JP4953600B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4953600B2
JP4953600B2 JP2005247765A JP2005247765A JP4953600B2 JP 4953600 B2 JP4953600 B2 JP 4953600B2 JP 2005247765 A JP2005247765 A JP 2005247765A JP 2005247765 A JP2005247765 A JP 2005247765A JP 4953600 B2 JP4953600 B2 JP 4953600B2
Authority
JP
Japan
Prior art keywords
ions
mol
positive electrode
lattice
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005247765A
Other languages
Japanese (ja)
Other versions
JP2007066558A (en
Inventor
利通 高田
淳 古川
大輔 門馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2005247765A priority Critical patent/JP4953600B2/en
Publication of JP2007066558A publication Critical patent/JP2007066558A/en
Application granted granted Critical
Publication of JP4953600B2 publication Critical patent/JP4953600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、鉛蓄電池、特に自動車用鉛蓄電池の寿命延長技術のうちPSOC状態(部分充電状態)で使用した場合の正極格子の腐食や負極のサルフェーションに起因する寿命性能が改善された鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery, particularly a lead-acid battery having improved life performance due to corrosion of a positive grid and sulfation of a negative electrode when used in a PSOC state (partially charged state) among life extension technologies of lead-acid batteries for automobiles. Is.

従来、自動車用鉛蓄電池はSLIバッテリーと呼ばれるように、始動時のスタータ起動、照明、イグニションをはじめ、高級車では100個以上搭載されていると言うモーターの電源として使用されて来たが、始動時のスタータ起動以外はエンジンが発電機を駆動して電力を供給するため、鉛蓄電池はさほど深い放電が行われることはなかった。また、発電機からの充電により、多くの場合は満充電状態に置かれるため、過充電に強いことが求められていた。 Traditionally, lead-acid batteries for automobiles, called SLI batteries, have been used as a power source for motors that are installed in more than 100 high-end cars, including starter start-up, lighting, and ignition. Since the engine drives the generator to supply electric power except for starting the starter at that time, the lead-acid battery was not discharged so deeply. Moreover, since charging from a generator often places the battery in a fully charged state, it has been required to be resistant to overcharging.

一方、近年になって自動車の燃費改善や排出ガスの削減が強く求められるようになり、鉛蓄電池の使用条件は大きく変わってきた。その一つは、信号などによる停車中にエンジンを停止するアイドリングストップである。エンジンの停止により発電機からの電力供給も停止するため、この間の電力は鉛蓄電池の放電によって賄うこととなり、従来と比較して深く放電されることになる。もう一つは鉛蓄電池の過充電の制御である。これは鉛蓄電池の充電に用いるエネルギーの無駄をできるだけ削減するもので、充電効率が低い場合はむしろ充電不足状態で使用されることになる。 On the other hand, in recent years, there has been a strong demand for improvement in fuel consumption and reduction of exhaust gas in automobiles, and the use conditions of lead storage batteries have changed greatly. One of them is an idling stop that stops the engine while the vehicle is stopped by a signal or the like. Since the power supply from the generator is also stopped when the engine is stopped, the electric power during this period is covered by the discharge of the lead storage battery, and is deeply discharged as compared with the conventional case. The other is the control of lead battery overcharge. This is to reduce the waste of energy used for charging the lead-acid battery as much as possible. When the charging efficiency is low, the lead-acid battery is used in an insufficiently charged state.

その結果、従来の使用条件では、鉛蓄電池は正極格子グロスや正極格子腐食、エンジンルーム内の高温による負極活物質の収縮、そして高温・過充電による電解液の減少等により寿命となったが、アイドルストップや過充電制御といった使用条件で鉛蓄電池は深い充放電と慢性的な充電不足状態に置かれることとなり、正極・負極活物質がサルフェーションを起こすこととなった。特に負極サルフェーションの進行が早く、著しく短寿命となった。 As a result, under conventional usage conditions, lead-acid batteries have reached the end of their lives due to positive grid gloss and positive grid corrosion, shrinkage of the negative electrode active material due to high temperatures in the engine room, and decrease in electrolyte due to high temperature and overcharge, etc. Under the usage conditions such as idle stop and overcharge control, lead-acid batteries were placed in deep charge / discharge and chronic undercharge condition, and positive and negative electrode active materials caused sulfation. In particular, the negative electrode sulfation progressed rapidly and the lifetime was remarkably short.

同時に、正極格子上部(以下、正極格子で上部や上半分とは耳部が取り付けてある部分を上とした場合である)の著しい腐食も観察され、特に正極格子の上半分付近で腐食が大きいことが確認された。これは充電不足状態が連続されるため負極のサルフェーションが充電され難い極板下部から次第に上部に向かって進行し、それに連れて対向する正極の電流分布も上部に集中したためと考えられる。同時に、正極は充電不足状態に相当する電位では格子表面に耐食性の導電性酸化皮膜(例えばα−PbO2)が形成され難く、導電性の低い硫酸鉛の生成を伴う全面腐食が進行するため、充放電反応が従来以上に極板上部、即ち電位差が少なく利用され易い部分に集中したものと考えられる。以上の結果、従来の半分程度の使用期間でも正極格子上半分の腐食率は約50%と従来の寿命末期相当の腐食率に達する一方、正極格子下半分の腐食率は約20%に過ぎない。従来は格子下半分の腐食率が20%であれば、格子上半分も同程度であった。この問題を解決するためには格子細りに対する導電性確保の観点から格子上半分の質量を増加することが考えられるが、上記腐食率と使用期間から概算すると格子上半分は格子下半分の1.6倍以上の質量が必要となり、活物質空間の確保が困難であることから正極格子上部の腐食を抑制し寿命を確保することは困難である。 At the same time, significant corrosion of the upper part of the positive electrode grid (hereinafter, the upper part and the upper half of the positive electrode grid is the case where the ear part is attached) is observed, especially in the vicinity of the upper half of the positive electrode grid. It was confirmed. This is presumably because the negative sulfation progresses gradually from the lower part of the electrode plate where it is difficult to be charged to the upper part because the undercharge state continues, and the current distribution of the positive electrode facing it is also concentrated on the upper part. At the same time, the positive electrode is unlikely to form a corrosion-resistant conductive oxide film (for example, α-PbO2) on the lattice surface at a potential corresponding to an undercharged state, and the entire surface corrosion accompanied by the formation of lead sulfate with low conductivity proceeds. It is considered that the discharge reaction is concentrated on the upper portion of the electrode plate, that is, the portion where the potential difference is small and easy to use. As a result, the corrosion rate of the upper half of the positive electrode lattice reaches about 50% even during the period of use of about half of the conventional one, reaching the corrosion rate equivalent to the conventional end of life, while the corrosion rate of the lower half of the positive electrode lattice is only about 20%. . Conventionally, if the corrosion rate of the lower half of the lattice is 20%, the upper half of the lattice is similar. In order to solve this problem, it is conceivable to increase the mass of the upper half of the lattice from the viewpoint of securing conductivity against the thinning of the lattice. However, if estimated from the above corrosion rate and the period of use, the upper half of the lattice is 1. Since the mass of 6 times or more is required, and it is difficult to secure an active material space, it is difficult to prevent corrosion at the upper part of the positive electrode grid and ensure the life.

また正極格子上部での反応が連続することにより、その部分の正極活物質が軟化・脱落し易くなり、軟化・脱落によって露出した正極の枠格子(縦・横枠骨も含む)の腐食が加速する。これらの結果、正極は更に充電効率が低下するという悪循環に陥る。更に、アイドルストップに対応するため自動車側の改善も進み、従来よりも少ない電力でエンジンの再始動が可能となった結果、正極格子腐食や正負極のサルフェーションがかなり進行してもエンジン始動が可能となり、その結果、従来の如くクラッキング現象が出た後に始動不能となる現象が発現せず、突然始動が出来なくなるという電池の突然死を招くこととなった。 In addition, the continuous reaction at the top of the positive grid makes it easier for the positive electrode active material to soften and drop off, accelerating the corrosion of the positive frame grid (including vertical and horizontal frame bones) exposed by softening and dropping. To do. As a result, the positive electrode falls into a vicious circle in which the charging efficiency further decreases. In addition, the automobile side has been improved to support idle stop, and the engine can be restarted with less power than before. As a result, the engine can be started even if positive grid corrosion or positive and negative sulfation progresses considerably. As a result, the phenomenon that the engine cannot be started after the occurrence of the cracking phenomenon as in the conventional case does not appear, and the battery suddenly dies that the engine cannot be started suddenly.

正極格子の改善手段としては、上部1/3の鉛量を増やす(特許文献1)、極板を4分割し、耳部に最も近い部分の鉛量を増やす(特許文献2)等が行われている。 As means for improving the positive electrode lattice, the lead amount in the upper third is increased (Patent Document 1), the electrode plate is divided into four parts, and the lead amount closest to the ear is increased (Patent Document 2). ing.

特開平5−234595号公報JP-A-5-234595 実開平54−56130号公報Japanese Utility Model Publication No. 54-56130

しかしながら、特許文献1や2記載の方法は、主に過充電中の格子グロス抑制を目的とするものであり、アイドリングストップや充電制御条件における正負極のサルフェーションや正極の格子腐食を改善するものではない。即ち、発明者らは、従来用途及びアイドルストップ用途のどちらの性能も改善できなければ、それらのシステムが混在している現在の自動車には対応できないと考えた。 However, the methods described in Patent Documents 1 and 2 are mainly for the purpose of suppressing lattice gloss during overcharging, and do not improve positive and negative electrode sulfation and positive electrode lattice corrosion under idling stop and charge control conditions. Absent. In other words, the inventors thought that if the performance of both the conventional use and the idle stop use cannot be improved, it is not possible to cope with the current automobile in which those systems are mixed.

このような背景の下、アイドリングストップや充電制御条件における正負極のサルフェーションや正極の格子腐食を改善し、従来のSLI用途及びアイドルストップ用途のどちらの性能にも対応できる、経済的で長期間安定的に作動する鉛蓄電池を提供することが望まれる。 Against this backdrop, the positive and negative electrode sulfation and the positive electrode lattice corrosion under idling stop and charge control conditions are improved, and it is possible to cope with the performance of both conventional SLI applications and idle stop applications. It would be desirable to provide a lead-acid battery that operates in an automated manner.

本発明は、正極格子の下半分に対する上半分の質量比を1.1〜1.5とし、且つ電解液にAlイオンが0.01mol/l〜0.30mol/l、Seイオンが0.0002mol/l〜0.0012mol/l、Tiイオンが0.001mol/l〜0.1mol/lの少なくとも1種を含み、且つ正極活物質密度を水置換法で測定した値が3.8g/cc〜4.5g/ccとし、且つ電解液比重を1.260〜1.320(20℃)することを特徴としたものである。 In the present invention, the mass ratio of the upper half with respect to the lower half of the positive electrode lattice is 1.1 to 1.5, and the electrolytic solution has Al ions of 0.01 mol / l to 0.30 mol / l and Se ions of 0.0002 mol. The value obtained by measuring the density of the positive electrode active material by the water displacement method is 3.8 g / cc or more, containing at least one kind of Ti ions from 0.001 mol / l to 0.1 mol / l. It is 4.5 g / cc , and the electrolyte solution has a specific gravity of 1.260 to 1.320 (20 ° C.) .

本発明は、正極格子下半分に対する上半分の質量比を1.1〜1.5とすることにより、導電性が高まって電位差が少なくなるとともに、格子上部に集中する腐食による格子細りを緩和することができる。しかし、格子上半分の質量増加だけでは根本的な解決にはならず、充電不足に起因する負極サルフェーションを抑制する必要がある。従来の電池はアイドルストップや過充電制御を行うと容易に充電不足となりサルフェーションを起こした。そこで、本発明では質量比の特定に加え、電解液にAlイオン、Seイオン、Tiイオンの少なくとも1種を添加することによって負極の充電効率を高め、この問題を解決した。理由は明らかではないが、Alイオン、Seイオン、Tiイオンを電解液に添加することで、放電状態を続けた場合に負極に生成する硫酸鉛の結晶成長・粗大化が抑制され、微細な結晶状態が維持されると共に、結晶表面に凹凸が形成される。即ち、生成した硫酸鉛は反応性が高く、充電効率が向上してサルフェーションを起こし難くなり、その結果正極格子上部の腐食が抑制されて、質量比を1.1〜1.5の範囲に抑えても要求される寿命を確保することができる。 In the present invention, the mass ratio of the upper half with respect to the lower half of the positive electrode lattice is 1.1 to 1.5, so that the conductivity is increased and the potential difference is reduced, and the thinning of the lattice due to the corrosion concentrated on the upper portion of the lattice is reduced. be able to. However, an increase in the mass on the half of the lattice alone does not provide a fundamental solution, and it is necessary to suppress negative electrode sulfation due to insufficient charging. Conventional batteries easily suffered from insufficient charging when idle stop or overcharge control was performed, causing sulfation. Therefore, in the present invention, in addition to specifying the mass ratio, the charging efficiency of the negative electrode is increased by adding at least one of Al ions, Se ions, and Ti ions to the electrolytic solution, thereby solving this problem. The reason is not clear, but by adding Al ions, Se ions, and Ti ions to the electrolyte, crystal growth and coarsening of lead sulfate produced in the negative electrode when the discharge state is continued is suppressed, and fine crystals While maintaining the state, irregularities are formed on the crystal surface. That is, the produced lead sulfate has high reactivity, and charging efficiency is improved and sulfation is difficult to occur. As a result, corrosion of the upper part of the positive electrode lattice is suppressed, and the mass ratio is suppressed to a range of 1.1 to 1.5. Even the required life can be ensured.

また、好ましい電解液への添加量は、Alイオン0.01mol/l〜0.30mol/l、Seイオン0.0002mol/l〜0.0012mol/l、Tiイオン0.001mol/l〜0.1mol/lであり、この範囲とすることで長寿命の蓄電池を提供することが可能である。 Further, preferable addition amounts to the electrolytic solution are Al ions of 0.01 mol / l to 0.30 mol / l, Se ions of 0.0002 mol / l to 0.0012 mol / l, Ti ions of 0.001 mol / l to 0.1 mol. It is possible to provide a long-life storage battery by setting this range.

また、正極活物質密度は活物質の物理的結合により軟化による活物質の脱落を抑制し正極格子の露出による腐食を抑制するという観点から、水置換法で測定した値が3.8g/cc〜4.5g/ccが好適である。3.8g/cc未満では正極活物質密度が低く軟化が進行し易い。4.5g/ccを越えると正極活物質密度が高過ぎて利用率が低下し、容量が確保できない。
なお、水置換法とは正極基板の質量、充填基板乾燥質量、水中質量、引き上げ質量をそれぞれ測定し、式(1)より正極活物質密度を求める方法である。
(式1)
In addition, the positive electrode active material density has a value measured by a water displacement method of 3.8 g / cc or more from the viewpoint of suppressing active material dropping due to softening due to physical bonding of the active material and suppressing corrosion due to exposure of the positive electrode lattice. 4.5 g / cc is preferred. If it is less than 3.8 g / cc, the positive electrode active material density is low and softening tends to proceed. If it exceeds 4.5 g / cc, the positive electrode active material density is too high, the utilization rate is lowered, and the capacity cannot be secured.
The water displacement method is a method of measuring the mass of the positive electrode substrate, the dry mass of the packed substrate, the mass in water, and the lifting mass, and obtaining the positive electrode active material density from the equation (1).
(Formula 1)

また、電解液の比重は充電効率を高く維持するために、1.260〜1.320(20℃)が好適である。1.260より小さい場合、硫酸分が少ないため容量が確保できない。1.320より大きい場合、正極の酸素過電圧が低下するため充電効率を損なう。 The specific gravity of the electrolyte is preferably 1.260 to 1.320 (20 ° C.) in order to maintain high charging efficiency. If it is smaller than 1.260, the capacity cannot be secured because the sulfuric acid content is small. When it is larger than 1.320, the oxygen overvoltage of the positive electrode is lowered, so that charging efficiency is impaired.

本発明は、アイドリングストップや充電制御条件における正負極のサルフェーションや正極の格子腐食を改善し、従来用途及びアイドルストップ用途のどちらの性能にも対応できる、経済的で長期間安定的に作動する鉛蓄電池を提供することが可能であり、21世紀において益々重要となる地球環境問題から不可避的に要求される省エネ、自然エネルギーなどの新エネ利用、特に化石燃料消費の多くを占める自動車等の輸送機器の燃費改善に応えるものあり、その工業的価値は大きい。 The present invention improves the positive and negative electrode sulfation and the positive electrode lattice corrosion under idling stop and charge control conditions, and can be used for both conventional and idle stop applications. It is possible to provide storage batteries, and transportation equipment such as automobiles that consume a large amount of fossil fuel consumption, especially the use of new energy such as energy saving and natural energy, which are inevitably required due to global environmental problems that will become increasingly important in the 21st century. There is something that responds to the improvement in fuel economy, and its industrial value is great.

本発明に使用される正極格子は鉛−カルシウム合金から成り、鋳型を垂直にし、溶融した鉛を上方から一定スピードで流し込み作製され(以下、このようにして作製した正極格子を重力鋳造格子と呼ぶ)、耳部が取り付けてある部分を上とし、下半分に対する上半分の枠格子の質量比を1.1〜1.5としたものである。枠格子の質量比を1.1〜1.5に変化させるには、上半分の横または/および縦枠骨の本数を下半分より増やしたり、枠格子や縦・横枠骨の太さを下半分より太くしたりすることで可能である。このような構造とすることで、導電性が高まって電位差が少なくなるとともに、格子上部に集中する腐食による格子細りを緩和することができる。 The positive electrode grid used in the present invention is made of a lead-calcium alloy, and is manufactured by making the mold vertical and pouring molten lead at a constant speed from above (hereinafter, the positive grid manufactured in this way is called a gravity cast grid. ), The portion to which the ear is attached is the top, and the mass ratio of the upper half frame lattice to the lower half is 1.1 to 1.5. In order to change the mass ratio of the frame lattice to 1.1 to 1.5, increase the number of horizontal or / and vertical frame bones in the upper half from the lower half, or increase the thickness of the frame lattice and vertical / horizontal frame bones. It is possible to make it thicker than the lower half. With such a structure, the conductivity is increased, the potential difference is reduced, and lattice thinning due to corrosion concentrated on the upper portion of the lattice can be reduced.

本発明の鉛蓄電池は、鉛粉を水や硫酸と混練して活物質ペーストを調整し、これを正極は枠格子の重量比が上半分と下半分で異なる基板に活物質ペーストを充填塗布して熟成を行い負極未化成板と正極未化成板を作製する。得られた正極板と負極板の複数枚を、セパレータを介して交互に積層して極板群を作製し、これを電槽内に極板群収納し該電槽へ蓋を施し所定量の電解液を注液して鉛蓄電池を作製した。この際、電槽により所定の圧力、例えば20〜30kpa程度の圧力(群圧)が掛かるように極板群の厚さおよび電槽内寸法を調整すると共に、電槽内に収納した極板群の正極板と負極板の極板間距離が所定の距離となるようにセパレータの厚み等により調整し、ヒートシールによって蓋をした。なお、電解液注液時に所定量のAlイオンを硫酸塩として添加した。 In the lead storage battery of the present invention, an active material paste is prepared by kneading lead powder with water or sulfuric acid, and the positive electrode is applied by filling the active material paste on different substrates in which the weight ratio of the frame lattice is different between the upper half and the lower half. Aging is performed to produce a negative electrode unformed plate and a positive electrode unformed plate. A plurality of the positive and negative electrode plates obtained are alternately laminated via separators to produce an electrode plate group. The electrode plate group is housed in the battery case, and the battery case is covered with a predetermined amount. An electrolytic solution was injected to prepare a lead storage battery. At this time, the thickness of the electrode plate group and the dimensions in the battery case are adjusted so that a predetermined pressure, for example, a pressure (group pressure) of about 20 to 30 kpa is applied by the battery case, and the electrode plate group housed in the battery case The thickness of the separator was adjusted so that the distance between the positive electrode plate and the negative electrode plate was a predetermined distance, and the lid was covered by heat sealing. In addition, a predetermined amount of Al ions was added as a sulfate during injection of the electrolyte.

なお、本発明ではAlイオンの硫酸塩を単体で電解液に添加する例を示したが、その他、酸化物、水酸化物、ホウ酸塩、アルミン酸塩、セレン酸塩、チタン酸塩、亜硫酸塩、リン酸塩、炭酸塩などを電解液に添加することもできる。さらに、2種類以上を混合させて電解液に添加させても良い。
また、正極格子は重力鋳造格子の例を示したが、連続鋳造や圧延、押し出し条を加工したエキスパンド格子、打ち抜き格子を用いても同様の効果を得ることができる。さらに、ここでは液式電池の例を示したが、密閉式電池にも適用できることは言うまでもない。
In the present invention, an example in which a sulfate of Al ion is added alone to the electrolytic solution has been shown. However, oxides, hydroxides, borates, aluminates, selenates, titanates, sulfites. Salts, phosphates, carbonates, etc. can also be added to the electrolyte. Further, two or more kinds may be mixed and added to the electrolytic solution.
In addition, although the positive electrode lattice is an example of a gravity cast lattice, the same effect can be obtained even if a continuous casting, rolling, an expanded lattice processed by an extruded strip, or a punched lattice is used. Furthermore, although the example of the liquid battery is shown here, it goes without saying that the present invention can also be applied to a sealed battery.

(未化成の負極板の製造)
本発明では、ボールミル法で製造した酸化鉛に、カーボン粉末として比表面積70m/gのアセチレンブラックと硫酸バリウム粉末を添加して乾式混合した。これにリグニンを水溶液として加え、続いてイオン交換水を加えながら混練して水ペーストを調製し、更に比重1.360(20℃)の希硫酸を加えながら混練して負極活物質ペーストとした。この時に使用したイオン交換水の量は酸化鉛100重量部に対しておよそ10重量部、希硫酸の量は10重量部であった。尚、出来上がった負極活物質ペーストのカップ密度が約140g/2inとなる様にイオン交換水の量を調整した。この様に製造した負極活物質ペーストを鋳造基板に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して負極未化成板とした。
(未化成の正極板の製造)
次に、負極板と同様にボールミル法で製造した酸化鉛100重量部にイオン交換水10重量部、続いて比重1.270(20℃)の希硫酸10重量部を加えながら混練して正極活物質ペーストとした。尚、出来上がった正極活物質ペーストのカップ密度が約130g/2in(なお、乾燥した正極活物質密度を水置換法で測定すると約4.2g/cc)となる様にイオン交換水の量を調整した。この様に製造した正極活物質ペーストを上半分の横または/および縦枠骨の本数を下半分より増やし枠格子の質量比を変化させた鉛−カルシウム合金からなる鋳造基板に充填し、負極板と同様に熟成し、その後乾燥して正極未化成板とした。
(電池組立、電解液の調製と化成)
そして、これらの正極未化成板と負極未化成板にポリエチレンセパレータとを交互に積層し組み合わせ、COS方式(キャストオンストラップ方式)で極板同士を溶接して極板群とした。これをPP製(ポリプロピレン製)の電槽に入れ、ヒートシールによって蓋をした。そして、表1に記載の通り電解液に注入するAlイオンを硫酸塩として添加する量を種々変化させ添加し、電槽化成を行い5時間率容量が50AhのD23サイズの12V鉛蓄電池を各々試作した。なお、電槽化成後の電解液比重は1.280(20℃)であった。
(アイドルストップ寿命試験)
上記方法で表1に記載の通り正極格子上半分の横または/および縦枠骨の本数を下半分より増やして枠格子の質量比(以下、正極格子重量比という)を種々変化させ試作した各々の鉛蓄電池を25℃、5時間率電流で完全充電した。次に、40℃で50A、59秒間及び300A、1秒間の定電流放電と100A、60秒間、上限電圧14.0Vの定電流・定電圧充電の組合せを1サイクルとするアイドルストップ寿命試験を行い、寿命までのサイクル数を測定した。また、寿命試験が終了した電池を解体し、正極格子の状態を観察し寿命原因を調査した。その、サイクル寿命および寿命原因の結果を表1に示す。尚、寿命判定は300A、1秒目の放電電圧が7.2Vを下回った時点で寿命とした。
(Manufacture of unformed negative electrode plate)
In the present invention, acetylene black having a specific surface area of 70 m 2 / g and barium sulfate powder were added to the lead oxide produced by the ball mill method and dry-mixed. Lignin was added thereto as an aqueous solution, followed by kneading while adding ion-exchanged water to prepare a water paste, and further kneading while adding dilute sulfuric acid having a specific gravity of 1.360 (20 ° C.) to obtain a negative electrode active material paste. The amount of ion-exchanged water used at this time was about 10 parts by weight with respect to 100 parts by weight of lead oxide, and the amount of dilute sulfuric acid was 10 parts by weight. The amount of ion-exchanged water was adjusted so that the cup density of the completed negative electrode active material paste was about 140 g / 2 in 3 . The negative electrode active material paste thus produced was filled into a cast substrate, aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to obtain a negative electrode unformed sheet.
(Manufacture of unformed positive electrode plate)
Next, as with the negative electrode plate, 100 parts by weight of lead oxide produced by the ball mill method was kneaded while adding 10 parts by weight of ion-exchanged water and then 10 parts by weight of dilute sulfuric acid having a specific gravity of 1.270 (20 ° C.), and A material paste was obtained. In addition, the amount of ion-exchanged water is adjusted so that the cup density of the finished positive electrode active material paste is about 130 g / 2 in 3 (about 4.2 g / cc when the dry positive electrode active material density is measured by the water displacement method). It was adjusted. The positive electrode active material paste produced in this way is filled into a cast substrate made of a lead-calcium alloy in which the number of the upper half horizontal and / or vertical frame bones is increased from the lower half and the mass ratio of the frame lattice is changed, and the negative electrode plate Aged in the same manner as above and then dried to obtain a positive electrode unformed sheet.
(Battery assembly, electrolyte preparation and formation)
Then, these positive electrode unformed plates and negative electrode unformed plates were alternately laminated and combined with polyethylene separators, and the electrode plates were welded together by a COS method (cast on strap method) to form an electrode plate group. This was put into a battery case made of PP (made of polypropylene) and covered by heat sealing. Then, as shown in Table 1, the amount of Al ions to be injected into the electrolyte solution is changed and added in various ways, and the battery is formed to form a D23 size 12V lead acid battery with a 5-hour rate capacity of 50 Ah. did. In addition, the electrolyte solution specific gravity after battery case formation was 1.280 (20 degreeC).
(Idle stop life test)
Each of the above prototypes was manufactured by changing the mass ratio of the frame grid (hereinafter referred to as the positive grid weight ratio) in various ways by increasing the number of horizontal or / and vertical frame bones in the upper half of the positive grid as described in Table 1 from the lower half. The lead storage battery was fully charged at 25 ° C. for 5 hours with a current. Next, an idle stop life test is performed in which a combination of constant current discharge at 40 ° C. for 50 seconds for 59 seconds and 300 A for 1 second and constant current / constant voltage charging for 100 A for 60 seconds for an upper limit voltage of 14.0 V is one cycle. The number of cycles to life was measured. In addition, the battery for which the life test was completed was disassembled, the state of the positive electrode grid was observed, and the cause of the life was investigated. Table 1 shows the results of the cycle life and the cause of the life. In addition, the lifetime judgment was made into the lifetime when the discharge voltage of 300 A and 1 second fell below 7.2V.

表1 に示すように、正極格子重量比を1.1〜1.5とし、電解液にAlイオン、Se
イオン、Tiイオンの少なくとも1種を添加することでサイクル寿命を改善し長寿命の蓄電池を提供することが可能である。前記電解液の添加量としては、Alイオン、Se
イオン、Tiイオンをそれぞれ0.0 1mol/l〜0.30 mol/l、0 .0 002m ol/l〜0.0012mol/l、0.001mol/l〜0 .1mol/lであり、30、000サイクルを超える長寿命な蓄電池を提供することが可能である。電解液にAlイオン等を添加しない場合、正極格子重量比を1.0〜1.6のどの比率に変化させてもサイクル寿命の改善は見受けられなかった。また、正極格子重量比が1.1より小さい場合や1.5より大きい場合は、電解液にAlイオンを添加しない場合よりもサイクル寿命は改善されているが、正極格子重量比を1.1〜1.5としもののように30,000サイクルを超えるものは無かった。
As shown in Table 1, the positive electrode lattice weight ratio was 1.1 to 1.5, and the electrolyte contained Al ions and Se.
By adding at least one of ions and Ti ions, it is possible to improve the cycle life and provide a long-life storage battery. The amount of the electrolyte added includes Al ions and Se.
Ion and Ti ion are 0.01 mol / l to 0.30 mol / l, 0.0002 mol / l to 0.0012 mol / l, 0.001 mol / l to 0.1 mol / l, respectively, It is possible to provide a long-life storage battery exceeding 000 cycles. In the case where Al ions or the like were not added to the electrolytic solution, no improvement in cycle life was observed even if the positive electrode lattice weight ratio was changed to any ratio of 1.0 to 1.6. Further, when the positive electrode lattice weight ratio is smaller than 1.1 or larger than 1.5, the cycle life is improved as compared with the case where Al ions are not added to the electrolytic solution, but the positive electrode lattice weight ratio is 1.1. There were no more than 30,000 cycles, such as ~ 1.5.

また、寿命となった各々の鉛蓄電池の解体をして正極格子の状態を観察し寿命原因を調査したところ、主な劣化要因としては正極活物質の軟化によるものであり、Alイオン添加し正極格子重量比が1.1〜1.5であるものでは、導電性が高まって電位差が少なくなるとともに、格子上部に集中する腐食による格子細りを緩和することが可能であり、Alイオンを添加したことによりサルフェーションを起こし難くなり、その結果正極格子上部の腐食が抑制されていることが確認された。これは、2種類以上のイオンを添加、例えばAlイオンとSeイオンを電解液に添加した場合においても同様の結果が得られた。なお、電解液へのSeイオン、Tiイオン添加においても同様の結果であった。正極格子重量比が1.1より小さいものでは格子上部の腐食により蓄電池の寿命に至ったものである。また、正極格子重量比が1.6より大きいものでは格子の腐食には至らなかったが、正極活物質の軟化および容量不足により蓄電池の寿命に至ったものである。また、AlイオンまたはSeイオンまたはTiイオンを添加しないものにおいては、格子上部の腐食とサルフェーションにより鉛蓄電池の早期寿命に至ったものである。 Also, each lead-acid battery that had reached the end of its life was disassembled, the state of the positive electrode grid was observed, and the cause of the life was investigated. The main deterioration factor was due to softening of the positive electrode active material. When the lattice weight ratio is 1.1 to 1.5, the electrical conductivity increases and the potential difference decreases, and it is possible to alleviate lattice thinning due to corrosion concentrated on the upper portion of the lattice, and Al ions are added. As a result, it became difficult to cause sulfation, and as a result, it was confirmed that corrosion of the upper part of the positive electrode lattice was suppressed. The same result was obtained when two or more types of ions were added, for example, when Al ions and Se ions were added to the electrolyte. Similar results were obtained when Se ions and Ti ions were added to the electrolyte. When the positive electrode lattice weight ratio is less than 1.1, the life of the storage battery is reached due to corrosion of the upper portion of the lattice. Further, when the positive electrode lattice weight ratio is larger than 1.6, the lattice does not corrode, but the life of the storage battery is reached due to softening of the positive electrode active material and insufficient capacity. Further, in the case where Al ions, Se ions, or Ti ions are not added, the lead-acid battery has reached an early life due to corrosion and sulfation on the upper part of the lattice.

実施例1において電槽化成後の正極活物質密度を水置換法でそれぞれ3.5、3.8、4.2、4.5、4.8g/ccとした以外は表2に示すように正極格子重量比を1.3として、電解液に注入するAlイオン、Seイオン、Tiイオンの添加量を種々変化させ実施例1と同様に電槽化成を行い5時間率容量が50AhのD23サイズの12V鉛蓄電池を各々試作した。その後、アイドルストップ寿命試験を行い、寿命までのサイクル数を測定した。その時のサイクル寿命回数を表2に示す。なお、Alイオン、Seイオン、Tiイオンの添加量はそれぞれ表2に示す通りである。   As shown in Table 2, except that the density of the positive electrode active material after the formation of the battery case in Example 1 was 3.5, 3.8, 4.2, 4.5, and 4.8 g / cc, respectively, by the water displacement method. The positive electrode lattice weight ratio is 1.3, and the amount of added Al ions, Se ions, and Ti ions to be injected into the electrolytic solution is variously changed to form a battery case in the same manner as in Example 1, and the D23 size having a 5-hour rate capacity of 50 Ah. Each 12V lead acid battery was prototyped. Thereafter, an idle stop life test was performed, and the number of cycles until the life was measured. Table 2 shows the number of cycle lives at that time. The addition amounts of Al ions, Se ions, and Ti ions are as shown in Table 2, respectively.

表2に示すように、Alイオン、Seイオン、Tiイオンどれにおいても正極活物質密度3.8〜4.5g/ccの範囲が特に好ましく、物理的結合により軟化による活物質の脱落を抑制し正極格子の露出による腐食を抑制するという観点からサイクル寿命を改善し長寿命の蓄電池を提供することが可能である。正極活物質密度が3.8g/ccより小さい場合、電解液にAlイオン、Seイオン、Tiイオンのどれを添加した場合においても、正極活物質密度が低いため軟化が進行し、正極活物質密度3.8〜4.5g/ccと比しサイクル寿命が若干低下している。逆に、正極活物質密度が4.5g/ccより大きい場合、電解液にAlイオン、Seイオン、Tiイオンのどれを添加した場合においても、正極活物質密度3.8〜4.5g/ccと比し正極活物質密度が高過ぎて利用率が低下し、蓄電池容量が確保できなかったためサイクル寿命が若干低下している。 As shown in Table 2, the positive electrode active material density in the range of 3.8 to 4.5 g / cc is particularly preferable for any of Al ions, Se ions, and Ti ions, and the physical bond suppresses the loss of the active material due to softening. From the viewpoint of suppressing corrosion due to exposure of the positive electrode grid, it is possible to improve the cycle life and provide a long-life storage battery. When the positive electrode active material density is less than 3.8 g / cc, softening progresses because the positive electrode active material density is low regardless of whether Al ions, Se ions, or Ti ions are added to the electrolyte. The cycle life is slightly reduced as compared with 3.8 to 4.5 g / cc. On the other hand, when the positive electrode active material density is greater than 4.5 g / cc, the positive electrode active material density is 3.8 to 4.5 g / cc when any of Al ion, Se ion, and Ti ion is added to the electrolytic solution. Compared with the above, the density of the positive electrode active material is too high, the utilization rate is reduced, and the battery life cannot be ensured, so the cycle life is slightly reduced.

実施例1において電槽化成後の電解液である硫酸水溶液の比重(20℃)をそれぞれ1.220、1.260、1.280、1.320、1.360とした以外は表3に示すように正極格子重量比1.3、正極活物質密度を水置換法で4.2g/ccとして、電解液に注入するAlイオン、Seイオン、Tiイオンの添加量を種々変化させ実施例1と同様に電槽化成を行い5時間率容量が50AhのD23サイズの12V鉛蓄電池を各々試作した。実施例1と同様にアイドルストップ寿命試験を行い、寿命までのサイクル数を測定した。その時のサイクル寿命回数を表3に示す。なお、Alイオン、Seイオン、Tiイオンの添加量はそれぞれ表3に示す通りである。 Table 3 shows that the specific gravity (20 ° C.) of the sulfuric acid aqueous solution that is the electrolytic solution after the formation of the battery case in Example 1 was set to 1.220, 1.260, 1.280, 1.320, and 1.360, respectively. Thus, the positive electrode lattice weight ratio is 1.3, the positive electrode active material density is 4.2 g / cc by water substitution method, and the addition amount of Al ions, Se ions, and Ti ions injected into the electrolyte is variously changed. Similarly, a battery case was formed, and a D23 size 12V lead storage battery having a 5-hour rate capacity of 50 Ah was prototyped. An idle stop life test was performed in the same manner as in Example 1, and the number of cycles until the life was measured. Table 3 shows the cycle life number at that time. The addition amounts of Al ions, Se ions, and Ti ions are as shown in Table 3, respectively.

表3に示すように、Alイオン、Seイオン、Tiイオンどれにおいても電解液比重1.260〜1.320(20℃)とすることで充電効率を高く維持することができ、サイクル寿命を改善し長寿命の蓄電池を提供することが可能である。電解液比重1.320(20℃)より大きい場合、電解液にAlイオン、Seイオン、Tiイオンのどれを添加した場合においても、正極の酸素過電圧が低下するため充電効率を損ない、電解液比重1.260〜1.320(20℃)に比し若干サイクル寿命回数が若干低下する結果となっている。 As shown in Table 3, charging efficiency can be kept high and the cycle life can be improved by setting the electrolyte specific gravity to 1.260 to 1.320 (20 ° C.) in any of Al ion, Se ion, and Ti ion. It is possible to provide a long-life storage battery. When the electrolyte specific gravity is greater than 1.320 (20 ° C.), the addition of Al ion, Se ion, or Ti ion to the electrolyte reduces the oxygen overvoltage of the positive electrode, thereby impairing charging efficiency. Compared to 1.260 to 1.320 (20 ° C.), the cycle life is slightly reduced.

以上、実施例1 〜 3 の結果より正極格子の下半分に対する上半分の質量比を1.1〜 1.5とし、且つ電解液にAlイオン、Seイオン、Tiイオンの少なくとも1種を含み、電解液に添加するAlイオン、Seイオン、T
i イオンの添加量をそれぞれ0.01mol/l〜0.30mol/l、0.00 02mol/l〜0.0012mol/l、0.001mol/l〜0.1 mol/lとし、また、正極活物質密度が水置換法で3.8g/cc〜4.5g/ccとし、電解液である硫酸水溶液の比重(20℃) が1.260〜1.320とすることで、アイドリングストップや充電制御条件における正負極のサルフェーションや正極の格子腐食を改善し、従来用途及びアイドルストップ用途のどちらの性能にも対応でき、また、軟化による活物質の脱落を抑制し正極格子の露出による腐食を抑制し充電効率を高く維持することが可能であり経済的で長期間安定的に作動する鉛蓄電池を提供することが可能である。
Above, the mass ratio of the upper half relative to the lower half of the positive grid from the results of Examples 1-3 and from 1.1 to 1.5, and Al ions, Se ions in the electrolyte solution, see containing at least one Ti ions Al ions, Se ions, T added to the electrolyte
i The amount of ions added is 0.01 mol / l to 0.30 mol / l, 0.002 mol / l to 0.0012 mol / l, 0.001 mol / l to 0.1 mol / l, respectively, When the material density is 3.8 g / cc to 4.5 g / cc by the water substitution method and the specific gravity (20 ° C.) of the sulfuric acid aqueous solution as the electrolyte is 1.260 to 1.320, idling stop and charge control are performed. Improves positive and negative electrode sulfation and positive electrode lattice corrosion under certain conditions, and can be used for both conventional and idle stop applications. It also suppresses the loss of active material due to softening and suppresses corrosion due to positive electrode lattice exposure. It is possible to provide a lead-acid battery that can maintain high charging efficiency and that is economical and operates stably over a long period of time.

Claims (2)

正極格子の下半分に対する上半分の質量比を1.1〜1.5とし、且つ電解液にAlイオンが0.01mol/l〜0.30mol/l、Seイオンが0.0002mol/l〜0.0012mol/l、Tiイオンが0.001mol/l〜0.1mol/lの少なくとも1種を含み、且つ正極活物質密度を水置換法で測定した値が3.8g/cc〜4.5g/ccとし、且つ電解液比重を1.260〜1.320(20℃)することを特徴とした鉛蓄電池。 The mass ratio of the upper half with respect to the lower half of the positive electrode lattice is 1.1 to 1.5, Al ions are 0.01 mol / l to 0.30 mol / l, and Se ions are 0.0002 mol / l to 0 in the electrolyte. .0012 mol / l, Ti ion containing at least one of 0.001 mol / l to 0.1 mol / l, and the positive electrode active material density measured by the water displacement method is 3.8 g / cc to 4.5 g / A lead-acid battery characterized by having a cc and an electrolyte specific gravity of 1.260 to 1.320 (20 ° C.) . 電解液に添加するAlイオン、Seイオン、Tiイオンの添加量をそれぞれ0.01mol/l〜0.30mol/l、0.0002mol/l〜0.0012mol/l 、0.001mol/l〜0.1mol/lとすること特徴とする請求項1記載の鉛蓄電池。
The addition amounts of Al ions, Se ions, and Ti ions added to the electrolyte are 0.01 mol / l to 0.30 mol / l, 0.0002 mol / l to 0.0012 mol / l, and 0.001 mol / l to 0.001 mol, respectively. The lead acid battery according to claim 1, wherein the content is 1 mol / l.
JP2005247765A 2005-08-29 2005-08-29 Lead acid battery Active JP4953600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247765A JP4953600B2 (en) 2005-08-29 2005-08-29 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247765A JP4953600B2 (en) 2005-08-29 2005-08-29 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2007066558A JP2007066558A (en) 2007-03-15
JP4953600B2 true JP4953600B2 (en) 2012-06-13

Family

ID=37928532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247765A Active JP4953600B2 (en) 2005-08-29 2005-08-29 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4953600B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243493A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2008243489A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP2008243487A (en) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The Lead acid battery
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
JP5748182B2 (en) * 2010-09-29 2015-07-15 株式会社Gsユアサ Lead acid battery and idling stop vehicle using the same
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
JP5587523B1 (en) * 2012-12-21 2014-09-10 パナソニック株式会社 Lead acid battery
JP6202197B2 (en) * 2014-04-22 2017-09-27 日立化成株式会社 Bisphenol resin, resin composition, electrode layer, electrode and lead acid battery
JP5769096B2 (en) * 2014-09-05 2015-08-26 株式会社Gsユアサ Lead acid battery
JP2016072105A (en) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 Lead storage battery
JP6164502B2 (en) * 2015-05-12 2017-07-19 株式会社Gsユアサ Lead acid battery
JP2015216123A (en) * 2015-07-15 2015-12-03 株式会社Gsユアサ Liquid-type lead storage battery
JP6726349B1 (en) * 2019-11-01 2020-07-22 古河電池株式会社 Lead acid battery
JP7128482B2 (en) * 2020-01-06 2022-08-31 古河電池株式会社 lead acid battery
JP7026753B2 (en) * 2020-01-07 2022-02-28 古河電池株式会社 Liquid lead-acid battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1211470B (en) * 1987-07-21 1989-11-03 Magneti Marelli Spa LEAD ACCUMULATOR WITH GAS RECOMBINATION
JP2560770B2 (en) * 1988-02-09 1996-12-04 新神戸電機株式会社 Expanded grid for lead-acid battery and manufacturing method thereof
JP2001338696A (en) * 2000-05-29 2001-12-07 Matsushita Electric Ind Co Ltd Charging method of lead storage battery
JP4544791B2 (en) * 2001-07-19 2010-09-15 古河電池株式会社 Sealed lead acid battery
JP4180819B2 (en) * 2001-11-28 2008-11-12 松下電器産業株式会社 Lead-acid battery charging method
JPWO2005011042A1 (en) * 2003-07-28 2006-09-14 務 石田 Lead acid battery electrolyte additive and lead acid battery

Also Published As

Publication number Publication date
JP2007066558A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4953600B2 (en) Lead acid battery
JP5522444B2 (en) Lead acid battery
JP2008243487A (en) Lead acid battery
EP1717896B1 (en) Lead acid battery
JPWO2009142220A1 (en) Lead-acid battery and method for manufacturing the same
JP2011181436A (en) Lead acid battery
JP2008243489A (en) Lead acid storage battery
JP2008243493A (en) Lead acid storage battery
JP4515902B2 (en) Lead acid battery
JP2004281197A (en) Lead acid storage battery
JP2005302395A (en) Lead storage battery
JP5531746B2 (en) Lead acid battery
JP5228601B2 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JPWO2018105067A1 (en) Lead acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
JP5283429B2 (en) Sealed lead acid battery
JP2006210058A (en) Lead acid storage battery
JP2007305370A (en) Lead storage cell
JP4857894B2 (en) Lead acid battery
JP4470381B2 (en) Lead acid battery
JP2021111445A (en) Lead-acid battery
JP2010020905A (en) Lead-acid battery
JP4904674B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Ref document number: 4953600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3