JP4325021B2 - Lead storage battery charge control method - Google Patents

Lead storage battery charge control method Download PDF

Info

Publication number
JP4325021B2
JP4325021B2 JP16190799A JP16190799A JP4325021B2 JP 4325021 B2 JP4325021 B2 JP 4325021B2 JP 16190799 A JP16190799 A JP 16190799A JP 16190799 A JP16190799 A JP 16190799A JP 4325021 B2 JP4325021 B2 JP 4325021B2
Authority
JP
Japan
Prior art keywords
voltage
battery
storage battery
lead storage
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16190799A
Other languages
Japanese (ja)
Other versions
JP2000353550A (en
Inventor
喜一 小池
宣行 高見
亜矢子 平尾
靖之 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP16190799A priority Critical patent/JP4325021B2/en
Publication of JP2000353550A publication Critical patent/JP2000353550A/en
Application granted granted Critical
Publication of JP4325021B2 publication Critical patent/JP4325021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池の充電制御、特に残存容量が中間状態にて使われる場合の鉛蓄電池の充電制御方法に関するものである。
【0002】
【従来の技術】
鉛蓄電池の大きな用途の1つに自動車用がある。これは、エンジンスタート時にセルモータを回すための電源や、車内のオーディオ装置や空調装置の電源、パワーステアリングやブレーキ等の各種アシスト装置の電源等の補機用として利用されている。近年、これらに加えて内燃機関(エンジン)のアシストとしてモータを搭載したハイブリッド電気自動車のモータ用電源として用いることが検討されている。
【0003】
モータ用の電源として鉛蓄電池を使用する場合、補機用の鉛蓄電池とは使用される電気量が比較にならないほど大きい。このような用途に使用する場合は、電池容量を大きくする一方、ブレーキ時のエネルギーを電気量として蓄える回生充電を積極的に用いる必要がある。回生充電の特徴としては、ブレーキ時のエネルギーを電気量として蓄えるため、発電量及び発電時間は無作為であり、これをそのまま充電の制御として利用することはできない。しかし、発電量は大きく、これを鉛蓄電池に充電することができれば、適正な残存容量値を保持することが可能となり、より多くのアシストができる。
【0004】
この回生充電を効率よく受け入れるために、たとえば特開平8−308018号公報のように、通常はバッテリ開放端子電圧に近い13Vの目標値で発電制御されているが、発電率が90〜99%になるとこの目標値は14.5Vとなりバッテリが速やかに充電され、その後発電率が70%以下になると元の13Vに戻すことが提案されている。
【0005】
【発明が解決しようとする課題】
しかし、放電頻度が少なく連続して充電される場合は過充電状態になりやすく寿命が短くなってしまう。また、上述したとおり回生充電を十分に利用することができない。
【0006】
一方、鉛蓄電池の特性上、利用可能な残存容量の範囲は一定の範囲内の値になっており、たとえば電池残存容量(SOC)が50%程度では、規定の電圧がとれなかったり、そのまま使用をつづけていると寿命が短くなる等の問題が起こってしまうのである。
【0007】
本発明は、上記課題を解決するものであり、鉛蓄電池の寿命低下を押さえることができる充電方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するために、鉛蓄電池の満充電状態における開放回路電圧より低い一定の電圧に前記鉛蓄電池の電圧を制御し続ける第1の工程と、一定時間内に前記鉛蓄電池の満充電状態における開放回路電圧より高い一定の電圧により前記鉛蓄電池を満充電とする充電を行う第2の工程を有することを特徴とする。このような構成とすることにより、鉛蓄電池は規定の電圧を生じ続けながらも、寿命特性の低下を防ぐことができるものである。
【0009】
【発明の実施の形態】
本発明の実施の形態について図を参照しながら説明する。
【0010】
図1は本実施の形態の一例を示す自動車に搭載された鉛蓄電池とエンジンに取り付けられた発電機とセルスタータなどの負荷とを含む回路の概念図であり、図2はこの回路において本発明の一形態を実施したときの電圧と電流を示すタイミングチャートである。
【0011】
まず、発進時にエンジンをスタートさせるためにセルスタータ(負荷1)へ大きな放電が行われる。このとき大きく電圧も降下するが、発電機2によってすぐにV1まで充電され、その後、時間T1だけV1にて定電圧充電が行われる。鉛蓄電池1は、時間T2の間、様々な補機類(負荷1)によって放電が行われるが、発電機2によって定電圧V2制御が行われており、定電圧V2によって設定された一定のSOC以上に保たれている。この定電圧制御は、用いられる鉛蓄電池3の開放回路電圧より低く設定されており、この電圧により平均のSOCを制御することができる。
【0012】
次に、一定の時間が経過したところで発電機2からの充電電圧を上げ、鉛蓄電池3を満充電の状態とする。その後は、再び鉛蓄電池3の開放回路電圧より低く設定された定電圧V2により一定の電圧、すなわち一定のSOCに維持される。このように一定時間ごとに満充電とすることにより、充電不足等により電池寿命が低下することを防ぐことができる。これらの充電電圧は、レギュレータ4で制御されている。
【0013】
図3は、自動車に搭載された鉛蓄電池の充電制御を示すフロー図である。イグニッションキーを差し込みシステムをスタートさせる。まず、エンジンをかけるためにセルスタータをオンにすると、電圧V1で充電を開始する。この定電圧充電で、電池電圧がV1と等しくなったら、さらに時間T1だけ充電する。
【0014】
この充電が終了した時点から、鉛蓄電池1を電圧V2で制御する。この間、ヘッドライト、エアコン、オーディオ、ステアリングアシスト等の負荷により放電が行われる。しかし、発電機によって定電圧の充電が行われているため蓄電池がその電圧以下になることはなく、VB=V2となったときには発電機から負荷へ電気が供給されることとなる。
【0015】
鉛蓄電池1を電圧V2に制御している時間がある設定値T2になった場合には、満充電状態における開放回路電圧より高い電圧V4で充電して満充電とする。この充電を行うことにより、鉛蓄電池を放電状態で放置することなく、寿命特性の劣化を防ぐことができるのである。VB=V4となったときから時間T3だけさらに電圧V4で充電する。これが終了したら充電電圧V2に戻り、タイマーにより時間T2をカウントする。
【0016】
一方、定電圧V2にて制御中に、回生電力として電圧V4よりも高い電圧V3が入り、その回生電力によりVB=V3となった場合には、満充電が行われたと判断して時間T2を設定し直す。回生電力が入ってもVBがV3まで上がらなかった場合は、時間T2のカウントはそのまま続行される。これにより、回生電力を無駄にすることなく、また電池状態を良好に保ったまま、充放電が続けられる。
【0017】
なお、本実施の形態においては、鉛蓄電池は単電池を用いているが、高電圧、高出力等目的に応じて組み電池とすれば、一層本発明の効果を奏することができる。
【0018】
【実施例】
上述した充電制御方法を用いた本実施例と電圧V4による充電を行わない比較例とを用いて寿命試験を行った。電池は12V10Ahの鉛蓄電池であり、環境温度は50℃とした。V1を14.0V、V3を15.0V、V4を14.5Vに設定し、V2はSOCの下限を80%のときは12.8V、SOCの下限を60%のときは12.4Vに設定した。セルスタータの放電としては100Aを2秒間するものであり、タイマーは、T1を0.5分、T2を3分、T3を1分に設定した。
【0019】
このような条件で行った試験結果を図4に示す。この図より本実施例は、明らかに寿命特性の劣化を抑えることができることがわかった。
【0020】
【発明の効果】
以上詳述したように本発明によれば、常に用いられる鉛蓄電池の開放回路電圧より低く設定された定電圧により充電されていること、および一定時間ごとに満充電の状態とされることにより、充電不足を解消することができ、機器の不慮の停止を防ぐとともに、鉛蓄電池の寿命の低下を防ぐことができるものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態による回路略図
【図2】本発明の一実施の形態による電池電圧、電流、残存容量のタイミングを示す図
【図3】本発明の一実施の形態によるフロー図
【図4】寿命試験の結果を示す図
【符号の説明】
1 負荷
2 発電機
3 鉛蓄電池
4 レギュレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to charge control for lead acid batteries, and more particularly to a charge control method for lead acid batteries when the remaining capacity is used in an intermediate state.
[0002]
[Prior art]
One of the major uses of lead-acid batteries is for automobiles. This is used for auxiliary equipment such as a power source for turning the cell motor when the engine is started, a power source for an audio device and an air conditioner in a vehicle, and a power source for various assist devices such as a power steering and a brake. In recent years, in addition to these, use as a motor power source of a hybrid electric vehicle equipped with a motor as an assist for an internal combustion engine (engine) has been studied.
[0003]
When a lead storage battery is used as a power source for a motor, the amount of electricity used is so large that it cannot be compared with a lead storage battery for an auxiliary machine. When used in such applications, it is necessary to positively use regenerative charging that increases the battery capacity while storing energy during braking as an electric quantity. As a feature of regenerative charging, since the energy at the time of braking is stored as an electric quantity, the electric power generation amount and the electric power generation time are random, and this cannot be used as it is for controlling charging. However, the amount of power generation is large, and if this can be charged to the lead storage battery, it becomes possible to maintain an appropriate remaining capacity value, and more assistance can be achieved.
[0004]
In order to efficiently accept this regenerative charge, for example, as in JP-A-8-308018, power generation is normally controlled at a target value of 13 V close to the battery open terminal voltage, but the power generation rate is reduced to 90 to 99%. Then, this target value is 14.5V, and it is proposed that the battery is quickly charged and then restored to the original 13V when the power generation rate becomes 70% or less.
[0005]
[Problems to be solved by the invention]
However, when the battery is continuously charged with a low discharge frequency, the battery is likely to be overcharged and its life is shortened. Further, as described above, regenerative charging cannot be fully utilized.
[0006]
On the other hand, due to the characteristics of lead-acid batteries, the range of available remaining capacity is a value within a certain range. For example, when the battery remaining capacity (SOC) is about 50%, the specified voltage cannot be taken or used as it is. If you continue, problems such as shortening the service life will occur.
[0007]
This invention solves the said subject, and aims at providing the charging method which can suppress the lifetime reduction of a lead acid battery.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a first step of continuously controlling the voltage of the lead storage battery to a constant voltage lower than the open circuit voltage in the fully charged state of the lead storage battery, and the lead storage battery within a predetermined time. the high constant voltage than the open circuit voltage in the fully charged state, characterized in that have a second step of charging to fully charge the lead-acid battery. By adopting such a configuration, the lead-acid battery can prevent the deterioration of the life characteristics while continuing to generate a specified voltage.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0010]
FIG. 1 is a conceptual diagram of a circuit including a lead-acid battery mounted on an automobile showing an example of this embodiment, a generator attached to an engine, and a load such as a cell starter. FIG. It is a timing chart which shows the voltage and electric current when one form is implemented.
[0011]
First, a large discharge is performed to the cell starter (load 1) in order to start the engine when starting. At this time, the voltage also drops greatly, but is immediately charged to V1 by the generator 2, and then constant voltage charging is performed at V1 only for time T1. The lead storage battery 1 is discharged by various auxiliary machines (load 1) during the time T2, but is controlled to the constant voltage V2 by the generator 2, and is constant and set by the constant voltage V2. It is kept above the SOC. This constant voltage control is set lower than the open circuit voltage of the lead storage battery 3 used, and the average SOC can be controlled by this voltage.
[0012]
Next, when a certain time has elapsed, the charging voltage from the generator 2 is increased, and the lead storage battery 3 is brought into a fully charged state. Thereafter, the constant voltage V2 set lower than the open circuit voltage of the lead storage battery 3 is again maintained at a constant voltage, that is, a constant SOC. Thus, by fully charging every fixed time, it is possible to prevent the battery life from being reduced due to insufficient charging or the like. These charging voltages are controlled by the regulator 4.
[0013]
FIG. 3 is a flowchart showing charging control of a lead storage battery mounted on an automobile. Insert the ignition key and start the system. First, when the cell starter is turned on to start the engine, charging is started at the voltage V1. When the battery voltage becomes equal to V1 by this constant voltage charging, the battery is further charged for a time T1.
[0014]
From the time when this charging is completed , the lead storage battery 1 is controlled by the voltage V2. During this time, discharge is performed by a load such as a headlight, an air conditioner, an audio, and a steering assist. However, since the generator is charged with a constant voltage, the storage battery does not fall below that voltage. When VB = V2, electricity is supplied from the generator to the load.
[0015]
When the time during which the lead storage battery 1 is controlled to the voltage V2 reaches a set value T2, the battery is charged at a voltage V4 that is higher than the open circuit voltage in the fully charged state . By performing this charging, deterioration of the life characteristics can be prevented without leaving the lead storage battery in a discharged state. The battery is further charged with the voltage V4 for a time T3 from when VB = V4. When this is completed, the charging voltage V2 is restored, and the time T2 is counted by a timer.
[0016]
On the other hand, when the voltage V3 higher than the voltage V4 is entered as the regenerative power during the control with the constant voltage V2, and it becomes VB = V3 due to the regenerative power, it is determined that the full charge has been performed and the time T2 is determined. Set again. If VB does not rise to V3 even when regenerative power is turned on, the time T2 count is continued. As a result, charging and discharging can be continued without wasting regenerative power and while maintaining a good battery state.
[0017]
In addition, in this Embodiment, although the lead acid battery uses the single battery, if it is set as an assembled battery according to purposes, such as a high voltage and a high output, there can exist the effect of this invention further.
[0018]
【Example】
A life test was performed using the present embodiment using the above-described charging control method and a comparative example in which charging with the voltage V4 was not performed. The battery was a 12V10Ah lead acid battery, and the environmental temperature was 50 ° C. V1 is set to 14.0V, V3 is set to 15.0V, and V4 is set to 14.5V. V2 is set to 12.8V when the lower limit of the SOC is 80%, and 12.4V when the lower limit of the SOC is 60%. did. The cell starter was discharged at 100 A for 2 seconds, and the timer was set to T1 for 0.5 minutes, T2 for 3 minutes, and T3 for 1 minute.
[0019]
The test results conducted under such conditions are shown in FIG. From this figure, it was found that this example can clearly suppress the deterioration of the life characteristics.
[0020]
【The invention's effect】
As described in detail above, according to the present invention, by being charged with a constant voltage set lower than the open circuit voltage of the lead storage battery that is always used, and being fully charged every certain time, Insufficient charging can be resolved, and an unexpected stop of the device can be prevented, and a decrease in the life of the lead-acid battery can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic circuit diagram according to an embodiment of the present invention. FIG. 2 is a diagram showing timing of battery voltage, current, and remaining capacity according to an embodiment of the present invention. Flow diagram [Fig. 4] Diagram showing results of life test [Explanation of symbols]
1 Load 2 Generator 3 Lead acid battery 4 Regulator

Claims (2)

鉛蓄電池の満充電状態における開放回路電圧より低い一定の電圧に前記鉛蓄電池の電圧を制御し続ける第1の工程と、一定時間内に前記鉛蓄電池の満充電状態における開放回路電圧より高い一定の電圧により前記鉛蓄電池を満充電とする充電を行う第2の工程を有することを特徴とする鉛蓄電池の充電制御方法。A first step of continuously controlling the voltage of the lead-acid battery to a constant voltage lower than the open-circuit voltage in the fully charged state of the lead-acid battery; and a constant higher than the open-circuit voltage in the fully charged state of the lead-acid battery within a certain time A charge control method for a lead storage battery, comprising a second step of charging the lead storage battery to a full charge with a voltage . 前記鉛蓄電池は複数の単電池が直列に接続されている組電池であることを特徴とする請求項1記載の鉛蓄電池の充電制御方法。 The lead storage battery charge control method according to claim 1, wherein the lead storage battery is an assembled battery in which a plurality of single cells are connected in series.
JP16190799A 1999-06-09 1999-06-09 Lead storage battery charge control method Expired - Fee Related JP4325021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16190799A JP4325021B2 (en) 1999-06-09 1999-06-09 Lead storage battery charge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16190799A JP4325021B2 (en) 1999-06-09 1999-06-09 Lead storage battery charge control method

Publications (2)

Publication Number Publication Date
JP2000353550A JP2000353550A (en) 2000-12-19
JP4325021B2 true JP4325021B2 (en) 2009-09-02

Family

ID=15744296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16190799A Expired - Fee Related JP4325021B2 (en) 1999-06-09 1999-06-09 Lead storage battery charge control method

Country Status (1)

Country Link
JP (1) JP4325021B2 (en)

Also Published As

Publication number Publication date
JP2000353550A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
JP6380171B2 (en) Power system
RU2592468C1 (en) Power supply control device
JP5846073B2 (en) Power system
JP5884674B2 (en) Vehicle power supply system
KR20030011284A (en) System and method for optimal battery usage in electric and hybrid vehicles
JP2013252015A (en) Power supply control method and device for vehicle
KR20160114133A (en) Electrical system and method for operating an electrical system
KR101866063B1 (en) System for controlling relay of an auxiliary battery and method thereof
JP6459913B2 (en) Power system controller
JP2018133914A (en) Vehicle power supply system
CN109314399B (en) Vehicle-mounted power supply system
KR102575558B1 (en) Method and device for controlling the charge level of a traction battery of an electric vehicle
JP2016116287A (en) Charging device
JP2002142379A (en) Charging method for battery
CN111433076B (en) Electrical device for an electrically drivable motor vehicle and method for controlling the same
CN112238830A (en) DC/AC inverter system powered by integrated grid
JP2015067042A (en) Vehicular power supply device
JP3908907B2 (en) Automatic vehicle energy supply device
US20190044361A1 (en) Electric power system
RU2643106C2 (en) Method of operation of vehicle power supply system
JP6131533B2 (en) Vehicle power supply control method and apparatus
JP5915390B2 (en) Vehicle power supply control method and apparatus
JP2017197117A (en) Power supply controller
JPH09252546A (en) Method of regenerating deceleration energy of vehicle and its device
JP4325021B2 (en) Lead storage battery charge control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees