JP2003346913A - Control method for lead storage battery - Google Patents

Control method for lead storage battery

Info

Publication number
JP2003346913A
JP2003346913A JP2002150508A JP2002150508A JP2003346913A JP 2003346913 A JP2003346913 A JP 2003346913A JP 2002150508 A JP2002150508 A JP 2002150508A JP 2002150508 A JP2002150508 A JP 2002150508A JP 2003346913 A JP2003346913 A JP 2003346913A
Authority
JP
Japan
Prior art keywords
charging
storage battery
lead storage
charge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002150508A
Other languages
Japanese (ja)
Inventor
Kenji Yamanaka
山中  健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002150508A priority Critical patent/JP2003346913A/en
Publication of JP2003346913A publication Critical patent/JP2003346913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for a lead storage battery using the lead storage battery in a partial charged state and controlling the charged state thereof by integrating charging/discharging currents capable of adequately charging the lead storage battery, reducing the shifts of the charged states from a predetermined charged partial state caused by repeating charging/ discharging and achieving an excellent life characteristics. <P>SOLUTION: The control method for the lead storage battery using the lead storage battery in a partial charged state and controlling the charged state thereof by integrating charging/discharging currents comprises the steps of setting a charging voltage used in the partial charged state to 0.18 V/cell or more and 0.68 V/cell or less in relation to an open circuit voltage of the lead storage battery, and performing recovery charging periodically. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の制御方
法に関する。
The present invention relates to a method for controlling a lead storage battery.

【0002】[0002]

【従来の技術】主にエンジンの始動に使用されている自
動車用鉛蓄電池は、走行時のエンジン回転中には、常に
定電圧充電方式で充電されており、蓄電池の充電状態
(SOC:State of Charge、以降、S
OCという)は、ほぼ100%に制御されている。
2. Description of the Related Art A lead-acid battery for automobiles, which is mainly used for starting an engine, is always charged by a constant-voltage charging method while the engine is rotating during traveling, and the state of charge (SOC: State of charge) of the storage battery. Charge, hereinafter S
OC) is controlled to almost 100%.

【0003】一方,近年、自動車の燃費向上を目的とし
て、減速時に車の運動エネルギーを電力として蓄電池を
回生充電するシステムが提案されている。このような回
生充電を行うためには、蓄電池のSOCを100%未満
の部分充電状態(PSOC:Partial Stat
e of Charge、以降、PSOCという)に制
御しておく必要がある。
On the other hand, in recent years, a system for regeneratively charging a storage battery using kinetic energy of a vehicle as electric power during deceleration has been proposed for the purpose of improving the fuel efficiency of the vehicle. In order to perform such regenerative charging, the SOC of the storage battery is set to a partially charged state (PSOC: Partial Stat) of less than 100%.
e of Charge (hereinafter, referred to as PSOC).

【0004】さらに、自動車の排気ガスを少なくする目
的でエンジン駆動に加えて加速時に電気モーターでアシ
ストするものや停車時にアイドリングをストップさせ、
スタート時には鉛蓄電池でエンジンを駆動させるハイブ
リッド車が使用されるようになってきている。このよう
な使い方ではエンジン駆動のみに比べて放電頻度が高
く、この場合、絶えずSOCを100%に維持するより
はPSOCで使用する方が寿命特性の優れていることが
わかってきた。
Further, in order to reduce the exhaust gas of the automobile, in addition to driving the engine, an electric motor assists during acceleration or stops idling when the vehicle stops,
At the start, hybrid vehicles in which an engine is driven by a lead storage battery are being used. In such a usage, it has been found that the discharge frequency is higher than in the case of only driving the engine, and in this case, the life characteristics are more excellent when the SOC is used than when the SOC is constantly maintained at 100%.

【0005】このようなPSOCで鉛蓄電池が使用され
る場合、自動車用鉛蓄電池に一般的に適用されている充
電条件が適切とは言えず充電条件を明確にする必要があ
った。
[0005] When a lead-acid battery is used in such a PSOC, the charging conditions generally applied to lead-acid batteries for automobiles cannot be said to be appropriate, and it is necessary to clarify the charging conditions.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、PS
OCで鉛蓄電池を使用し、そのSOCを充・放電電流値
の積算によって管理する制御方法おいて、前記鉛蓄電池
に適した充電を行い、充・放電を繰り返した際の所定の
PSOCからのずれを低減し、優れた寿命特性が得られ
る鉛蓄電池の制御方法を提供する事にある。
The object of the present invention is to provide a PS
In a control method in which a lead-acid battery is used in the OC and the SOC is managed by integrating the charge / discharge current values, a deviation from a predetermined PSOC when charging and discharging / charging suitable for the lead-acid battery are repeated is performed. It is an object of the present invention to provide a method for controlling a lead storage battery, which can reduce the load and obtain excellent life characteristics.

【0007】[0007]

【課題を解決するための手段】発明者は、部分充電状態
(PSOC)で使用される鉛蓄電池に対して種々の充電
条件を適用した試験を行い、上記使用条件に適した充電
条件範囲を見出した。本発明はその知見に基づくもの
で、請求項1によれば、鉛蓄電池をPSOCで使用し、
その充電状態(SOC)を充・放電電流値の積算によっ
て管理する制御方法おいて、前記PSOCで使用される
際の充電電圧を前記鉛蓄電池の開回路電圧に対して0.
18V/セル以上、かつ0.68V/セル以下とするこ
とを特徴とするものである。
SUMMARY OF THE INVENTION The inventor of the present invention has conducted tests in which various charge conditions are applied to a lead-acid battery used in a partially charged state (PSOC), and found a charge condition range suitable for the above use conditions. Was. The present invention is based on the finding, and according to claim 1, a lead-acid battery is used in PSOC,
In a control method for managing the state of charge (SOC) by integrating charge / discharge current values, the charge voltage when used in the PSOC is set to 0.
The voltage is 18 V / cell or more and 0.68 V / cell or less.

【0008】PSOC、例えば、SOCを90%の状態
で鉛蓄電池を使用する場合に、そのSOCを充・放電電
流値の積算によって管理するのであるが、充電条件によ
っては、充・放電を繰り返していくにしたがって短期間
に上記SOCが90%から大きく低下していく場合があ
る。本発明の鉛蓄電池の開回路電圧に対して0.18V
/セル以上、かつ0.68V/セル以下の範囲の充電電
圧で充電を行えば、短期間にSOC、例えば、90%か
ら大きくずれないことがわかった。
[0008] When a lead storage battery is used in a state where the SOC is 90%, for example, the SOC is managed by integrating the charge / discharge current values. Depending on the charging conditions, the charge / discharge is repeated depending on the charging conditions. In some cases, the SOC greatly decreases from 90% in a short period of time. 0.18 V with respect to the open circuit voltage of the lead storage battery of the present invention
It was found that if charging was performed at a charging voltage in the range of not less than / cell and not more than 0.68 V / cell, the SOC did not greatly deviate from the SOC, for example, 90% in a short period of time.

【0009】定電圧充電では、鉛蓄電池の電圧と充電器
の設定電圧の差で充電電流が決まってくるので、開回路
電圧に対して0.18V/セルより低い電圧で充電を行
うと充電が十分にされない状態で充電器の設定電圧と鉛
蓄電池の電圧が同じになり、充電電流が大きく低下し、
微小電流になってしまう。微小電流で充電を行うと鉛蓄
電池の自己放電と充電とが相殺される形になり、電流は
流れているにもかかわらず充電効率が非常に悪い状態と
なり、結果として充電状態が維持できず、容量が低下す
ると考えられる。一方、充電電圧が開回路電圧に対して
0.68V/セル以上の定電圧充電を行うと、この電圧
では、充電量が90%近くになると充電時の副反応であ
るガス発生がより顕著になり、このような充・放電を繰
り返していると、特に、正極活物質と格子との密着性が
低下し容量が低下していくと考えられる。したがって、
鉛蓄電池の開回路電圧に対して0.18V/セル以上、
かつ0.68V/セル以下の範囲の充電電圧で充電を行
うのが好ましい。
In constant voltage charging, the charging current is determined by the difference between the voltage of the lead storage battery and the set voltage of the charger. Therefore, when charging is performed at a voltage lower than 0.18 V / cell with respect to the open circuit voltage, the charging is performed. In the state where it is not enough, the set voltage of the charger and the voltage of the lead storage battery become the same, the charging current drops significantly,
It becomes a small current. When charging with a small current, the self-discharge of the lead storage battery and the charging are offset, and the charging efficiency is extremely poor despite the current flowing, and as a result, the charged state cannot be maintained, It is considered that the capacity decreases. On the other hand, when charging is performed at a constant voltage of 0.68 V / cell or more with respect to the open circuit voltage, gas generation, which is a side reaction during charging, becomes more remarkable at this voltage when the charged amount approaches 90%. When such charge / discharge is repeated, it is considered that the adhesion between the positive electrode active material and the grid is reduced, and the capacity is reduced. Therefore,
0.18 V / cell or more with respect to the open circuit voltage of the lead storage battery,
It is preferable to perform charging at a charging voltage in the range of 0.68 V / cell or less.

【0010】請求項2によれば、前記部分充電状態(P
SOC)の制御において、定期的に回復充電を行うこと
を特徴とするものである。
According to the second aspect, the partial charge state (P
In the control of the SOC, the recovery charge is periodically performed.

【0011】請求項1に示す鉛蓄電池の開回路電圧に対
して0.18V/セル以上、かつ0.68V/セル以下
の範囲の充電電圧で充電を行い、SOCを充・放電電流
値で管理すれば短期間に所定のSOCから大きく低下す
ることはないが、この管理方法では充電効率まで検知で
きないので見かけ上では所定のSOCを維持していても
実際には長期にわたってこの状態を続けると容量低下は
免れない。したがって、一定の期間経過毎に、充電電圧
を開回路電圧に対して0.68V/セル以下で、高めの
電圧、0.37〜0.68V/セルの範囲の電圧で充電
することによって、所定のSOCからのずれを是正で
き、安定した寿命特性が得られる。この場合の充電を回
復充電と定義する。
According to the first aspect of the present invention, the battery is charged at a charging voltage in a range of 0.18 V / cell or more and 0.68 V / cell or less with respect to the open circuit voltage of the lead storage battery, and the SOC is controlled by a charge / discharge current value. In this case, there is no significant decrease in the SOC from the predetermined SOC in a short period of time. However, the charging method cannot detect the charging efficiency. The decline is inevitable. Therefore, every time a fixed period elapses, the charging voltage is set to 0.68 V / cell or less with respect to the open circuit voltage, and is charged at a higher voltage, that is, a voltage in the range of 0.37 to 0.68 V / cell. Can be corrected, and stable life characteristics can be obtained. The charging in this case is defined as recovery charging.

【0012】[0012]

【発明の実施の形態】近年、自動車の燃費向上を目的と
して、減速時に車の運動エネルギーを電力として蓄電池
を回生充電するシステムや自動車の排気ガスを少なくす
る目的でエンジン駆動に加えて加速時に電気モーターで
アシストするものあるいは停車時にアイドリングをスト
ップさせ、スタート時には鉛蓄電池でエンジンを駆動さ
せるハイブリッド車が使用されるようになってきてい
る。このような使用条件では、絶えずSOCを100%
に維持するよりはPSOCで使用する方が寿命特性の優
れていることがわかってきた。したがって、本発明の制
御方法は、自動車用鉛蓄電池に適用するのが相応しく、
実施例ではそのことを想定した内容の試験を行った結果
に基づいて具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In recent years, a system for regenerating a storage battery using kinetic energy of a vehicle at the time of deceleration for the purpose of improving fuel efficiency of a vehicle, and an electric motor for accelerating the vehicle in addition to driving an engine for the purpose of reducing vehicle exhaust gas. A hybrid vehicle that assists with a motor or stops idling when the vehicle stops and drives the engine with a lead-acid battery at the start has been used. Under such usage conditions, the SOC is constantly increased to 100%.
It has been found that using the PSOC has better life characteristics than maintaining the same. Therefore, the control method of the present invention is suitably applied to a lead storage battery for an automobile,
In the embodiment, a specific description will be given based on the result of a test performed on the assumption of the above.

【0013】[0013]

【実施例】PSOCで鉛蓄電池を使用し、そのSOCを
充・放電電流値の積算によって管理する制御方法おい
て、その充電電圧を前記鉛蓄電池の開回路電圧に対して
0.18V/セル以上、かつ0.68V/セル以下で行
うのが適切であることを明らかにするために以下の試験
を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a control method in which a lead storage battery is used in a PSOC and the SOC is managed by integrating charge / discharge current values, the charging voltage is set to 0.18 V / cell or more with respect to the open circuit voltage of the lead storage battery. The following tests were performed to clarify that the test was properly performed at 0.68 V / cell or less.

【0014】[0014]

【実施例1】定格容量、28Ah、公称電圧、12Vの
液式自動車用鉛蓄電池を10個準備し、先ず、5.6A
(0.2CA)(C:定格容量、A:電流の単位)で
2.8Ah放電を行い、蓄電池の残存容量25.2Ah
の状態をSOC、90%とした。この時の蓄電池の開回
路電は、12.7Vであった。
[Embodiment 1] Ten lead-acid batteries for liquid type vehicles having a rated capacity of 28 Ah, a nominal voltage of 12 V, and 5.6 A were first prepared.
2.8 Ah was discharged at (0.2 CA) (C: rated capacity, A: unit of current), and the remaining capacity of the storage battery was 25.2 Ah.
Was set to SOC, 90%. The open circuit power of the storage battery at this time was 12.7V.

【0015】ここでの定格容量とは、蓄電池に表示され
ているあるいはJIS等の規格による型式で規定されて
いる容量をいい、通常、Ahで表される。
Here, the rated capacity refers to a capacity indicated on a storage battery or specified by a model according to a standard such as JIS, and is usually represented by Ah.

【0016】次に、これらの蓄電池を100サイクル、
表1に示す各種充電電圧で充・放電を行った。充・放電
条件は以下のとおりである。
Next, these storage batteries are used for 100 cycles,
Charging and discharging were performed at various charging voltages shown in Table 1. The charge / discharge conditions are as follows.

【0017】 放電:5.6Aの電流で100分間 充電: 充電電圧:表1に示す各充電電圧 充電最大電流:80A 充電量:放電量と同じ量を充電。充電量の管理は充電電
流値の積算で行った。 サイクル時の温度:40℃の雰囲気中
Discharge: Charging at a current of 5.6 A for 100 minutes: Charging voltage: Maximum charging current of each charging voltage shown in Table 1: 80 A Charge: Charge the same amount as the discharge. The charge amount was managed by integrating the charge current values. Cycle temperature: 40 ° C atmosphere

【0018】[0018]

【表1】 [Table 1]

【0019】100サイクル後に、上記蓄電池を25℃
の雰囲気中、5.6Aで1.7V/セルまで放電を行い
各蓄電池のSOCを調査した。その結果を表2および図
1に示す。本試験での各充電電圧の評価は、スタート時
にSOCが90%、25.2Ahであったのが、100
サイクルの充・放電後にその容量がどの程度低下したか
によって評価した。
After 100 cycles, the storage battery is heated to 25 ° C.
The battery was discharged at 5.6 A to 1.7 V / cell in the above atmosphere, and the SOC of each storage battery was examined. The results are shown in Table 2 and FIG. In the evaluation of each charging voltage in this test, the SOC at the start was 90% and 25.2 Ah.
Evaluation was made based on how much the capacity decreased after charge / discharge of the cycle.

【0020】[0020]

【表2】 [Table 2]

【0021】表2および図1からも明らかなように、開
回路電圧に対して0.18V/セル以上、0.68V/
セル以下の充電電圧でサイクルをしたNo.3〜No.
9は、容量低下量が小さく、PSOCで鉛蓄電池を使用
した時の充電条件として好ましいことが明らかになっ
た。
As is clear from Table 2 and FIG. 1, the open circuit voltage is 0.18 V / cell or more and 0.68 V / cell or more.
No. which cycled at a charging voltage lower than the cell. 3-No.
It was found that No. 9 had a small capacity decrease and was preferable as a charging condition when a lead storage battery was used in PSOC.

【0022】開回路電圧に対して0.18V/セル以下
で充電したNo.1およびNo.2は、充電不足傾向が
顕著で容量低下が大きかった。一方、開回路電圧に対し
て0.68V/セル以上の電圧で充電をおこなったN
o.10は、充電不足でないにもかかわらず容量低下し
ていた。これは上述したように正極活物質と格子との密
着性が低下したためと考えられる。
No. 1 charged at 0.18 V / cell or less with respect to the open circuit voltage. 1 and No. Sample No. 2 had a remarkable tendency of insufficient charging and a large decrease in capacity. On the other hand, N was charged at a voltage of 0.68 V / cell or more with respect to the open circuit voltage.
o. In No. 10, the capacity was reduced despite not being insufficiently charged. This is considered to be because the adhesion between the positive electrode active material and the lattice was reduced as described above.

【0023】[0023]

【実施例2】次に、定格容量、20Ah、公称電圧、1
2Vの自動車用制御弁式鉛蓄電池、10個を準備し、先
ず、4A(0.2CA)で2Ah放電し、蓄電池の残存
容量18Ahの状態をSOC、90%とした。このとき
の蓄電池の開回路電圧は12.7Vであった。これらの
蓄電池を表1と同じ充電電圧で充・放電を行った。充・
放電条件の詳細は以下に示す。
Embodiment 2 Next, rated capacity, 20 Ah, nominal voltage, 1
Ten control valve-type lead-acid batteries for automobiles of 2 V were prepared, and first, 2 Ah was discharged at 4 A (0.2 CA), and the state of the remaining capacity of the storage battery was 18 Ah, and the SOC was 90%. At this time, the open circuit voltage of the storage battery was 12.7V. These storage batteries were charged and discharged at the same charging voltage as in Table 1. Charge
Details of the discharge conditions are shown below.

【0024】 放電:40Aの電流で1分間 充電: 充電電圧:表1に示す各充電電圧 充電最大電流:80A 充電量:放電量と同じ量を充電。充電量の管理は充電電
流値の積算で行った。 サイクル時の温度:40℃の雰囲気中 上記条件で1000サイクル、充・放電を行った後、2
5℃の雰囲気中、各蓄電池を4Aで放電終止電圧1.7
0V/セルまで放電を行い、実施例1と同様、SOC9
0%の容量18Ahからどの程度低下したかによって各
充電電圧を評価した。その結果を表3および図2にそれ
ぞれ示す。
Discharge: Charge for 1 minute with a current of 40 A: Charge voltage: Maximum charge current of each charge voltage shown in Table 1: 80 A Charge: Charge the same amount as discharge. The charge amount was managed by integrating the charge current values. Cycle temperature: After charging and discharging for 1000 cycles under the above conditions in an atmosphere of 40 ° C., 2
In a 5 ° C. atmosphere, each storage battery was discharged at 4 A at a discharge end voltage of 1.7.
Discharge was performed to 0 V / cell, and SOC9 was applied as in Example 1.
Each charging voltage was evaluated based on how much the capacity decreased from 0% capacity 18Ah. The results are shown in Table 3 and FIG. 2, respectively.

【0025】[0025]

【表3】 [Table 3]

【0026】表3および図2からも明らかなように、制
御弁式鉛蓄電池においても実施例1と同様の結果が得ら
れた。
As is clear from Table 3 and FIG. 2, the same results as in Example 1 were obtained also in the control valve type lead storage battery.

【0027】次に、本発明の請求項2の項目に示す回復
充電の効果を明らかにするために実施例2で各充電電圧
の評価のために行った4A放電の後、各蓄電池を回復充
電として下記の条件で充電を行った。 (充電条件) 充電電圧:14.4V 充電最大電流:80A 充電時間:2時間 温度:25℃ 充電後、各蓄電池を4.0Aで放電終止電圧1.70V
/セルまで放電し、回復特性を評価した。その結果を表
4に示す。
Next, in order to clarify the effect of the recovery charge shown in the item of claim 2 of the present invention, each storage battery is recovered and charged after the 4A discharge performed for evaluating each charge voltage in the second embodiment. Under the following conditions. (Charging conditions) Charging voltage: 14.4 V Maximum charging current: 80 A Charging time: 2 hours Temperature: 25 ° C. After charging, each storage battery was discharged at 4.0 A at 1.70 V.
/ Cell, and the recovery characteristics were evaluated. Table 4 shows the results.

【0028】[0028]

【表4】 [Table 4]

【0029】表4に示すようにNo.20の蓄電池を除
いて、回復充電により、定格容量まで回復していた。こ
のように、定期的に回復充電を実施して定格容量まで回
復させることによって、PSOCで鉛蓄電池を使用する
場合に安定した寿命性能が得られる。すなわち、PSO
Cで使用した場合に、所定のSOCと充・放電電流値の
積算値から求められるSOCとの差が大きくなった場合
でも、回復充電によってその差を解消できるからであ
る。
As shown in Table 4, no. Except for 20 storage batteries, the battery was recovered to the rated capacity by the recovery charge. In this way, by performing the recovery charging periodically to recover the battery to the rated capacity, a stable life performance can be obtained when the lead storage battery is used in the PSOC. That is, PSO
This is because, when used at C, even if the difference between the predetermined SOC and the SOC obtained from the integrated value of the charging / discharging current values becomes large, the difference can be eliminated by the recovery charging.

【0030】No、20の蓄電池は、回復充電を行って
も容量が十分に回復しなかった。このような高い充電電
圧で充電した場合の容量低下の原因が充電不足でなく、
正極活物質と格子との密着性が低下し、容量が根本的に
低下したためであることが明らかになった。
The storage batteries of Nos. And 20 did not sufficiently recover the capacity even after the recovery charging. The cause of the capacity decrease when charging at such a high charging voltage is not insufficient charging,
It became clear that the adhesion between the positive electrode active material and the grid was reduced, and the capacity was fundamentally reduced.

【0031】[0031]

【発明の効果】以上、詳述したように、PSOCで鉛蓄
電池を使用し、そのSOCを充・放電電流値の積算によ
って管理する制御方法おいて、前記PSOCで使用され
る際の充電電圧を前記鉛蓄電池の開回路電圧に対して
0.18V/セル以上、かつ0.68V/セル以下で充
電することによって、充・放電を繰り返しても短期間に
所定のSOCから大きくずれることがなく、さらに定期
的に回復充電を行うことによってその差を解消すること
ができ、放電頻度の高い使用条件でも安定した寿命性能
が得られその工業的効果が大である。
As described in detail above, in the control method in which the lead storage battery is used in the PSOC and the SOC is managed by integrating the charging / discharging current values, the charging voltage used in the PSOC is controlled. By charging at 0.18 V / cell or more and 0.68 V / cell or less with respect to the open circuit voltage of the lead storage battery, even if charge / discharge is repeated, there is no large deviation from a predetermined SOC in a short time, Furthermore, the difference can be eliminated by performing the recovery charge periodically, and a stable life performance can be obtained even under the use condition where the discharge frequency is high, and the industrial effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の試験結果を示す図。FIG. 1 is a diagram showing test results of Example 1 of the present invention.

【図2】本発明の実施例2の試験結果を示す図。FIG. 2 is a diagram showing test results of Example 2 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉛蓄電池を部分充電状態で使用し、その充
電状態を充・放電電流値の積算によって管理する制御方
法おいて、前記部分充電状態で使用される際の充電電圧
を前記鉛蓄電池の開回路電圧に対して0.18V/セル
以上、かつ0.68V/セル以下とすることを特徴とす
る鉛蓄電池の制御方法。
1. A control method for using a lead-acid battery in a partially charged state and managing the charged state by integrating charging / discharging current values, wherein the charge voltage when used in the partially charged state is determined by the lead-acid battery. A method for controlling a lead storage battery, wherein the open circuit voltage is set to 0.18 V / cell or more and 0.68 V / cell or less.
【請求項2】 前記部分充電状態の制御において、定期
的に回復充電を行うことを特徴とする請求項1に記載の
鉛蓄電池の制御方法。
2. The method of controlling a lead storage battery according to claim 1, wherein in the control of the partial charge state, a recovery charge is performed periodically.
JP2002150508A 2002-05-24 2002-05-24 Control method for lead storage battery Pending JP2003346913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150508A JP2003346913A (en) 2002-05-24 2002-05-24 Control method for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150508A JP2003346913A (en) 2002-05-24 2002-05-24 Control method for lead storage battery

Publications (1)

Publication Number Publication Date
JP2003346913A true JP2003346913A (en) 2003-12-05

Family

ID=29768353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150508A Pending JP2003346913A (en) 2002-05-24 2002-05-24 Control method for lead storage battery

Country Status (1)

Country Link
JP (1) JP2003346913A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066252A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006210134A (en) * 2005-01-28 2006-08-10 Shin Kobe Electric Mach Co Ltd Lead acid battery and its manufacturing method
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JP2011238526A (en) * 2010-05-12 2011-11-24 Furukawa Electric Co Ltd:The Charge/discharge control method and charge/discharge controller of power storage device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066252A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006210134A (en) * 2005-01-28 2006-08-10 Shin Kobe Electric Mach Co Ltd Lead acid battery and its manufacturing method
JP4529707B2 (en) * 2005-01-28 2010-08-25 新神戸電機株式会社 Lead acid battery
WO2007036979A1 (en) * 2005-09-27 2007-04-05 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
JPWO2007036979A1 (en) * 2005-09-27 2009-04-02 古河電池株式会社 Lead-acid battery and method for producing lead-acid battery
AU2005336806B2 (en) * 2005-09-27 2010-09-09 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same
KR101011859B1 (en) * 2005-09-27 2011-01-31 후루카와 덴치 가부시키가이샤 Lead storage battery and manufacturing method of the same
JP4799560B2 (en) * 2005-09-27 2011-10-26 古河電池株式会社 Lead-acid battery and method for producing lead-acid battery
US8771871B2 (en) 2005-09-27 2014-07-08 The Furukawa Battery Co., Ltd. Lead storage battery and manufacturing method of the same
JP2011238526A (en) * 2010-05-12 2011-11-24 Furukawa Electric Co Ltd:The Charge/discharge control method and charge/discharge controller of power storage device

Similar Documents

Publication Publication Date Title
US6700383B2 (en) Method of detecting and resolving memory effect
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
US6573687B2 (en) Charging/discharging control method for secondary battery
US11594777B2 (en) Dual energy storage system and starter battery module
JP2004032977A (en) Method of calculating maximum charging and discharging current values of hybrid electric vehicle battery
US20120098501A1 (en) Efficient lead acid battery charging
US7078878B2 (en) Method for determining a steady state battery terminal voltage
CN105191057A (en) Charging system for vehicle and vehicle including same
JP2003346913A (en) Control method for lead storage battery
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle
JP5359485B2 (en) Control method of all-solid-state lithium ion secondary battery
JP4715075B2 (en) Control valve type lead acid battery
JP3975801B2 (en) Battery system
JP2003086254A (en) Hybrid secondary battery
JP4566334B2 (en) Charge / discharge control method and charge / discharge control device for lead-acid battery
Azahan et al. Analysis of relationship between acceleration and battery state-of-charging in electric vehicle
JP2003346911A (en) Method for charging lead storage battery
Manjitha et al. Lead acid based low voltage mild hybrid application in India—merits and challenges
JP4180819B2 (en) Lead-acid battery charging method
JP4557372B2 (en) Battery life evaluation method
JP2001310638A (en) Power supply system for traveling vehicle
JP2003059541A (en) Battery pack, battery pack structure, vehicle equipped with battery pack or battery pack structure, and cotrol method of battery pack or battery pack structure
JP2004014279A (en) Charge control method of storage battery
JP4325021B2 (en) Lead storage battery charge control method
JP2003022837A (en) Battery pack