JP2003163034A - Charging method of lead storage battery - Google Patents

Charging method of lead storage battery

Info

Publication number
JP2003163034A
JP2003163034A JP2001363334A JP2001363334A JP2003163034A JP 2003163034 A JP2003163034 A JP 2003163034A JP 2001363334 A JP2001363334 A JP 2001363334A JP 2001363334 A JP2001363334 A JP 2001363334A JP 2003163034 A JP2003163034 A JP 2003163034A
Authority
JP
Japan
Prior art keywords
charging
charge
soc
storage battery
refresh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001363334A
Other languages
Japanese (ja)
Other versions
JP4180819B2 (en
Inventor
Nobuyuki Takami
宣行 高見
Ayako Hirao
亜矢子 平尾
Hidenori Yokoyama
英則 横山
Takeshi Tachibana
武 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Priority to JP2001363334A priority Critical patent/JP4180819B2/en
Publication of JP2003163034A publication Critical patent/JP2003163034A/en
Application granted granted Critical
Publication of JP4180819B2 publication Critical patent/JP4180819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control decrease of life duration by refresh charge in a short period of time when charge-discharge is repeated in an intermediate charge condition which is not in an overcharged condition. <P>SOLUTION: The refresh charge is performed so that a lead storage battery, repeating charge-discharge cycle in the intermediate charged condition which became less than 70% in SOC, becomes from 70% to 85% in the SOC by every charge-discharge cycle of 200 cycles or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の充電方
法に関し、特に、自動車に搭載されて、エンジン始動、
ライト点灯、さらには、カーナビゲーション等の車両用
電子装置(電子負荷)の電源として好適に用いられる鉛
蓄電池の充電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of charging a lead storage battery, and more particularly, to an engine starting,
The present invention relates to a method for charging a lead storage battery, which is preferably used as a power source of a vehicle electronic device (electronic load) such as a car navigation system and lighting a light.

【0002】[0002]

【従来の技術】自動車には、エンジンの始動、ライトの
点灯等のために、2次電池である鉛蓄電池が搭載されて
いる。鉛蓄電池は、正極活物質に二酸化鉛(Pb
2)、負極活物質に海綿状鉛(Pb)、電解液に希硫
酸(H2SO4)が用いられており、通常、走行時に、オ
ルタネーターと称される全波整流三相交流発電機によっ
て、SOC(State Of Charge:充電状態)がほぼ10
0%になるように、一定の充電電圧によって充電される
ようになっている。
2. Description of the Related Art An automobile is equipped with a lead storage battery, which is a secondary battery, for starting an engine, lighting a light, and the like. Lead acid batteries use lead dioxide (Pb) as the positive electrode active material.
O 2 ), spongy lead (Pb) as the negative electrode active material, and dilute sulfuric acid (H 2 SO 4 ) as the electrolytic solution are normally used, and a full-wave rectification three-phase AC generator called an alternator during running. The SOC (State Of Charge) is approximately 10
It is designed to be charged with a constant charging voltage so as to be 0%.

【0003】近年では、エアーコンディショナー、カー
ナビゲーション等が自動車に搭載されることによって鉛
蓄電池の負荷が増大している。このような負荷の増大に
対処するために、および、自動車の燃費の向上を考慮し
て、例えば、車両の減速時に生じる回生エネルギーを鉛
蓄電池に充電してエネルギーを有効利用するシステムが
提案されている。また、車両の走行が停止された場合に
エンジンを停止させるアイドルストップシステムにおい
て、アイドルストップ時に、鉛蓄電池から、車両に搭載
されたエアーコンディショナー、カーステレオ、カーナ
ビゲーション等の電子負荷に対して電力を供給するシス
テム、アイドルストップ後のエンジンの再始動と共に鉛
蓄電池によりモーター駆動による走行アシストを行うシ
ステム等も提案されている。
In recent years, the load on lead-acid batteries has increased due to the installation of air conditioners, car navigation systems, etc. in automobiles. In order to cope with such an increase in the load and in consideration of the improvement of the fuel efficiency of the vehicle, for example, a system has been proposed in which the lead storage battery is charged with regenerative energy generated during deceleration of the vehicle to effectively use the energy. There is. Also, in an idle stop system that stops the engine when the vehicle stops running, during idle stop, power is supplied from the lead storage battery to electronic loads such as air conditioners, car stereos, car navigations, etc. installed in the vehicle. A supply system, a system for restarting the engine after an idle stop, and a system for assisting running by a motor driven by a lead storage battery have also been proposed.

【0004】これらのシステムにおいて、鉛蓄電池に対
して回生エネルギーによって充電する場合には、蓄電池
のSOCが100%未満の部分充電状態になるようにす
る必要がある。
In these systems, when the lead storage battery is charged with regenerative energy, it is necessary to make the SOC of the storage battery into a partial charge state of less than 100%.

【0005】すなわち、鉛蓄電池を小さな電流によっ
て、SOCが100%以上の過充電状態になるまで充電
すると、鉛蓄電池では、正極格子と正極活物質との界面
に硫酸鉛の不動態が形成されて、早期に容量が低下する
おそれがある。この場合には、充電生成物である正極の
二酸化鉛、あるいは負極の海綿状鉛の粒子が粗くなって
活物質の比表面積が減少し、これによっても、容量低下
が起こりやすくなる。
That is, when a lead storage battery is charged with a small current until the SOC reaches an overcharge state of 100% or more, in the lead storage battery, passivation of lead sulfate is formed at the interface between the positive electrode grid and the positive electrode active material. , There is a risk that the capacity will decrease early. In this case, particles of the lead dioxide of the positive electrode or the spongy lead of the negative electrode, which are charge products, become coarse and the specific surface area of the active material decreases, which also tends to reduce the capacity.

【0006】また、前述したように、車両の走行停止時
にエンジンを停止するアイドルストップ後のエンジンの
再始動と共に、鉛蓄電池によってモーターを駆動して走
行をアシストする場合には、電子負荷に対して電力供給
を行っている鉛蓄電池の放電負荷が非常に大きくなり、
鉛蓄電池のSOCが大きく低下した状態になる。このよ
うにSOCが大きく低下した状態からSOCが100%
になるように鉛蓄電池を充電するためには、大電流にて
充電する必要があり、しかも、大電流での充電を頻繁に
繰り返す必要がある。
Further, as described above, when the engine is restarted after the idle stop in which the engine is stopped when the vehicle is stopped and the motor is driven by the lead storage battery to assist the traveling, the electronic load is The discharge load of the lead-acid battery that is supplying power becomes extremely large,
The SOC of the lead storage battery is greatly reduced. The SOC is 100% from the state in which the SOC is greatly reduced.
In order to charge the lead storage battery so as to satisfy the above condition, it is necessary to charge with a large current, and moreover, it is necessary to repeat charging with a large current frequently.

【0007】しかしながら、鉛蓄電池を大きな電流でS
OCが100%の過充電状態とするためには、充電時間
が長く、充電効率が低下するおそれがある。しかも、こ
のように、大電流での過充電を頻繁に繰り返すと、負極
に放電生成物である硫酸鉛が蓄積して、鉛蓄電池の寿命
が低下するおそれもある。
However, a lead-acid battery is used with a large current for S
In order to bring the OC into an overcharged state of 100%, the charging time may be long and the charging efficiency may decrease. Moreover, if the overcharging with a large current is frequently repeated in this way, lead sulfate, which is a discharge product, may accumulate in the negative electrode, which may shorten the life of the lead acid battery.

【0008】このように、鉛蓄電池を回生充電する場合
には、SOCが100%よりも低くなった部分充電状態
とすることが好ましい。
As described above, when the lead storage battery is regeneratively charged, it is preferable that the lead storage battery is in a partially charged state in which the SOC is lower than 100%.

【0009】特開平7−111162号公報には、充電
電流が1CA以上であって充電電気量が放電電気量を上
回らないような充放電サイクルにおいて、200サイク
ル以内に1度の割合で、0.3CA以下の電流によっ
て、実質的にSOCが100%となる過充電状態とする
充電制御方法が提案されている。また、特開平7−11
163号公報には、1CA以上の充電電流によって、充
放電サイクルにおいて、充電電圧が2.5±0.05V
/セルに達した時点で充電を打ち切るとともに、200
サイクル以内の充放電サイクルに1度の割合で、0.3
CA以下の電流によって、実質的にSOCが100%に
なる過充電状態とする充電制御方法が提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 7-111162 discloses a charging / discharging cycle in which the charging current is 1 CA or more and the charging quantity of electricity does not exceed the discharging quantity of electricity. A charge control method has been proposed in which an SOC is substantially 100% by a current of 3 CA or less. In addition, JP-A-7-11
No. 163 discloses that the charging voltage is 2.5 ± 0.05 V in the charging / discharging cycle by the charging current of 1 CA or more.
/ When the cell is reached, charging is terminated and 200
0.3 at a rate of once per charge / discharge cycle
A charge control method has been proposed in which an overcharged state in which SOC is substantially 100% is achieved by a current of CA or less.

【0010】[0010]

【発明が解決しようする課題】これらの公報にて提案さ
れている鉛蓄電池の充電制御方法によれば、充電および
放電を繰り返す充放電サイクルでは、SOCが100%
未満に低く抑制されており、しかも、回生エネルギーに
よって充電しているために、正極および負極の活物質反
応生成物である硫酸鉛の蓄積が生じて鉛蓄電池が劣化す
ることは抑制される。また、充放電サイクルが200サ
イクルに達するまでに、小電流によって過充電状態とな
るようにリフレッシュ充電しているために、充電が実施
されないことにより正極板および負極板に蓄積される硫
酸鉛によって充電効率が損なわれることも抑制される。
According to the charge control methods for lead-acid batteries proposed in these publications, SOC is 100% in a charge / discharge cycle in which charging and discharging are repeated.
The lead storage battery is suppressed from being deteriorated by the accumulation of lead sulfate, which is a reaction product of the active material of the positive electrode and the negative electrode, due to being suppressed to a low level and being charged by the regenerative energy. In addition, since the refresh charge is performed so that the battery is overcharged with a small current by the time the charge / discharge cycle reaches 200 cycles, it is charged by the lead sulfate accumulated in the positive electrode plate and the negative electrode plate because the charging is not performed. The loss of efficiency is also suppressed.

【0011】しかしながら、いずれの場合も、充放電サ
イクルが200サイクルに達するまでにリフレッシュ充
電が実施されて、鉛蓄電池をSOCが100%以上の過
充電状態としているために、充電時間が長くなるという
問題がある。充電時間が長くなると、充放電サイクルが
制限されるために、回生エネルギーによる充電時間、ア
イドルストップ後の走行開始時におけるトルクアシスト
等の時間が制限されるおそれがあり、その結果、自動車
の燃費を改善することができなくなる。また、鉛蓄電池
を過充電状態とするためのリフレッシュ充電の頻度が多
くなると、充電エネルギーによって正極格子が腐食して
電池寿命が低下するおそれもある。
However, in either case, refresh charging is performed before the charge / discharge cycle reaches 200 cycles, and the lead storage battery is in an overcharged state with SOC of 100% or more, so that the charging time becomes long. There's a problem. If the charging time becomes long, the charging / discharging cycle is limited, so the charging time by regenerative energy and the time such as torque assist at the start of running after idle stop may be limited. It cannot be improved. In addition, when the frequency of refresh charging for bringing the lead storage battery into an overcharged state increases, the positive electrode grid may be corroded by the charging energy and the battery life may be shortened.

【0012】本発明は、このような問題を解決するもの
であり、その目的は、過充電状態でない中間充電状態で
充放電を繰り返す際に、短時間での効率のよいリフレッ
シュ充電によって、寿命が低下することを抑制すること
ができる鉛蓄電池の充電方法を提供することにある。
The present invention is intended to solve such a problem, and an object thereof is to improve the life by efficient refresh charging in a short time when charging and discharging are repeated in an intermediate charging state that is not an overcharging state. An object of the present invention is to provide a lead storage battery charging method capable of suppressing the decrease.

【0013】[0013]

【課題を解決するための手段】本発明の鉛蓄電池の充電
方法は、予め設定された第1のSOC未満の中間充電状
態において充放電を繰り返す鉛蓄電池を、所定の期間毎
にリフレッシュ充電を繰り返す鉛蓄電池の充電方法であ
って、該リフレッシュ充電は、第1のSOC以上100
%未満の第2のSOCになるように充電することを特徴
とする。
According to a method of charging a lead storage battery of the present invention, a lead storage battery which is repeatedly charged and discharged in an intermediate charging state of less than a preset first SOC is repeatedly refresh-charged at predetermined intervals. A method of charging a lead storage battery, wherein the refresh charging is performed at a first SOC or more 100 or more.
The charging is performed so that the second SOC is less than%.

【0014】好ましくは、前記第1のSOCが70%未
満、第2のSOCが70%以上85%以下である。
Preferably, the first SOC is less than 70% and the second SOC is 70% or more and 85% or less.

【0015】好ましくは、前記リフレッシュ充電は、定
電圧充電によって実施され、前記第2のSOCに対応し
た所定の充電電流になることによって充電が停止され
る。
Preferably, the refresh charging is performed by constant voltage charging, and the charging is stopped when a predetermined charging current corresponding to the second SOC is reached.

【0016】好ましくは、前記リフレッシュ充電は、2
00サイクル以下の充放電サイクル毎に行われる。
Preferably, the refresh charging is 2
It is performed every charge / discharge cycle of 00 cycles or less.

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0018】本発明の鉛蓄電池の充電方法は、自動車に
搭載された鉛蓄電池を充電するために実施される。鉛蓄
電池は、車両に搭載された各種電子負荷に対して電力を
供給するようになっており、オルタネーターと称される
全波整流三相交流発電機から供給される電力によって充
電される。鉛蓄電池は、例えば、電圧12V、18Ah
の弁制御式鉛蓄電池(VRLA:Valve Regulated Le
ad Aced Battery)であり、正極活物質に二酸化鉛
(PbO2)、負極活物質に海綿状鉛(Pb)、電解液
に希硫酸(H2SO4)が用いられている。
The lead storage battery charging method of the present invention is carried out to charge a lead storage battery mounted on an automobile. The lead storage battery supplies electric power to various electronic loads mounted on the vehicle, and is charged by electric power supplied from a full-wave rectifying three-phase AC generator called an alternator. For example, a lead storage battery has a voltage of 12 V and 18 Ah.
Valve-regulated lead-acid battery (VRLA)
In this case, lead dioxide (PbO 2 ) is used as the positive electrode active material, spongy lead (Pb) is used as the negative electrode active material, and dilute sulfuric acid (H 2 SO 4 ) is used as the electrolytic solution.

【0019】このような鉛蓄電池は、例えば、SOC
(State Of Charge:充電状態)が70%未満の中間充
電状態(PSOC:Partial State Of Charge)で、回
生エネルギーによる充電と、自動車に搭載された各種電
子負荷等に対して電力を供給する放電とを繰り返すよう
になっている。そして、このような充放電サイクルが2
00サイクル以下で、充放電サイクルが実施される中間
充電状態のSOC70%以上であって100%未満のS
OC、例えば、70%〜85%のSOCとなるように、
リフレッシュ充電が実施される。
Such a lead-acid battery is, for example, a SOC
In the intermediate state of charge (State of Charge: charge state) of less than 70% (PSOC: Partial State Of Charge), charging by regenerative energy and discharge for supplying electric power to various electronic loads mounted on the vehicle Is to be repeated. And such a charging / discharging cycle is 2
SOC of 70% or more and less than 100% in the intermediate charge state in which the charge / discharge cycle is performed in the cycle of 00 or less.
OC, for example, so that the SOC becomes 70% to 85%,
Refresh charging is performed.

【0020】リフレッシュ充電において、100%より
も小さなSOCになるように充電することにより、SO
Cを100%とする過充電状態に充電する場合に比べ
て、充電時間は著しく短縮される。このように、リフレ
ッシュ充電の充電時間が短縮されることにより、回生エ
ネルギーの回収、あるいは、アイドルストップ後のエン
ジン始動時および走行時のトルクアシスト等の実施時間
が制限されることが抑制される。また、過充電による正
極格子の腐食、過充電による電解液減少による寿命低下
も改善することができる。
In refresh charging, by charging so that the SOC becomes smaller than 100%, the SO
The charging time is significantly shortened as compared with the case of charging in an overcharged state where C is 100%. As described above, by shortening the charging time of the refresh charging, it is possible to suppress the recovery time of the regenerative energy or the restriction of the execution time of the torque assist and the like at the time of engine start and running after the idle stop. In addition, the corrosion of the positive electrode grid due to overcharge and the shortening of the life due to a decrease in the electrolytic solution due to overcharge can be improved.

【0021】さらに、このように短時間のリフレッシュ
充電を、例えば、200サイクル以下の充放電サイクル
毎に実施することにより、充放電サイクルにおける放電
によって生成した硫酸鉛が、リフレッシュ充電毎に、負
極では鉛と、正極では二酸化鉛とされ、硫酸鉛の偏在化
および固定化するおそれがなく、硫酸鉛の偏在化および
固定化することによる内部抵抗の上昇、放電能力の低下
および寿命の低下を抑制することができる。
Further, by carrying out such refresh charging for a short time every charging / discharging cycle of, for example, 200 cycles or less, lead sulfate generated by discharging in the charging / discharging cycle is refreshed at the negative electrode every refresh charging. Lead and lead dioxide are considered to be lead dioxide, and there is no risk of uneven distribution and immobilization of lead sulfate, and suppression of increased internal resistance, reduced discharge capacity, and shortened life due to uneven distribution and immobilization of lead sulfate. be able to.

【0022】次に、本発明の鉛蓄電池の充電方法におけ
るリフレッシュ充電の充電時間について説明する。ま
ず、前述した制御弁式鉛蓄電池(VRLA:電圧12
V、5時間率容量18Ah)を、5時間率放電によっ
て、SOCが55%となったPSOC(Partial State
Of Charge:中間充電状態)に調整した後に、環境温度
40℃、充電電圧14.6V、最大充電電流35Aとし
て、SOCが70%以上85%以下になるように、定電
圧充電(リフレッシュ充電)した結果を図1に示す。
Next, the charging time for refresh charging in the lead-acid battery charging method of the present invention will be described. First, the control valve type lead-acid battery (VRLA: voltage 12
V, 5 hour rate capacity 18Ah), PSOC (Partial State) with SOC of 55% by 5 hour rate discharge
After adjusting to Of Charge (intermediate charge state), constant voltage charging (refresh charging) was performed so that the SOC was 70% or more and 85% or less at an environmental temperature of 40 ° C., a charging voltage of 14.6 V, and a maximum charging current of 35 A. The results are shown in Fig. 1.

【0023】図1に示すように、リフレッシュ充電を開
始してから5分が経過するまでは、最大充電電流35A
になっており、5分が経過した時点では、鉛蓄電池のS
OCは、71.2%であった。充電を開始して5分が経
過した後には、充電電流は順次低下しており、10分後
には、鉛蓄電池のSOCは83.4%になった。その後
は、充電時間に対するSOCの上昇が抑制され、充電開
始から30分たっても、SOCは95%であり、SOC
を100%とするために、約90分の時間が必要であっ
た。
As shown in FIG. 1, the maximum charging current of 35 A is maintained until 5 minutes have elapsed after the start of refresh charging.
And 5 minutes later, the lead storage battery S
The OC was 71.2%. After 5 minutes had elapsed from the start of charging, the charging current gradually decreased, and after 10 minutes, the SOC of the lead storage battery reached 83.4%. After that, the increase in SOC with respect to the charging time was suppressed, and even after 30 minutes from the start of charging, the SOC was 95%.
It took about 90 minutes to obtain 100%.

【0024】従って、SOCが55%の鉛蓄電池を、S
OCが70%〜85%とするために要する充電時間は、
5〜10分程度でよく、リフレッシュ充電は短時間で終
了する。なお、充電電圧および最大充電電流を変化させ
て、鉛蓄電池を充電する場合にも、70%以上85%以
下のSOCとするために要する充電時間は、ほとんど変
化しない。
Therefore, a lead-acid battery with an SOC of 55% is
The charging time required to adjust the OC to 70% to 85% is
It takes about 5 to 10 minutes, and refresh charging is completed in a short time. Even when the charging voltage and the maximum charging current are changed to charge the lead storage battery, the charging time required to achieve the SOC of 70% or more and 85% or less hardly changes.

【0025】リフレッシュ充電において、鉛蓄電池のS
OCを、70%〜85%とするためには、例えば、SO
Cが70%以上になる場合の充電電流を予め求めておい
て、リフレッシュ充電を開始した後に、最大充電電流か
ら予め求められたその充電電流になるまで充電を行っ
て、その充電電流になった時点で充電を終了すればよ
い。
In refresh charging, the lead storage battery S
In order to set OC to 70% to 85%, for example, SO
The charge current when C becomes 70% or more is obtained in advance, and after the refresh charge is started, charging is performed from the maximum charge current until the charge current obtained in advance reaches the charge current. Charging may be terminated at this point.

【0026】次に、本発明の充電方法と電池寿命との関
係について説明する。前述したVRLA(制御弁式鉛蓄
電池:電圧12V、5時間率容量18Ah)を、5時間
率放電によって、SOCを65%に調整して充放電サイ
クルを実施した。この場合の放電は、1CA相当の電流
で18秒とした。また、充電は、環境温度40℃、充電
電圧14.6V、最大充電電流5CAの条件で5秒間に
わたって定電圧充電した。このような充放電サイクルを
繰り返すとともに、200サイクル毎に5分間にわたる
リフレッシュ充電を実施して、SOCを70%以上とし
た。この場合に、100サイクルの充放電サイクル毎
に、5CA相当の電流で5秒間にわたって放電して5秒
目の電圧を測定した。結果を、図2のグラフに、実施例
1「a−1」として示す。また、100サイクルの充放
電サイクル毎に測定される放電5秒目の放電電圧が7.
2Vになったときを電池寿命とした。
Next, the relationship between the charging method of the present invention and the battery life will be described. The VRLA (control valve type lead-acid battery: voltage 12V, 5 hour rate capacity 18 Ah) was subjected to a 5 hour rate discharge to adjust the SOC to 65% and a charge / discharge cycle was carried out. The discharge in this case was 18 seconds at a current equivalent to 1 CA. Further, the charging was performed by constant voltage charging for 5 seconds under the conditions of an environmental temperature of 40 ° C., a charging voltage of 14.6 V, and a maximum charging current of 5 CA. While repeating such charging / discharging cycle, refresh charging was carried out for 5 minutes every 200 cycles to make the SOC 70% or more. In this case, every 100 charge / discharge cycles, discharge was performed for 5 seconds with a current equivalent to 5 CA, and the voltage at 5 seconds was measured. The results are shown as "a-1" in Example 1 in the graph of FIG. Further, the discharge voltage at the 5th second discharge measured at every 100 charge / discharge cycles was 7.
The battery life was defined as 2V.

【0027】比較のために、3000サイクルの充放電
サイクル毎に10分間のリフレッシュ充電を実施した場
合の測定結果を、図2のグラフに、比較例1「b−1」
として示す。そして、この場合の電池寿命を、寿命指数
100としたところ、実施例1「a−1」における鉛蓄
電池の寿命指数は、300であった。
For comparison, the results of measurement when refresh charging was performed for 10 minutes every 3000 charge / discharge cycles are shown in the graph of FIG. 2 as Comparative Example 1 "b-1".
Show as. When the battery life in this case was set to 100, the life index of the lead storage battery in Example 1 "a-1" was 300.

【0028】同様に、実施例2として、200サイクル
の充放電サイクル毎に10分間のリフレッシュ充電を実
施して、SOCを70%以上85%以下としたこと以外
は、実施例1と同様にして、100サイクルの充放電サ
イクル毎に放電5秒目の放電電圧を測定した。その測定
結果を、図2のグラフに、実施例2「a−2」として示
す。この場合の寿命指数は、300以上であった。
Similarly, as Example 2, the same procedure as in Example 1 was carried out except that refresh charging was carried out for 10 minutes every 200 charge / discharge cycles, and the SOC was 70% or more and 85% or less. The discharge voltage at 5 seconds after discharge was measured every 100 charge / discharge cycles. The measurement result is shown as "a-2" in Example 2 in the graph of FIG. The life index in this case was 300 or more.

【0029】比較のために、リフレッシュ充電を全く実
施しないこと以外は、比較例と同様にした場合の測定結
果を、図2のグラフに、比較例2「b−2」として示
す。この場合の寿命指数は、50程度であった。
For comparison, the result of measurement in the same manner as in the comparative example except that refresh charging is not performed at all is shown in the graph of FIG. 2 as comparative example 2 "b-2". The life index in this case was about 50.

【0030】さらに、比較のために、3000サイクル
の充放電サイクル毎に5分間にわたるリフレッシュ充電
を実施して、SOCを70%以上85%以下としたこと
以外は、実施例1と同様にして、100サイクルの充放
電サイクル毎に放電5秒目の放電電圧を測定した。その
測定結果を、図3のグラフに、比較例3「b−3」とし
て示す。この場合の寿命指数は、100よりも小さくな
っていた。
Further, for comparison, in the same manner as in Example 1 except that refresh charging was carried out for 5 minutes for every 3000 charge / discharge cycles, and the SOC was 70% or more and 85% or less. The discharge voltage at 5 seconds after discharge was measured every 100 charge / discharge cycles. The measurement result is shown as Comparative Example 3 “b-3” in the graph of FIG. The life index in this case was smaller than 100.

【0031】また、参考のために、3000サイクルの
充放電サイクル毎に30分間にわたるリフレッシュ充電
を実施して、SOCを85より大きくしたこと以外は、
実施例1と同様にして、100サイクルの充放電サイク
ル毎に放電5秒目の放電電圧を測定した。その測定結果
を、図2のグラフに、参考例1「c−1」として示す。
この場合は、寿命指数は300以上になるが、リフレッ
シュ充電が30分と長くなるために、充電効率が低下し
ていた。
Further, for reference, except that the refresh charge is carried out for 30 minutes every 3000 charge / discharge cycles, and the SOC is made larger than 85,
In the same manner as in Example 1, the discharge voltage at the 5th second discharge was measured every 100 charge / discharge cycles. The measurement result is shown in the graph of FIG. 2 as Reference Example 1 "c-1".
In this case, the life index becomes 300 or more, but the refresh charging is prolonged to 30 minutes, so that the charging efficiency is lowered.

【0032】さらに、参考のために、200サイクルの
充放電サイクル毎に30分間にわたるリフレッシュ充電
を実施して、SOCを85より大きくしたこと以外は、
実施例1と同様にして、100サイクルの充放電サイク
ル毎に放電5秒目の放電電圧を測定した。その測定結果
を、図3のグラフに、参考例2「c−2」として示す。
この場合も、寿命指数は300以上になるが、リフレッ
シュ充電が30分と長くなるために、充電効率が低下し
ていた。なお、図3のグラフに、実施例1「a−1」お
よび実施例「a−2」を併記する。
Further, for reference, except that refresh charging was carried out for 30 minutes every 200 charge / discharge cycles, and SOC was made larger than 85, except that
In the same manner as in Example 1, the discharge voltage at the 5th second discharge was measured every 100 charge / discharge cycles. The measurement result is shown as Reference Example 2 "c-2" in the graph of FIG.
In this case as well, the life index was 300 or more, but the refresh charging was prolonged to 30 minutes, so that the charging efficiency was lowered. In addition, Example 1 "a-1" and Example "a-2" are described together in the graph of FIG.

【0033】また、参考例3として、3000サイクル
の充放電サイクル毎に90分間にわたるリフレッシュ充
電を実施して、SOCをほぼ100としたこと以外は、
実施例1と同様にして、100サイクルの充放電サイク
ル毎に放電5秒目の放電電圧を測定した結果を、図3の
グラフに、参考例3「c−3」として示す。同様に、参
考例4として、200サイクルの充放電サイクル毎に9
0分間にわたるリフレッシュ充電を実施して、SOCを
ほぼ100としたこと以外は、実施例1と同様にした測
定結果を、図3のグラフに、参考例4「c−4」として
示す。いずれの場合も、鉛蓄電池の寿命指数は300以
上になるが、リフレッシュ充電が長くなるために、充電
効率が低下していた。
Further, as Reference Example 3, except that refresh charging was carried out for 90 minutes every 3000 charge / discharge cycles, and the SOC was set to about 100,
In the same manner as in Example 1, the result of measuring the discharge voltage at the 5th second discharge for every 100 charge / discharge cycles is shown in the graph of FIG. 3 as Reference Example 3 “c-3”. Similarly, as Reference Example 4, 9 for every 200 charge / discharge cycles
A measurement result similar to that in Example 1 except that the refresh charging was performed for 0 minutes and the SOC was set to approximately 100 is shown in the graph of FIG. 3 as Reference Example 4 “c-4”. In either case, the life index of the lead storage battery was 300 or more, but the refresh efficiency was long and the charging efficiency was low.

【0034】このように、鉛蓄電池を70%未満の中間
充填状態として、充放電サイクルを繰り返す際に、20
0サイクル以下の充放電サイクル毎に、SOCが70%
〜85%になるようにリフレッシュ充電することによっ
て、硫酸塩の偏在等による寿命低下を防ぐことができ
る。しかも、リフレッシュ充電に要する充電時間も短く
なるために、充放電サイクルにおける回生エネルギーに
よる充電時間および電子負荷への電力供給等の放電時間
が制限されるおそれがない。
As described above, when the lead-acid battery is set to the intermediate charging state of less than 70% and the charging / discharging cycle is repeated,
SOC is 70% at every charge / discharge cycle of 0 cycles or less
By performing refresh charging so as to be about 85%, it is possible to prevent the life from being shortened due to uneven distribution of sulfates and the like. Moreover, since the charging time required for refresh charging is also shortened, there is no fear that the charging time by regenerative energy in the charging / discharging cycle and the discharging time such as power supply to the electronic load are limited.

【0035】[0035]

【発明の効果】本発明の鉛蓄電池の充電制御方法は、こ
のように、5分〜10分程度の短時間のリフレッシュ充
電によって、硫酸鉛の偏在などによる電池寿命の低下等
を抑制することができる。しかも、リフレッシュ充電の
充電効率が向上するために、充放電サイクルにおける回
生充電および電力供給が制限されることが抑制される。
従って、その工業的価値は、極めて大きい。
As described above, the lead storage battery charge control method of the present invention can suppress the reduction in battery life due to uneven distribution of lead sulfate, etc. by short-time refresh charging of about 5 to 10 minutes. it can. Moreover, since the charging efficiency of the refresh charging is improved, the limitation of the regenerative charging and the power supply in the charging / discharging cycle is suppressed.
Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鉛蓄電池の充電方法におけるリフレッ
シュ充電時の充電電流と時間との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between charging current and time during refresh charging in the lead storage battery charging method of the present invention.

【図2】本発明の鉛蓄電池の充電方法におけるリフレッ
シュ充電と電池寿命との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between refresh charging and battery life in the lead storage battery charging method of the present invention.

【図3】本発明の鉛蓄電池の充電方法におけるリフレッ
シュ充電と電池寿命との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between refresh charging and battery life in the lead storage battery charging method of the present invention.

【符号の説明】 a−1 実施例1 a−2 実施例2 b−1 比較例1 b−2 比較例2 b−3 比較例3 c−1 参考例1 c−2 参考例2 c−3 参考例3 c−4 参考例4[Explanation of symbols] a-1 Example 1 a-2 Example 2 b-1 Comparative example 1 b-2 Comparative example 2 b-3 Comparative example 3 c-1 Reference example 1 c-2 Reference example 2 c-3 Reference example 3 c-4 Reference example 4

フロントページの続き (72)発明者 平尾 亜矢子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 横山 英則 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 立花 武 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5G003 AA07 BA01 CA03 DA12 5H030 AA03 AA06 AS08 BB02 BB10 FF41 FF51 Continued front page    (72) Inventor Ayako Hirao             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hidenori Yokoyama             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Takeshi Tachibana             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. F-term (reference) 5G003 AA07 BA01 CA03 DA12                 5H030 AA03 AA06 AS08 BB02 BB10                       FF41 FF51

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 予め設定された第1のSOC未満の中間
充電状態において充放電を繰り返す鉛蓄電池を、所定の
期間毎にリフレッシュ充電を繰り返す鉛蓄電池の充電方
法であって、 該リフレッシュ充電は、第1のSOC以上100%未満
の第2のSOCになるように充電することを特徴とする
鉛蓄電池の充電方法。
1. A method of charging a lead storage battery, wherein a lead storage battery that repeats charge and discharge in a preset intermediate charge state of less than a first SOC is repeatedly refresh-charged at predetermined intervals, the refresh charging comprising: A method of charging a lead storage battery, which comprises charging to a second SOC that is equal to or more than a first SOC and less than 100%.
【請求項2】 第1のSOCが70%未満、第2のSO
Cが70%以上85%以下である請求項1に記載の鉛蓄
電池の充電方法。
2. The first SOC is less than 70%, the second SO
The charging method for a lead storage battery according to claim 1, wherein C is 70% or more and 85% or less.
【請求項3】 リフレッシュ充電は、定電圧充電によっ
て実施され、第2のSOCに対応した所定の充電電流に
なることによって充電が停止される請求項1または2に
記載の鉛蓄電池の充電方法。
3. The lead-acid battery charging method according to claim 1, wherein the refresh charging is performed by constant voltage charging, and the charging is stopped when a predetermined charging current corresponding to the second SOC is reached.
【請求項4】 リフレッシュ充電は、200サイクル以
下の充放電サイクル毎に行われる請求項1〜3のいずれ
かに記載の鉛蓄電池の充電方法。
4. The lead-acid battery charging method according to claim 1, wherein the refresh charge is performed every charge / discharge cycle of 200 cycles or less.
JP2001363334A 2001-11-28 2001-11-28 Lead-acid battery charging method Expired - Lifetime JP4180819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363334A JP4180819B2 (en) 2001-11-28 2001-11-28 Lead-acid battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363334A JP4180819B2 (en) 2001-11-28 2001-11-28 Lead-acid battery charging method

Publications (2)

Publication Number Publication Date
JP2003163034A true JP2003163034A (en) 2003-06-06
JP4180819B2 JP4180819B2 (en) 2008-11-12

Family

ID=19173694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363334A Expired - Lifetime JP4180819B2 (en) 2001-11-28 2001-11-28 Lead-acid battery charging method

Country Status (1)

Country Link
JP (1) JP4180819B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
CN102074765A (en) * 2010-12-21 2011-05-25 江苏永达电源股份有限公司 Charging process for prolonging cycle life of lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
CN102074765A (en) * 2010-12-21 2011-05-25 江苏永达电源股份有限公司 Charging process for prolonging cycle life of lead acid battery

Also Published As

Publication number Publication date
JP4180819B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
CN105936248B (en) Power supply system
US9649950B2 (en) Power supply apparatus
CN102237706B (en) Power supply unit having plurality of secondary batteries
US20120098501A1 (en) Efficient lead acid battery charging
WO2014025069A1 (en) Power system for a vehicle
KR101987528B1 (en) System and method for battery management
CN109314399B (en) Vehicle-mounted power supply system
JP4055565B2 (en) Storage battery control method
JP5141408B2 (en) Equal charge system for lead acid batteries
JP2002142379A (en) Charging method for battery
US20190044361A1 (en) Electric power system
JP2003151617A (en) Lead-acid battery
JP2005302395A (en) Lead storage battery
JP3839382B2 (en) Control device for in-vehicle power storage device
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle
JP2004201411A (en) Apparatus and method for controlling power source
JP4180819B2 (en) Lead-acid battery charging method
JP4715075B2 (en) Control valve type lead acid battery
JP2005067293A (en) Control method for lead storage battery
JP2003164073A (en) Charging and discharging device
JP2003052129A (en) Battery-charging method
JP2004135453A (en) Determination method for deterioration of secondary battery
JP2003346913A (en) Control method for lead storage battery
JP2004179097A (en) Uniform charging system of lead battery
JP4557372B2 (en) Battery life evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Ref document number: 4180819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term