresh charge in Patent Document 1) is performed every predetermined period. Therefore, depending on the variation in the usage state, refresh charging is insufficient, and the capacity of the storage battery may decrease. According to the control method of the present invention, even if the use conditions vary for each user or for each used device, the capacity decrease until the storage battery cannot be recovered is suppressed by performing the SOC increase control at an appropriate frequency.
[0024]
Also, resetting the count (N 2) in the case where SOC by increasing control of the SOC is increased to some extent. This is when the number of times (N 2 ) is reset when the third SOC range (C 3 ) set at or near the upper limit of the first SOC range (C 1 ) as shown in FIG. Just do it. When the first SOC range (C 1 ) is 90 to 60%, the third SOC range (C 3 ) is set to 90 to 85%, for example. The second SOC range (C 2 ) and the third SOC range (C 3 ) are set including the lower limit value and the upper limit value of the first SOC range (C 1 ), respectively. Even when the difference is about 2-3% and the lower limit and the upper limit are not included, there is no problem in obtaining the effect of the present invention. However, the second SOC range (C 2 ) and the third SOC range (C 3 ) cannot be allowed to overlap, and at least the third SOC range (C 3 ) is the second SOC range (C 2). ) And the lower limit value of the third SOC range (C 3 ) does not include the upper limit value of the second SOC range (C 2 ), and must be a value exceeding this upper limit value.
[0025]
Further, instead of this number of times (N 2 ), whenever the SOC of the storage battery falls within the second SOC range (C 2 ), the time (t 2 ) during which the SOC maintained that range is measured, and this time ( The accumulated time (Σt 2 ) obtained by accumulating t 2 ) can be used. In this case, if the increase control of the SOC is performed when the accumulated time (Σt 2 ) exceeds a predetermined time, the capacity reduction of the storage battery can be suppressed more accurately.
[0026]
More preferably, the SOC increase control of the storage battery is performed according to the number of times (N 2 ) and time (t 2 ). Time (t 2) accumulated time is because the degree of progress of reduction capacity varies depending on the magnitude of the count be the same (N 2). If the time (t 2) accumulated time (.SIGMA.t 2) is the same, the number (N 2) in accordance with gradually increasing the growth of lead sulfate is a discharge product is discontinuous across the charge in the middle Therefore, the growth of coarse crystals with low charge acceptability is suppressed. Therefore, the capacity reduction does not progress so much. On the other hand, as the number of times (N 2 ) is decreased, the growth of lead sulfate is carried out continuously, which makes it easy to grow coarse crystals with low charge acceptability. Therefore, when the SOC is controlled to increase according to the number of times (N 2 ) and time (t 2 ), the number of times (N 2 ) and the accumulated time (Σt 2 ) have reached a predetermined value. 2 ) and the ratio (Σt 2 / N 2 ) of the accumulated time (Σt 2 ) may be taken into account. For example, as the ratio (Σt 2 / N 2 ) increases, it is preferable to decrease the set value for entering the SOC increase control of the number of times (N 2 ) and the accumulated time (Σt 2 ). According to such a configuration, when the fixation of lead sulfate is likely to proceed due to a large (Σt 2 / N 2 ), the SOC rise control is performed at an early stage, thereby fixing the lead sulfate and the storage battery thereby The capacity reduction can be effectively suppressed.
[0027]
In such a configuration, in addition to resetting the number of times (N 2 ) as described above, the time (t 2 ) and the accumulated time (Σt 2 ) are also reset in the SOC of the storage battery in the first SOC range (C 1 ) At the upper limit or in the vicinity of the upper limit, or at least when entering the third SOC range (C 3 ) in which the SOC is larger than the second SOC range (C 2 ).
[0028]
In the control of the storage battery of the present invention as described above, it is noted that the deterioration of the storage battery is likely to proceed at the lower limit value of the SOC range in which the performance of the storage battery is controlled, and the deterioration progresses slowly at the upper limit value. That is, the second SOC range (C 2 ) is subject to deterioration such as accumulation of discharge products in the active material, but the frequency and time when the SOC of the storage battery is in the SOC region where such deterioration phenomenon is likely to occur are measured. by performing the charge and discharge control, and suppress the reduction capacity of the storage battery by suppressing the accumulation of discharge products increases the SOC state of the battery to a third SOC range (C 3), it is possible to extend the life of it can.
[0029]
Here, the SOC of the storage battery is measured by various methods, and is a method of detecting the SOC in association with the battery voltage (W). A relationship between the SOC and the battery voltage (W) is previously grasped, and the SOC is detected by measuring the battery voltage (W). Further, since the SOC can be uniquely estimated from the battery voltage (W), the battery voltage can be measured instead of the SOC measurement.
[0030]
In this case, as shown in FIG. 3, the first battery voltage range corresponding to the first SOC range (C 1 ), the second SOC range (C 2 ), and the third SOC range (C 3 ), respectively. (W 1 ), the second battery voltage range (W 2 ), and the third battery voltage range (W 3 ) are set, and the number (N 2 ) and time (N 2 ) in the second battery voltage range (W 2 ) t 2) was measured, charging and discharging control. In addition, if an ambient temperature parameter is added to these parameters in advance, more accurate determination can be performed.
[0031]
<< Second Embodiment >>
As a second embodiment of the present invention, an example used in a vehicle power supply system having an idle stop function will be described with reference to the drawings.
[0032]
As shown in FIG. 4, the power supply system to which the charge / discharge control of the storage battery of the present invention is applied is mounted on the vehicle with the engine 5 and supplies power to the cell motor 7 for starting the engine from the lead storage battery 6 provided therewith. After starting the engine, a part of the power of the engine 5 is converted into electric power by the generator 8 and the lead storage battery 6 is charged via the charge / discharge control means 9. Here, a so-called idle stop function is provided for stopping the operation of the engine when the vehicle is stopped during the engine operation and the vehicle stop time is equal to or longer than a predetermined time.
[0033]
This idle stop function is realized by a signal from an engine ECU (not shown). In addition, a so-called regenerative function is provided for recovering rotational energy from the wheel 10 during vehicle deceleration to the lead storage battery 6 via the energy conversion means 11 and the charge / discharge control means 9. Further, a part of the output of the lead storage battery 6 is supplied to an electrical load (collectively, the auxiliary machine 12) attached to the vehicle.
[0034]
In such a vehicle power supply system, the SOC of the storage battery 6 is controlled by the charge / discharge control means 9 in a first SOC range (C 1 ) that is less than 100% as shown in FIG. Hereinafter, the control method of the storage battery of the present invention applied to such a vehicle power supply system will be described with reference to FIG. Here, an example in which the SOC detection is performed by measuring the battery voltage (W) based on the correlation between the battery voltage (W) and the SOC will be described.
[0035]
In such a vehicle power supply system, the engine is started (step S1), and the battery voltage (W) is measured during vehicle travel (step S2). The battery voltage (W) is controlled by the charge / discharge control means 9 in the first voltage range (W 1 ) corresponding to the first SOC range (C 1 ) as shown in FIG.
[0036]
Then, it is determined which range the battery voltage (W) is in (step S3). When this W is within the second voltage range (W 2 ) corresponding to the second SOC range (C 2 ), the number of times (N 2 ) that has fallen within this range and the time (t 2 ) within that range ) And the accumulated time (Σt 2 ) are counted (step S3-2), and the process proceeds to N 2 and t 2 determination (step S4) described later.
[0037]
When the battery voltage (W) is in the third voltage range (W 3 ) corresponding to the third SOC range (C 3 ), the number (N 2 ), time (t 2 ), and accumulated time (Σt 2 ) is reset, and the routine proceeds to idle stop presence / absence determination (step S5).
[0038]
If the battery voltage (W) is out of the second and third voltage range shifts to N 2 and t 2 determined (step S4). In this N 2 and t 2 determination (step S4), as described in the first embodiment, it is determined whether or not the SOC increase control is performed according to N 2 and t 2 and the accumulated time (Σt 2 ). . If it is determined in this step that SOC increase control is to be performed, the routine proceeds to SOC increase control (step S10).
[0039]
If it is determined that the SOC increase control is not required, the routine proceeds to idle stop presence / absence determination (step S5). This idle stop presence / absence determination (step S5), it is determined whether or not the vehicle is in an idle stop state. The idle stop is performed under the control of the engine ECU when the vehicle stop time reaches a predetermined time under a predetermined condition. Therefore, in the idle stop presence / absence determination (step S5), the presence / absence of an idle stop command from the engine ECU is referred to. If the vehicle is not in the idle stop state, the process proceeds to the battery voltage W measurement (step S2) again.
[0040]
If the engine is in the idle stop state, the engine restart detection (step S6) enters a standby state. When the engine is restarted by the idle stop cancellation signal from the engine ECU and the engine restart signal, the engine restart is detected by these signals, and the number of engine restarts (RES) is counted (step S7). . In this step, the engine restart current (I), the battery voltage change (ΔW) and the starting current I at that time are measured, and the internal resistance R (= ΔW / I) of the battery is calculated from these values (step) S8).
[0041]
Next, it is determined whether or not to perform SOC increase control based on N 2 , t 2 , RES, and R value (step S9). In this step, a transition instruction is made by referring to a table for determining whether or not there is a transition instruction to the SOC increase control (step S10) by a combination of N 2 , t 2 , RES and R value. When there is no shift instruction, the process shifts again to the battery voltage W measurement (step S2).
[0042]
If it is determined in step S4 and step S9 that SOC increase control is necessary, forced charge or discharge suspension is performed in the SOC increase control (step S10) to increase the SOC. In this forced charging, the SOC can reach 100% and further overcharging can be performed. Such forced charging is an effective means for activating inactive discharge products accumulated on the electrode plate.
[0043]
After step S10, battery voltage W measurement (step S11) and determination of which region the value is in is performed (step S12). Thereafter, when the battery voltage W is outside the third voltage range (W 3 ) corresponding to the third SOC range (C 3 ), the process proceeds to step S10 again. When the battery voltage W is within the third voltage range (W 3 ), the number (N 2 ), the time (t 2 ) and its accumulated time (Σt 2 ), the number of engine restarts (RES) and the internal resistance ( Each value of R) is reset, and the process proceeds to battery voltage (W) measurement in step S2.
[0044]
According to the storage battery control method of the present invention, in addition to the first embodiment, charge / discharge control including the effect of engine restart, which is one of the main causes of battery deterioration, is performed. This is effective for extending the life of the secondary battery of the vehicle power supply system having an idle stop function.
[0045]
It is desirable that the charging voltage of the storage battery is corrected by using a temperature coefficient for the charging control voltage as is normally seen due to a change in ambient temperature. The nominal voltage of the storage battery according to the present invention is not limited to 12 V, and is arbitrary. Nominal voltage batteries can be used. Further, the present invention can obtain the effect most remarkably in the case of a lead storage battery as a storage battery, but can also be applied to other storage batteries, particularly lithium secondary batteries having a strong correlation between battery voltage and SOC. .
[0046]
This embodiment also includes measurement of engine restart frequency (RES) (S7) and measurement of internal resistance (R) (S8), but these may be omitted according to the system price request. It is. In order to obtain the effect of the present invention, the number of times (N 2 ) is measured and the SOC increase control based on the number of times (N 2 ), and preferably the SOC increase control is performed according to the time (t 2 ) and the accumulated time (Σt 2 ). Good. Furthermore, the storage battery ambient temperature (Ta) may be included in the SOC increase control determination, and it goes without saying that it is reasonable for extending the life of the storage battery.
[0047]
Further, in the embodiment of the present invention, the power supply system for the vehicle is exemplified, but the independent power source such as a fuel cell, wind power generation and solar power generation and the storage battery are operated in cooperation, that is, the SOC of the storage battery is controlled in an intermediate state. Needless to say, it can be applied to a power supply system.
[0048]
【The invention's effect】
As described above, according to the configuration of the present invention, the present invention is not limited to the electric power generated by using another power source such as an engine as in the hybrid vehicle as described above, In a power supply system equipped with a storage battery whose state of charge (SOC) is controlled within a predetermined range in order to operate in conjunction with the power from the power generation source, the charge / discharge control of the storage battery can be performed relatively easily, and the battery has a long life Therefore, it is extremely effective industrially.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a power supply system to which a storage battery control method of the present invention is applied. FIG. 2 is a diagram showing a change with time of SOC in the storage battery control method of the present invention. The figure which shows the time-dependent change of the battery voltage in a control method. [FIG. 4] The figure which shows the structural example of the power supply system for vehicles which applies the control method of the storage battery of this invention. [FIG. 5] The control flow in the control method of the storage battery of this invention Figure showing symbols [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power generator 2 Load 3 Charge / discharge control means 4 Lead storage battery 5 Engine 6 Lead storage battery 7 Cell motor 8 Generator 9 Charge / discharge control means 10 Wheel 11 Energy conversion means 12 Auxiliary machine

Claims (9)

蓄電池の充電状態(SOC)を第1のSOC範囲(C1)内で制御する電源システムに用いる蓄電池の制御方法であって、前記SOCが前記第1のSOC範囲(C1)内であって、かつ前記第1のSOC範囲(C1)の下限もしくは下限近傍に設定される第2のSOC範囲(C2)内である回数(N2)を計測し、この回数(N2)に応じて前記蓄電池のSOCを上昇させることを特徴とする蓄電池の制御方法。A storage battery control method for use in a power supply system that controls a state of charge (SOC) of a storage battery within a first SOC range (C 1 ), wherein the SOC is within the first SOC range (C 1 ) and the first lower or second number is SOC range (C 2) in which is set to a lower limit near the SOC range (C 1) (N 2) is measured, according to the number (N 2) And increasing the SOC of the storage battery. 前記SOCが前記第1のSOC範囲(C1)内の上限もしくは上限近傍に設定される第3のSOC範囲(C3)内になった時点で前記回数(N2)のカウントをリセットすることを特徴とする請求項1に記載の蓄電池の制御方法。The count of the number of times (N 2 ) is reset when the SOC falls within a third SOC range (C 3 ) set at or near the upper limit within the first SOC range (C 1 ). The storage battery control method according to claim 1. 蓄電池の充電状態(SOC)を第1のSOC範囲(C1)内で制御する電源システムに用いる蓄電池の制御方法であって、前記第1のSOC範囲(C1)内に設定され、かつ前記第1のSOC範囲(C1)の下限もしくは下限近傍に設定される第2のSOC範囲(C2)内である第2のSOC範囲(C2)内である時間(t2)を計測し、この時間(t2)の累積時間に応じて前記蓄電池のSOCを上昇させることを特徴とする蓄電池の制御方法。A storage battery control method for use in a power supply system for controlling a state of charge (SOC) of a storage battery within a first SOC range (C 1 ), wherein the storage battery is set within the first SOC range (C 1 ), and first measuring a second SOC range (C 2) is in the second SOC range set to the lower limit or the lower limit proximity (C 2) in the a time (t 2) of the SOC range (C 1) A method for controlling a storage battery, wherein the SOC of the storage battery is increased in accordance with the accumulated time of this time (t 2 ). 前記SOCが前記第1のSOC範囲(C1)内の上限もしくは上限近傍に設定される第3のSOC範囲(C3)になった時点で前記時間(t2)とその累積時間をリセットすることを特徴とする請求項3に記載の蓄電池の制御方法。When the SOC reaches the third SOC range (C 3 ) set at or near the upper limit in the first SOC range (C 1 ), the time (t 2 ) and its accumulated time are reset. The storage battery control method according to claim 3. 蓄電池の充電状態(SOC)を第1のSOC範囲(C1)内で制御する電源システムに用いる蓄電池の制御方法であって、前記SOCが前記第1のSOC範囲(C1)内に設定され、かつ前記第1のSOC範囲(C1)の下限もしくは下限近傍に設定される第2のSOC範囲(C2)内である回数(N2)を計測するとともに前記SOCが前記第2のSOC範囲(C2)内である時間(t2)を計測し、前記回数(N2)と前記時間(t2)の累積時間に応じて蓄電池のSOCを上昇させることを特徴とする蓄電池の制御方法。A storage battery control method for use in a power supply system that controls a state of charge (SOC) of a storage battery within a first SOC range (C 1 ), wherein the SOC is set within the first SOC range (C 1 ). And the number of times (N 2 ) within the second SOC range (C 2 ) set at or near the lower limit of the first SOC range (C 1 ) is measured, and the SOC is determined to be the second SOC. A time (t 2 ) that is within a range (C 2 ) is measured, and the SOC of the storage battery is increased according to the number of times (N 2 ) and the accumulated time of the time (t 2 ). Method. 前記SOCが前記第1のSOC範囲(C1)内の上限もしくは上限近傍に設定される第3のSOC範囲(C3)になった時点で前記回数(N2)と前記時間(t2)とその累積時間をリセットすることを特徴とする請求項5に記載の蓄電池の制御方法。The number of times (N 2 ) and the time (t 2 ) when the SOC reaches a third SOC range (C 3 ) set at or near the upper limit in the first SOC range (C 1 ). 6. The storage battery control method according to claim 5, wherein the accumulated time is reset. 前記蓄電池の電池電圧(W)を計測し、前記電池電圧(W)−前記SOCとの関係から前記SOCを検知することを特徴とする請求項1ないし6のいずれかに記載の蓄電池の制御方法。The battery voltage (W) of the said storage battery is measured, and the said SOC is detected from the relationship between the said battery voltage (W)-the said SOC, The storage battery control method in any one of Claim 1 thru | or 6 characterized by the above-mentioned. . 前記電源システムはエンジンを備えて車両に搭載され、前記蓄電池から前記エンジン始動用電力を供給し、前記エンジンの動力の一部を電力に変換して前記蓄電池を充電し、前記車両が停止状態の場合に所定条件下で前記エンジンの運転を停止するアイドルストップ機能を備え、前記アイドルストップ後の前記エンジンの再始動回数(RES)を計測し、この再始動回数(RES)に応じて前記蓄電池のSOCを上昇させることを特徴とする請求項1ないし7のいずれかに記載の蓄電池の制御方法。The power supply system includes an engine and is mounted on a vehicle, supplies the engine starting power from the storage battery, converts a part of the engine power into electric power to charge the storage battery, and the vehicle is in a stopped state. The engine is provided with an idle stop function for stopping the operation of the engine under a predetermined condition, and the number of restarts (RES) of the engine after the idle stop is measured, and the storage battery is controlled according to the number of restarts (RES). 8. The method for controlling a storage battery according to claim 1, wherein the SOC is increased. 前記エンジンの再始動時の前記蓄電池の電圧変化をエンジン始動電流で徐することによって得られる蓄電池の内部抵抗(R)を計測し、前記内部抵抗(R)に応じて前記蓄電池のSOCを上昇させることを特徴とする請求項8に記載の蓄電池の制御方法。The internal resistance (R) of the storage battery obtained by slowing the voltage change of the storage battery during engine restart with the engine starting current is measured, and the SOC of the storage battery is increased according to the internal resistance (R). The storage battery control method according to claim 8.
JP2002354090A 2002-12-05 2002-12-05 Storage battery control method Expired - Fee Related JP4055565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354090A JP4055565B2 (en) 2002-12-05 2002-12-05 Storage battery control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354090A JP4055565B2 (en) 2002-12-05 2002-12-05 Storage battery control method

Publications (2)

Publication Number Publication Date
JP2004186087A JP2004186087A (en) 2004-07-02
JP4055565B2 true JP4055565B2 (en) 2008-03-05

Family

ID=32755213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354090A Expired - Fee Related JP4055565B2 (en) 2002-12-05 2002-12-05 Storage battery control method

Country Status (1)

Country Link
JP (1) JP4055565B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040065B2 (en) * 2005-03-29 2012-10-03 トヨタ自動車株式会社 Battery charge / discharge control device
JP5319903B2 (en) * 2007-09-18 2013-10-16 三菱重工業株式会社 Power storage system
JP5310003B2 (en) 2009-01-07 2013-10-09 新神戸電機株式会社 Lead storage battery control system for wind power generation
US8531154B2 (en) 2009-06-18 2013-09-10 Toyota Jidosha Kabushiki Kaisha Battery system and battery system-equipped vehicle
DE102009042656A1 (en) 2009-09-23 2011-03-24 Bayerische Motoren Werke Aktiengesellschaft Method for controlling or regulating at least one operating parameter influencing the aging state of an electrical energy store
WO2011051997A1 (en) * 2009-10-26 2011-05-05 新神戸電機株式会社 Lead storage battery operating method and electrical storage device equipped with lead storage battery operated by this operating method
US8629657B2 (en) * 2009-12-31 2014-01-14 Tesla Motors, Inc. State of charge range
JP5447282B2 (en) * 2010-08-11 2014-03-19 新神戸電機株式会社 Lead-acid battery and lead-acid battery system for natural energy utilization system
US8866443B2 (en) 2010-08-11 2014-10-21 Shin-Kobe Electric Machinery Co., Ltd. Lead acid storage battery and lead acid storage battery system for natural energy utilization system
WO2012090688A1 (en) 2010-12-27 2012-07-05 本田技研工業株式会社 Power generation control device and power generation control method
US8948948B2 (en) * 2010-12-27 2015-02-03 Honda Motor Co., Ltd Generation control apparatus and generation control method
EP2670019A4 (en) * 2011-01-28 2017-12-27 Sumitomo Heavy Industries, Ltd. Shovel
US9008883B2 (en) 2011-07-27 2015-04-14 Toyota Jidosha Kabushiki Kaisha Control device and control method for hybrid vehicle
WO2013054672A1 (en) * 2011-10-11 2013-04-18 新神戸電機株式会社 Lead storage battery system
KR101399340B1 (en) 2012-11-28 2014-05-30 에스케이씨앤씨 주식회사 Power storage system and method that operate considering superannuation
JP6225655B2 (en) * 2013-11-14 2017-11-08 富士通株式会社 Model predictive control apparatus, method and program
JP6213511B2 (en) 2015-03-25 2017-10-18 トヨタ自動車株式会社 Electric vehicle and control method thereof
CN113442904B (en) * 2021-06-30 2022-11-01 东风汽车集团股份有限公司 Method, device, medium and computer equipment for eliminating vehicle noise

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314040A (en) * 2000-04-27 2001-11-09 Sanyo Electric Co Ltd Method of controlling charging/discharging in hybrid vehicle
JP2002281688A (en) * 2001-03-23 2002-09-27 Shin Kobe Electric Mach Co Ltd Charge control method for lead battery

Also Published As

Publication number Publication date
JP2004186087A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4055565B2 (en) Storage battery control method
US9855854B2 (en) Charge control device and charge control method
EP1257033B1 (en) Refresh charge control device and method
JP4494453B2 (en) Secondary battery control device and control method
JP3736268B2 (en) Control device for hybrid vehicle
US8655524B2 (en) Power supply system, vehicle provided with the same and control method of power supply system
JP4209423B2 (en) Secondary battery control device and secondary battery output control method
US8674659B2 (en) Charge control device and vehicle equipped with the same
WO2012137456A1 (en) Method for determining remaining lifetime
WO2007097471A1 (en) Hybrid car and its control method
JP2004138586A (en) Rechargeable battery evaluating method and rechargeable battery
JP2007323999A (en) Battery control device of automobile
JPH10290535A (en) Battery charger
JP4527048B2 (en) Secondary battery control device and secondary battery input control method
CN109698390B (en) Power supply system and vehicle
JP2010247556A (en) Economical running control device
JP2000069606A (en) Battery control unit
JP3770137B2 (en) Secondary battery control device for vehicle
JP2001351698A (en) Charged state detecting method for lead storage battery and deterioration judging method for the same
JP3839382B2 (en) Control device for in-vehicle power storage device
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle
JP3975937B2 (en) Battery charge control device and charge control method
JP2003338325A (en) Method of determining deteriorated condition of storage battery and method of charging it
JP5545200B2 (en) Vehicle with storage device deterioration judgment device
JP2004135453A (en) Determination method for deterioration of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees