JP2021111445A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2021111445A
JP2021111445A JP2020000382A JP2020000382A JP2021111445A JP 2021111445 A JP2021111445 A JP 2021111445A JP 2020000382 A JP2020000382 A JP 2020000382A JP 2020000382 A JP2020000382 A JP 2020000382A JP 2021111445 A JP2021111445 A JP 2021111445A
Authority
JP
Japan
Prior art keywords
lead
positive electrode
electrode plate
acid battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020000382A
Other languages
Japanese (ja)
Other versions
JP7128482B2 (en
Inventor
有一 赤阪
Yuichi Akasaka
有一 赤阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2020000382A priority Critical patent/JP7128482B2/en
Publication of JP2021111445A publication Critical patent/JP2021111445A/en
Application granted granted Critical
Publication of JP7128482B2 publication Critical patent/JP7128482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a novel lead-acid battery which can be expected to achieve both the suppression of a dendrite short circuit when being used in a partial state of charge and the suppression of a decrease in water in an electrolyte during overcharge at high temperatures.SOLUTION: A lead-acid battery includes a cell chamber and an electrode plate group stored in the cell chamber together with an electrolyte, the electrode plate group including a laminate comprising a negative electrode plate and a positive electrode plate alternately arranged therein and a separator arranged between the negative electrode plate and the positive electrode plate. The positive electrode plate comprises a collector and a positive electrode mixture held on a lattice substrate of the collector. The density of the positive electrode mixture is 4.3 g/cm3 or more. The electrolyte contains at least one of aluminum ions and lithium ions, and a polymer surfactant. The total concentration of aluminum ions and lithium ions is 0.01 mol/L or more and 0.30 mol/L or less, and the concentration of the polymer surfactant is 0.002% by mass or more.SELECTED DRAWING: None

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

近年、環境負荷低減のため車両の電動化が急速に進んでいる。アイドリングストップ車やマイクロハイブリッド車、マイルドハイブリッド車はストロングハイブリッド車と比較して燃費は劣るものの、ユーザーは比較的安価に購入できるため、人気が高く自動車メーカーも開発に力を入れている。
アイドリングストップ車やマイクロハイブリッド車、マイルドハイブリッド車に搭載される鉛蓄電池は、従来よりも厳しい環境で使用される。例えば、エンジン始動回数の増加、アイドリングストップ中の電装品への電力供給、ブレーキによる回生充電など、鉛蓄電池にはより高い耐久性と充電受入性が必要とされる。
In recent years, the electrification of vehicles has been rapidly progressing in order to reduce the environmental load. Although idling stop vehicles, micro hybrid vehicles, and mild hybrid vehicles are inferior in fuel efficiency to strong hybrid vehicles, they are popular because they can be purchased at a relatively low price by users, and automobile manufacturers are also focusing on development.
Lead-acid batteries installed in idling stop vehicles, micro-hybrid vehicles, and mild hybrid vehicles are used in harsher environments than before. For example, lead-acid batteries are required to have higher durability and charge acceptability, such as an increase in the number of engine starts, power supply to electrical components during idling stop, and regenerative charging by a brake.

鉛蓄電池の耐久性を向上させるには、正極の活物質密度を向上させることが有効である。これは、鉛蓄電池の正極活物質が、充放電により粗大化し、次第に活物質粒子の結合が低下するからである。軟化と呼ばれるこの現象は、活物質密度を向上させることによりある程度抑制することが可能であることは周知の事実である。また、充電受入性を向上させるために、負極の導電カーボン量などを増やし、比表面積を上げることも周知の事実である。
しかしながら、昨今、鉛蓄電池から持ち出しの電力をさらに増やし、燃費を改善しようとする動きがあり、鉛蓄電池にはさらなる耐久性と充電受入性の向上が必要になっている。そのため、正極の活物質密度を上げ、電解液にアルミニウムイオンやリチウムイオンを含む鉛蓄電池が実用化されている。電解液にアルミニウムイオンやリチウムイオンを含む鉛蓄電池については、特許文献1および特許文献2に記載されている。
In order to improve the durability of the lead storage battery, it is effective to improve the active material density of the positive electrode. This is because the positive electrode active material of the lead storage battery becomes coarse due to charging and discharging, and the binding of the active material particles gradually decreases. It is a well-known fact that this phenomenon called softening can be suppressed to some extent by increasing the density of active material. It is also a well-known fact that the specific surface area is increased by increasing the amount of conductive carbon in the negative electrode in order to improve charge acceptability.
However, in recent years, there has been a movement to further increase the electric power taken out from the lead-acid battery to improve fuel efficiency, and the lead-acid battery needs to be further improved in durability and charge acceptability. Therefore, a lead-acid battery containing aluminum ions or lithium ions in the electrolytic solution by increasing the density of the active material of the positive electrode has been put into practical use. A lead-acid battery containing aluminum ions or lithium ions in the electrolytic solution is described in Patent Document 1 and Patent Document 2.

一方、電解液中の水分減少を抑制することで、鉛蓄電池の電槽に水を補給するメンテナンスを行う頻度を低くできる。そして、電解液中の水分減少は、高温であるほど生じやすい。よって、今後、高温地域である東南アジアに、急速にマイクロハイブリッド車やマイルドハイブリッド車が普及すると予想されることから、電解液中の水分減少を抑制できる性能は、アイドリングストップ車用の鉛蓄電池の重要な性能の一つであると言える。
特許文献3には、電解液中の水分減少を抑制する目的で、正極および負極にPb−Ca合金の格子を用いた液式の鉛蓄電池が記載されている。
On the other hand, by suppressing the decrease in water content in the electrolytic solution, it is possible to reduce the frequency of maintenance for replenishing water in the battery case of the lead storage battery. The decrease in water content in the electrolytic solution is more likely to occur at higher temperatures. Therefore, it is expected that micro-hybrid vehicles and mild hybrid vehicles will rapidly spread in Southeast Asia, which is a high-temperature region, and the ability to suppress the decrease in water content in the electrolyte is important for lead-acid batteries for idling stop vehicles. It can be said that it is one of the excellent performances.
Patent Document 3 describes a liquid-type lead-acid battery in which a lattice of Pb—Ca alloy is used for the positive electrode and the negative electrode for the purpose of suppressing a decrease in water content in the electrolytic solution.

また、アイドリングストップ用鉛蓄電池は、通常、部分充電状態(PSOC:Partial State of charge)で使用されるため、長期放置後の充電でデンドライトショート(電極から鉛の樹枝状析出物(デンドライト)が伸びて、セパレータを突き破ってショートする現象)が生じる可能性も高い。このデンドライトショートを防止する方法としては、例えば特許文献4で、セパレータを微多孔質フィルム全体でデンドライトの貫通を抑える構造にする提案がなされている。
しかし、特許文献1〜4には、高温過充電時の水分減少とデンドライトショートの両方を抑制することについての記載がない。
In addition, since lead-acid batteries for idling stop are usually used in a partial state of charge (PSOC), dendrite shorts (lead dendritic deposits (dendrite) grow from the electrodes) when charged after being left for a long period of time. Therefore, there is a high possibility that a short circuit will occur by breaking through the separator. As a method for preventing this dendrite short circuit, for example, Patent Document 4 proposes a structure in which the separator has a structure that suppresses the penetration of dendrites in the entire microporous film.
However, Patent Documents 1 to 4 do not describe suppressing both the decrease in water content and the dendrite short circuit during high-temperature overcharging.

特開2013−134957号公報Japanese Unexamined Patent Publication No. 2013-134957 特許第4799560号公報Japanese Patent No. 4799560 特許第4857894号公報Japanese Patent No. 4857894 WO2016/59739パンフレットWO2016 / 59739 Pamphlet

本発明の課題は、部分充電状態で使用された場合のデンドライトショートの抑制と高温過充電時の電解液中の水分減少の抑制の両方が期待できる、新規な鉛蓄電池を提供することである。 An object of the present invention is to provide a novel lead-acid battery that can be expected to suppress both dendrite short-circuiting when used in a partially charged state and suppression of water reduction in an electrolytic solution during high-temperature overcharging.

上記課題を解決するために、本発明の一態様の鉛蓄電池は下記の構成(1)〜(3)を有する。
(1)セル室と、セル室に収納された極板群と、セル室に注入された電解液と、を備える。極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池である。正極板は、集電体と、集電体の格子状基板に保持された正極合剤と、からなる。
(2)正極合剤の密度が4.3g/cm3以上である。
(3)電解液は、アルミニウムイオンおよびリチウムイオンの少なくとも一方と、高分子界面活性剤と、を含む。アルミニウムイオンおよびリチウムイオンの合計濃度が0.01mol/L以上0.30mol/L以下であり、高分子界面活性剤の濃度が0.002質量%以上である。
In order to solve the above problems, the lead storage battery of one aspect of the present invention has the following configurations (1) to (3).
(1) A cell chamber, a group of plates housed in the cell chamber, and an electrolytic solution injected into the cell chamber are provided. The electrode plate group is a lead-acid battery having a laminated body composed of alternately arranged negative electrode plates and positive electrode plates and separators arranged between the negative electrode plates and the positive electrode plates. The positive electrode plate is composed of a current collector and a positive electrode mixture held on a grid-like substrate of the current collector.
(2) The density of the positive electrode mixture is 4.3 g / cm 3 or more.
(3) The electrolytic solution contains at least one of aluminum ions and lithium ions, and a polymer surfactant. The total concentration of aluminum ions and lithium ions is 0.01 mol / L or more and 0.30 mol / L or less, and the concentration of the polymer surfactant is 0.002% by mass or more.

本発明の鉛蓄電池は新規な鉛蓄電池であり、本発明の鉛蓄電池によれば、部分充電状態で使用された場合のデンドライトショートの抑制と高温過充電時の電解液中の水分減少の抑制の両方が期待できる。 The lead-acid battery of the present invention is a novel lead-acid battery, and according to the lead-acid battery of the present invention, it suppresses dendrite short circuit when used in a partially charged state and suppresses the decrease in water content in the electrolytic solution during high temperature overcharging. Both can be expected.

[考察]
本発明者らが種々検討した結果、電解液にアルミニウムイオンやリチウムイオンを含む鉛蓄電池の減水量が増加する原因の一つは、アルミニウムイオンやリチウムイオンが存在していることではないかとの結論に至った。アルミニウムイオンやリチウムイオンが充電時における負極の過電圧を抑制し、減水量が増加しているのではないかと推察される。
また、電解液にアルミニウムイオンやリチウムイオンを含み、正極活物質密度の高いアイドリングストップ用鉛蓄電池が、長期放置後にデンドライトショートが起き易い理由は、電解液量当たりの活物質量が多いため、そもそもデンドライトショートが起き易いことに加え、アルミニウムイオンやリチウムイオンが原因の一つではないかと推測される。即ち、アルミニウムイオンやリチウムイオンは、硫酸鉛結晶を不規則化・微結晶化することで、電解液中への硫酸鉛結晶の溶解性を向上させ、充電受入性が向上すると考えられる。しかし、硫酸鉛結晶が電解液中へ溶解し易いことが原因となって、長期放置後の充電で鉛がデンドライト状に成長しやすいのではないかと考えられる。
[Discussion]
As a result of various studies by the present inventors, it was concluded that one of the causes of the increase in the amount of water reduction in the lead storage battery containing aluminum ions and lithium ions in the electrolytic solution may be the presence of aluminum ions and lithium ions. It came to. It is speculated that aluminum ions and lithium ions suppress the overvoltage of the negative electrode during charging, and the amount of water reduction is increasing.
In addition, the reason why lead-acid batteries for idling stop, which contain aluminum ions and lithium ions in the electrolyte and have a high density of positive electrode active material, is prone to dendrite short-circuit after being left for a long period of time is because the amount of active material per amount of electrolyte is large. In addition to the tendency for dendrite shorts to occur, it is speculated that aluminum ions and lithium ions may be one of the causes. That is, it is considered that aluminum ions and lithium ions improve the solubility of lead sulfate crystals in an electrolytic solution by irregularizing and microcrystallizing lead sulfate crystals, and improve charge acceptability. However, it is considered that lead sulfate tends to grow into a dendrite shape by charging after being left for a long period of time due to the fact that lead sulfate crystals are easily dissolved in the electrolytic solution.

そして、上記構成(1)および(2)を満たす鉛蓄電池であって、電解液が、アルミニウムイオンおよびリチウムイオンの少なくとも一方を、アルミニウムイオンおよびリチウムイオンの合計濃度で0.01mol/L以上0.30mol/L以下含む鉛蓄電池の電解液に、0.002質量%以上となる濃度で高分子界面活性剤を含むことにより、部分充電状態で使用された場合のデンドライトショートの抑制効果と高温過充電時の電解液中の水分減少の抑制効果の両方が期待できることを見出した。
高温過充電時の減水量(水分減少量)が抑制される理由について考察すると、高温時において、添加した高分子界面活性剤の溶解度が急激に上昇し、負極へのアルミニウムイオンやリチウムイオンの吸着を阻害することで、これらのイオンによる負極の過電圧抑制効果を阻害する(高温時に水素発生電位を卑側へシフトさせる)のではないかと推測される。このため、高温過充電時の減水量が抑制されるのではないかと考えられる。
Then, in the lead-acid battery satisfying the above configurations (1) and (2), the electrolytic solution contains at least one of aluminum ions and lithium ions at a total concentration of 0.01 mol / L or more of aluminum ions and lithium ions. By containing a polymer surfactant at a concentration of 0.002% by mass or more in the electrolyte of a lead-acid battery containing 30 mol / L or less, the effect of suppressing dendrite shorts and high-temperature overcharging when used in a partially charged state are achieved. It was found that both the effects of suppressing the decrease in water content in the electrolytic solution at that time can be expected.
Considering the reason why the amount of water reduction (water reduction amount) during high-temperature overcharging is suppressed, the solubility of the added polymer surfactant rapidly increases at high temperature, and adsorption of aluminum ions and lithium ions to the negative electrode. It is presumed that by inhibiting the above, the overvoltage suppression effect of the negative electrode by these ions is inhibited (the hydrogen generation potential is shifted to the base side at high temperature). Therefore, it is considered that the amount of water reduction during high-temperature overcharging may be suppressed.

次に、デンドライトショートが抑制される理由について考察すると、これらのイオンにより不規則化・微結晶化した硫酸鉛のエッジ部分がデンドライトの成長点になると考えられるが、不規則化・微結晶化した硫酸鉛は通常の硫酸鉛よりエッジが多く、デンドライトが発生し易いのではないかと考えられる。そして、高分子界面活性剤が、不規則化・微結晶化した硫酸鉛のエッジ部分に吸着していることで、エッジ部分からのデンドライト成長が抑制されるのではないかと推測される。 Next, considering the reason why dendrite shorts are suppressed, it is considered that the edge portion of lead sulfate irregularized and microcrystallized by these ions becomes the growth point of dendrite, but it is irregularized and microcrystallized. Lead sulfate has more edges than normal lead sulfate, and it is thought that dendrites are likely to occur. Then, it is speculated that the polymer surfactant is adsorbed on the irregular and microcrystallized lead sulfate edge portion, so that the dendrite growth from the edge portion is suppressed.

電解液中の高分子界面活性剤の濃度は0.002質量%以上とする。0.002質量%未満の場合、効果が発現しない。上限は特に定めないが、0.5質量%を超えるとPSOC耐久性が低下するため、好ましい範囲は0.002質量%以上0.5質量%以下である。高分子界面活性剤が多すぎるとPSOC耐久性が低下する理由は、高分子界面活性剤が立体障害となり、硫酸イオンなどの移動を妨げてしまうからではないかと推測される。
使用可能な高分子界面活性剤は、パーフルオロスルホン酸塩、リグニンスルホン酸塩、ラウリル硫酸塩などのアニオン性界面活性剤、ポリアスパラギン酸塩などの両性界面活性剤、アルキルトリメチルアンモニウムクロライドなどのカチオン性界面活性剤で、イオン性の界面活性剤である。
The concentration of the polymer surfactant in the electrolytic solution is 0.002% by mass or more. If it is less than 0.002% by mass, no effect is exhibited. The upper limit is not particularly determined, but if it exceeds 0.5% by mass, the PSOC durability is lowered, so that the preferable range is 0.002% by mass or more and 0.5% by mass or less. It is presumed that the reason why the PSOC durability is lowered when the amount of the polymer surfactant is too large is that the polymer surfactant causes steric hindrance and hinders the movement of sulfate ions and the like.
Polymer surfactants that can be used are anionic surfactants such as perfluorosulfonate, lignin sulfonate, lauryl sulfate, amphoteric surfactants such as polyasparaginate, and cations such as alkyltrimethylammonium chloride. It is a sexual surfactant and is an ionic surfactant.

本発明者らが種種検討したところ、高分子界面活性剤が、カチオン性高分子界面活性剤や両性高分子界面活性剤の場合、さらに高温過充電時の減水量が抑制されることが分かった。この理由は、カチオン性高分子界面活性剤や両性高分子界面活性剤の場合、過充電状態ではより強固に負極に吸着し、その作用が発現するからではないかと推測される。なお、カチオン性高分子界面活性剤と両性高分子界面活性剤が同様の効果を発現するのは、両性界面活性剤が酸性領域でカチオン性を示すためであると推測される。 As a result of species studies by the present inventors, it was found that when the polymer surfactant is a cationic polymer surfactant or an amphoteric polymer surfactant, the amount of water reduction during high-temperature overcharging is further suppressed. .. It is presumed that the reason for this is that in the case of cationic polymer surfactants and amphoteric polymer surfactants, they are more strongly adsorbed on the negative electrode in the overcharged state and the action is exhibited. It is presumed that the cationic polymer surfactant and the amphoteric polymer surfactant exhibit the same effect because the amphoteric surfactant exhibits cationicity in the acidic region.

また、本発明者らが種種検討したところ、高分子界面活性剤が、アニオン性高分子界面活性剤の場合、さらに長期放置後のデンドライトショートが抑制されることが分かった。この理由は以下のように考えられる。過放電放置後に充電された瞬間では、不規則化・微結晶化した硫酸鉛に水溶性アニオン高分子界面活性剤が吸着されており、この界面活性剤が鉛イオンを吸着していることで、電極近傍から電解液中への鉛イオンの溶出を抑制できる。このことから、過放電放置後の充電におけるデンドライト成長を抑制するのではないかと考えられる。 In addition, as a result of species studies by the present inventors, it was found that when the polymer surfactant is an anionic polymer surfactant, dendrite shorts after being left for a long period of time are further suppressed. The reason for this is considered as follows. At the moment of charging after being left over-discharged, a water-soluble anionic polymer surfactant is adsorbed on the irregularized and microcrystallized lead sulfate, and this surfactant adsorbs lead ions. Elution of lead ions from the vicinity of the electrode into the electrolytic solution can be suppressed. From this, it is considered that dendrite growth in charging after being left over-discharged may be suppressed.

本発明者らがさらに検討を重ねた結果、電解液中のナトリウムイオン濃度が50ppm以上10000ppm以下の時、さらにデンドライトショートが抑制されることが分かった。ナトリウムイオンがデンドライトショートを抑制することは周知の事実であったが、電解液中に高分子界面活性剤を含む場合、少ないナトリウムイオン量で、デンドライトショートを抑制できる効果が発現することが分かった。ナトリウムイオンはデンドライトを抑制するが、充電受入性を阻害するという報告(GS Yuasa Technical Report 第8巻 第2号2011年、p.22-28)もあるため、ナトリウムイオンは少ない方が好ましいのは明らかである。 As a result of further studies by the present inventors, it was found that dendrite short-circuiting is further suppressed when the sodium ion concentration in the electrolytic solution is 50 ppm or more and 10000 ppm or less. It was a well-known fact that sodium ions suppress dendrite shorts, but it was found that when a polymer surfactant is contained in the electrolytic solution, the effect of suppressing dendrite shorts is exhibited with a small amount of sodium ions. .. There is also a report that sodium ions suppress dendrites but inhibit charge acceptability (GS Yuasa Technical Report Vol. 8, No. 2, 2011, p.22-28), so it is preferable to have less sodium ions. it is obvious.

[実施形態]
以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。
[Embodiment]
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential requirements of the present invention.

[構成]
この実施形態の鉛蓄電池は、モノブロックタイプの電槽と、蓋と、六個の極板群とを有する。電槽は、隔壁により六個のセル室に区画されている。六個のセル室は電槽の長手方向に沿って配列されている。各セル室に一個の極板群が配置されている。各セル室に電解液が注入されている。
各極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータと、からなる積層体を有する。
[Constitution]
The lead-acid battery of this embodiment has a monoblock type battery case, a lid, and a group of six plates. The battery case is divided into six cell chambers by a partition wall. The six cell chambers are arranged along the longitudinal direction of the battery case. One electrode plate group is arranged in each cell chamber. An electrolytic solution is injected into each cell chamber.
Each electrode plate group has a laminate composed of a plurality of alternately arranged positive electrode plates and negative electrode plates, and separators arranged between the positive electrode plates and the negative electrode plates.

正極板は、鉛合金製で格子状基板と格子状基板から上側に突出する耳部とを有する集電体の格子状基板に、正極合剤(正極活物質を含む合剤)が保持されたものである。負極板は、鉛合金製で格子状基板と格子状基板から上側に突出する耳部とを有する集電体の格子状基板に、負極合剤(負極活物質を含む合剤)が保持されたものである。複数枚の正極板および負極板は、セパレータを介して交互に配置されている。積層体を構成する負極板の枚数は正極板の枚数よりも一枚多くても良いし、同じでも良い。
正極合剤の密度が4.3g/cm3以上4.7g/cm3以下である。
The positive electrode plate is made of a lead alloy, and a positive electrode mixture (a mixture containing a positive electrode active material) is held on a lattice-like substrate of a current collector having a lattice-like substrate and an ear portion protruding upward from the lattice-like substrate. It is a thing. The negative electrode plate is made of a lead alloy, and a negative electrode mixture (a mixture containing a negative electrode active material) is held on a lattice-like substrate of a current collector having a lattice-like substrate and an ear portion protruding upward from the lattice-like substrate. It is a thing. A plurality of positive electrode plates and negative electrode plates are alternately arranged via a separator. The number of negative electrode plates constituting the laminate may be one more than the number of positive electrode plates, or may be the same.
The density of the positive electrode mixture is 4.3 g / cm 3 or more and 4.7 g / cm 3 or less.

負極合剤は、従来品と同様の構成である。具体的には、負極活物質である鉛と、補強繊維などを含む。
負極板は袋状セパレータ内に収納されている。そして、負極板が入った袋状セパレータと正極板とを交互に重ねることで、正極板と負極板との間にセパレータが配置された状態となっている。なお、正極板を袋状セパレータ内に収納して、負極板と交互に重ねてもよい。
The negative electrode mixture has the same structure as the conventional product. Specifically, it contains lead, which is a negative electrode active material, and reinforcing fibers.
The negative electrode plate is housed in a bag-shaped separator. Then, by alternately stacking the bag-shaped separator containing the negative electrode plate and the positive electrode plate, the separator is arranged between the positive electrode plate and the negative electrode plate. The positive electrode plate may be stored in the bag-shaped separator and alternately stacked with the negative electrode plate.

また、各極板群は、積層体の正極板および負極板をそれぞれ幅方向の別の位置で連結する正極ストラップおよび負極ストラップと、正極ストラップおよび負極ストラップからそれぞれ立ち上がる正極中間極柱および負極中間極柱を有する。正極ストラップおよび負極ストラップは、正極板および負極板の耳部をそれぞれ連結している。セル配列方向の両端のセル室に配置された正極ストラップおよび負極ストラップには、それぞれ小片部を介して外部端子となる正極極柱および負極極柱が形成されている。
電解液は、アルミニウムイオンおよびリチウムイオンの少なくとも一方とナトリウムイオンとリグニンスルホン酸塩(アニオン性高分子界面活性剤)と、を含む硫酸水溶液であって、アルミニウムイオンおよびリチウムイオンの合計濃度が0.01mol/L以上0.30mol/L以下であり、ナトリウムイオン濃度が50ppm以上10000ppm以下であり、水溶性高分子界面活性剤の濃度が0.002質量%以上0.5質量%以下である。
Further, each electrode plate group includes a positive electrode strap and a negative electrode strap that connect the positive electrode plate and the negative electrode plate of the laminated body at different positions in the width direction, and a positive electrode intermediate pole column and a negative electrode intermediate pole that rise from the positive electrode strap and the negative electrode strap, respectively. Has columns. The positive electrode strap and the negative electrode strap connect the ears of the positive electrode plate and the negative electrode plate, respectively. The positive electrode strap and the negative electrode strap arranged in the cell chambers at both ends in the cell arrangement direction are formed with positive electrode pole columns and negative electrode pole columns serving as external terminals, respectively, via small pieces.
The electrolytic solution is a sulfuric acid aqueous solution containing at least one of aluminum ions and lithium ions, sodium ions and lignin sulfonate (anionic polymer surfactant), and the total concentration of aluminum ions and lithium ions is 0. It is 01 mol / L or more and 0.30 mol / L or less, the sodium ion concentration is 50 ppm or more and 10000 ppm or less, and the concentration of the water-soluble polymer surfactant is 0.002% by mass or more and 0.5% by mass or less.

[製法]
実施形態の鉛蓄電池は、例えば以下の方法で製造することができる。正極板の製造方法以外は、従来公知の方法が採用できる。
先ず、化成前の正極板を作製する際に用いる混練物として、鉛粉、希硫酸、酸化ビスマス、および水を含む混練物(湿ペースト)を作製する。その際に、湿ペーストの密度を、化成後に正極合剤の密度が4.3g/cm3以上4.7g/cm3以下となる値に調整する。また、酸化ビスマスの添加量は、鉛粉100質量部に対して0.03質量部以上0.10質量部以下の割合とする。
次に、作製された混練物を集電体の格子状基板に充填後に熟成し、その後乾燥する。
なお、正極合剤の密度は、湿ペースト中の固形分の質量、湿ペーストの熟成温度、湿ペーストの格子状基板への充填量などを調整することによっても調整できる。
以上が、化成前の正極板を得る工程である。
[Manufacturing method]
The lead-acid battery of the embodiment can be manufactured by, for example, the following method. A conventionally known method can be adopted other than the method for manufacturing the positive electrode plate.
First, as a kneaded product used when producing a positive electrode plate before chemical conversion, a kneaded product (wet paste) containing lead powder, dilute sulfuric acid, bismuth oxide, and water is produced. At that time, the density of the wet paste is adjusted to a value such that the density of the positive electrode mixture is 4.3 g / cm 3 or more and 4.7 g / cm 3 or less after chemical conversion. The amount of bismuth oxide added is 0.03 parts by mass or more and 0.10 parts by mass or less with respect to 100 parts by mass of lead powder.
Next, the produced kneaded product is filled in a grid-like substrate of a current collector, aged, and then dried.
The density of the positive electrode mixture can also be adjusted by adjusting the mass of the solid content in the wet paste, the aging temperature of the wet paste, the filling amount of the wet paste in the grid-like substrate, and the like.
The above is the process of obtaining the positive electrode plate before chemical conversion.

次に、得られた化成前の正極板と、通常の方法で作製された化成前の負極板と、セパレータと、を用いて、化成前の積層体を作製する。
次に、化成前の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、正極板の耳部同士を接続した正極ストラップおよび負極板の耳部同士を接続した負極ストラップを形成するとともに、正極中間極柱、負極中間極柱、正極極柱および負極極柱を形成する。それらを形成した後、前記積層体を電槽の各セル室に配置する。
次に、隣接するセル室の正極中間極柱同士または負極中間極柱同士を抵抗溶接することで、隣接するセル間を電気的に直列に接続する。次に、電槽の上面と蓋の下面とを熱で溶かして蓋を電槽に載せ、熱溶着により電槽に蓋を固定する。なお、蓋を電槽に載せる際に、正極極柱および負極極柱を蓋にインサート成型されたブッシングの貫通穴に通す。その後、ブッシングの貫通穴からそれぞれ突出した状態の正極極柱および負極極柱をバーナー等で加熱しブッシングと一体化させることで、正極端子および負極端子を形成する。
Next, a laminate before chemical conversion is produced by using the obtained positive electrode plate before chemical conversion, the negative electrode plate before chemical conversion produced by a usual method, and a separator.
Next, a COS (cast-on-strap) casting device was used to form the pre-chemical laminate to form a positive electrode strap connecting the ears of the positive electrode plates and a negative electrode strap connecting the ears of the negative electrode plates. A positive electrode intermediate pole column, a negative electrode intermediate pole column, a positive electrode pole column, and a negative electrode pole column are formed. After forming them, the laminate is placed in each cell chamber of the battery case.
Next, by resistance welding the positive electrode intermediate pole columns or the negative electrode intermediate pole columns of the adjacent cell chambers, the adjacent cells are electrically connected in series. Next, the upper surface of the electric tank and the lower surface of the lid are melted by heat, the lid is placed on the electric tank, and the lid is fixed to the electric tank by heat welding. When the lid is placed on the battery case, the positive electrode pole and the negative electrode pole are passed through the through holes of the bushing insert-molded in the lid. After that, the positive electrode pole and the negative electrode pole pillar in a state of protruding from the through hole of the bushing are heated by a burner or the like and integrated with the bushing to form the positive electrode terminal and the negative electrode terminal.

その後、蓋を貫通する穴として設けた注液孔からセル室内に、アルミニウムイオンおよびリチウムイオンの合計濃度が0.01mol/L以上0.30mol/L以下であり、ナトリウムイオン濃度が50ppm以上10000ppm以下である硫酸水溶液を注入した後、注液孔を塞ぐことなどの通常の工程を行うことにより、鉛蓄電池の組み立てを完成させる。その後、通常の条件で電槽化成を行った後に、リグニンスルホン酸塩を、電解液中に濃度が0.002質量%以上0.5質量%以下となる範囲で添加する。これにより、本実施形態の鉛蓄電池が得られる。
この電槽化成により、集電体に保持された状態の鉛粉が正極活物質に変化し、正極合剤の密度が4.3g/cm3以上4.7g/cm3以下となる。
After that, the total concentration of aluminum ions and lithium ions is 0.01 mol / L or more and 0.30 mol / L or less, and the sodium ion concentration is 50 ppm or more and 10000 ppm or less in the cell chamber through the liquid injection hole provided as a hole penetrating the lid. After injecting the sulfuric acid aqueous solution, the lead-acid battery assembly is completed by performing a normal step such as closing the injection hole. Then, after carrying out the electric tank chemical formation under normal conditions, lignin sulfonate is added to the electrolytic solution in a range of 0.002% by mass or more and 0.5% by mass or less. As a result, the lead storage battery of the present embodiment can be obtained.
Due to this battery formation, the lead powder held in the current collector is changed to the positive electrode active material, and the density of the positive electrode mixture becomes 4.3 g / cm 3 or more and 4.7 g / cm 3 or less.

[作用、効果]
本実施形態の鉛蓄電池によれば、正極合剤の密度が4.3g/cm3以上4.7g/cm3以下であり、電解液が、アルミニウムイオンおよびリチウムイオンの少なくとも一方を、アルミニウムイオンおよびリチウムイオンの合計濃度で0.01mol/L以上0.30mol/L以下含む鉛蓄電池の電解液に、0.002質量%以上となる濃度でリグニンスルホン酸塩を含むとともに、50ppm以上10000ppm以下のナトリウムイオンを含むことにより、部分充電状態で使用された場合のデンドライトショートの抑制効果と高温過充電時の電解液中の水分減少の抑制効果の両方が期待できる。
また、正極合剤の密度が4.3g/cm3以上4.7g/cm3以下であるため、正極板の耐久性(寿命性能)が高いことと活物質の利用効率(放電容量)が高いことが両立できる。正極合剤の密度が4.8g/cm3以上であると、耐久性(寿命性能)の点では有利になるが、活物質の利用効率(放電容量)の点で不利になる。
[Action, effect]
According to the lead-acid battery of the present embodiment, the density of the positive electrode mixture is 4.3 g / cm 3 or more and 4.7 g / cm 3 or less, and the electrolytic solution contains at least one of aluminum ions and lithium ions, and aluminum ions and The electrolyte of a lead-acid battery containing 0.01 mol / L or more and 0.30 mol / L or less in total lithium ion concentration contains lignin sulfonate at a concentration of 0.002% by mass or more, and sodium of 50 ppm or more and 10,000 ppm or less. By containing ions, both the effect of suppressing dendrite short-circuit when used in a partially charged state and the effect of suppressing the decrease in water content in the electrolytic solution during high-temperature overcharging can be expected.
Further, since the density of the positive electrode mixture is 4.3 g / cm 3 or more and 4.7 g / cm 3 or less, the durability (life performance) of the positive electrode plate is high and the utilization efficiency (discharge capacity) of the active material is high. Can be compatible. When the density of the positive electrode mixture is 4.8 g / cm 3 or more, it is advantageous in terms of durability (life performance), but is disadvantageous in terms of utilization efficiency (discharge capacity) of the active material.

[試験電池の作製]
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.1-1〜No.1-48、No.2-1〜No.2-6の鉛蓄電池を、実施形態に記載された従来公知の方法で作製した。具体的には、20HR容量が61AhのQ−85型の鉛蓄電池であって、動作電圧が12Vの鉛蓄電池を作製した。
[Preparation of test battery]
As lead-acid batteries having the same structure as the lead-acid batteries of the embodiment, the lead-acid batteries of Samples No. 1-1 to No. 1-48 and No. 2-1 to No. 2-6 are conventionally known as described in the embodiments. It was prepared by the method of. Specifically, a Q-85 type lead-acid battery having a 20HR capacity of 61Ah and an operating voltage of 12V was produced.

[正極板(化成前)の作製]
<No.1-1〜No.1-14>
先ず、蓄電池用の鉛粉(粒径が数μm〜30数μmである鉛と酸化鉛との混合粉末で、質量比での混合比が鉛:酸化鉛=約25:75)と、ポリエステル繊維であるテトロン(登録商標)と、酸化ビスマスを混合して乾式混合物を得た。
得られた乾式混合物に水を添加し練合わせた後、希硫酸を添加して再度練合わせることにより、正極合剤形成用ペースト(湿ペースト)を作製した。その際に、添加する水の量を調整して、湿ペーストの密度を約4.2g/cm3にした。湿ペースト密度の値は、内容積が分かっているステンレス製の容器に湿ペーストを充填し、充填された湿ペーストの質量を容器の容積で除算することで得た。
[Preparation of positive electrode plate (before chemical conversion)]
<No.1-1 to No.1-14>
First, lead powder for storage batteries (a mixed powder of lead and lead oxide having a particle size of several μm to 30 μm, and the mixing ratio by mass ratio is lead: lead oxide = about 25:75) and polyester fiber. Tetron (registered trademark) and bismuth oxide were mixed to obtain a dry mixture.
Water was added to the obtained dry mixture and kneaded, and then dilute sulfuric acid was added and kneaded again to prepare a paste for forming a positive electrode mixture (wet paste). At that time, the amount of water to be added was adjusted so that the density of the wet paste was about 4.2 g / cm 3 . The value of the wet paste density was obtained by filling a stainless steel container having a known internal volume with the wet paste and dividing the mass of the filled wet paste by the volume of the container.

次に、この湿ペーストを、Pb−Sn系の鉛合金から成るDサイズ電池用集電体(重力鋳造基板、47g/枚、厚さ約1.3mm)の格子状基板に充填し、希硫酸を0.1MPaの圧力で、湿ペーストが充填された面に均一に噴霧した後、この集電体を、予熱乾燥炉を通過させて、予熱乾燥後の湿ペーストの水分含有率を約10質量%に調整した。
次に、この集電体を温度40℃±5℃、湿度95%±5%の環境下に30時間放置することで、予熱後の湿ペーストを熟成した後、温度60℃±5℃の環境下で8時間保持することで、ペーストを乾燥させた。これにより、化成前の正極板を得た。
Next, this wet paste was filled in a grid-like substrate of a D size battery current collector (gravity cast substrate, 47 g / sheet, thickness about 1.3 mm) made of a Pb—Sn-based lead alloy, and dilute sulfuric acid was added. Was uniformly sprayed onto the surface filled with the wet paste at a pressure of 0.1 MPa, and then the current collector was passed through a preheat drying furnace to increase the water content of the wet paste after preheating and drying by about 10 mass. Adjusted to%.
Next, the current collector is left in an environment of a temperature of 40 ° C. ± 5 ° C. and a humidity of 95% ± 5% for 30 hours to mature the preheated wet paste, and then an environment of a temperature of 60 ° C. ± 5 ° C. The paste was dried by holding underneath for 8 hours. As a result, a positive electrode plate before chemical conversion was obtained.

<No.1-15〜No.1-34,No.2-1〜No.2-6>
添加する水の量を調整して、湿ペーストの密度を約4.3g/cm3にするとともに、予熱乾燥後の湿ペーストの水分含有率を約9.5質量%に調整した。これ以外は、No.1-1〜No.1-14と同じ方法で化成前の正極板を得た。
<No.1-35〜No.1-48>
添加する水の量を調整して、湿ペーストの密度を約4.5g/cm3にするとともに、予熱乾燥後の湿ペーストの水分含有率を約8.5質量%に調整した。これ以外は、No.1-1〜No.1-14と同じ方法で化成前の正極板を得た。
<No.1-15 to No.1-34, No.2-1 to No.2-6>
By adjusting the amount of water to be added, the density of the wet paste was adjusted to about 4.3 g / cm 3, and the water content of the wet paste after preheating and drying was adjusted to about 9.5% by mass. Except for this, the positive electrode plate before chemical conversion was obtained by the same method as No. 1-1 to No. 1-14.
<No.1-35 to No.1-48>
By adjusting the amount of water to be added, the density of the wet paste was adjusted to about 4.5 g / cm 3, and the water content of the wet paste after preheating and drying was adjusted to about 8.5% by mass. Except for this, the positive electrode plate before chemical conversion was obtained by the same method as No. 1-1 to No. 1-14.

[負極板(化成前)の作製]
通常の方法で作製した負極合剤形成用ペーストを、Pb−Sn系の鉛合金から成るDサイズ電池用集電体(連続鋳造基板、40g/枚、厚さ約0.8mm)の格子状基板に充填した後、この集電体を、通常の条件で予熱乾燥炉を通過させた。次に、この集電体を温度40℃±5℃、湿度95%±5%の環境下に30時間放置することで、充填されたペーストを熟成した後、温度60℃±5℃の環境下で8時間保持することで、ペーストを乾燥させた。これにより、化成前の負極板を得た。
[Manufacturing of negative electrode plate (before chemical conversion)]
A paste for forming a negative electrode mixture prepared by a usual method is used as a grid-like substrate for a D size battery current collector (continuously cast substrate, 40 g / sheet, thickness: about 0.8 mm) made of a Pb—Sn-based lead alloy. The current collector was passed through a preheating and drying furnace under normal conditions. Next, the current collector is left in an environment of a temperature of 40 ° C. ± 5 ° C. and a humidity of 95% ± 5% for 30 hours to mature the filled paste, and then in an environment of a temperature of 60 ° C. ± 5 ° C. The paste was dried by holding in. As a result, a negative electrode plate before chemical conversion was obtained.

[鉛蓄電池の組み立て]
先ず、各鉛蓄電池用の極板群を作製するために、上述方法で作製した化成前の正極板を各42枚(7枚×6セル)枚と、上述方法で作製した化成前の負極板を2592枚(8枚×6セル×(48+6)組)枚と、化成前の負極板と同じ数の袋状セパレータを用意した。
次に、化成前の負極板を袋状セパレータ内に収納し、この化成前の負極板入りセパレータ8枚と化成前の正極板7枚を交互に積層することで、化成前の正極板を7枚、化成前の負極板を8枚有する積層体を、各サンプルで六個ずつ得た。
[Assembly of lead-acid battery]
First, in order to prepare a group of electrode plates for each lead-acid battery, 42 (7 × 6 cells) pre-chemical positive electrode plates produced by the above method and a pre-chemical negative electrode plate produced by the above method are produced. 2592 sheets (8 sheets x 6 cells x (48 + 6) sets) and the same number of bag-shaped separators as the negative electrode plates before chemical conversion were prepared.
Next, the negative electrode plate before chemical conversion is housed in a bag-shaped separator, and eight separators containing the negative electrode plate before chemical conversion and seven positive electrode plates before chemical conversion are alternately laminated to form seven positive electrode plates before chemical conversion. Six laminated bodies having eight negative electrode plates before chemical conversion were obtained for each sample.

次に、サンプルNo.毎に、得られた六個の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、キャビティ内に溶融金属(鉛合金)を供給するとともに、耳部を下側に向けた状態で積層体の耳部を挿入することで、先ず、各耳部同士を接続する正極ストラップおよび負極ストラップを形成した。続いて、配列方向両端のセル室に配置された負極ストラップおよび正極ストラップには小片と極柱を形成し、それ以外の各正極ストラップおよび負極ストラップには、それぞれ正極中間極柱および負極中間極柱を形成した。次に、それらを、「SBA S 0101」の外形区分Mのポリプロピレン製のモノブロックタイプの電槽の六個のセル室にそれぞれ配置した。 Next, for each sample No., the obtained six laminates were used with a COS (cast-on-strap) casting device to supply molten metal (lead alloy) into the cavity, and the ears were placed on the lower side. By inserting the selvages of the laminated body in a state of facing toward, first, a positive electrode strap and a negative electrode strap for connecting the selvages were formed. Subsequently, small pieces and polar columns are formed on the negative electrode straps and the positive electrode straps arranged in the cell chambers at both ends in the arrangement direction, and the positive electrode intermediate pole columns and the negative electrode intermediate pole columns are formed on the other positive electrode straps and the negative electrode straps, respectively. Was formed. Next, they were placed in each of the six cell chambers of a polypropylene monoblock type battery case of the outer shape division M of "SBA S 0101".

次に、電槽のセル室同士を仕切る隔壁を挟んで対向する正極中間極柱および負極中間極柱を、隔壁に設けた貫通穴の部分で抵抗溶接することにより接続した。この状態では、電槽の各セル内に化成前の極板群が配置されている。なお、極板群の圧迫力は約10kPaとした。
この状態の電槽と蓋を、実施形態に記載された方法で熱溶着することで、No.1-1〜No.1-48,No.2-1〜No.2-6の化成前の鉛蓄電池を得た。
Next, the positive electrode intermediate pole pillar and the negative electrode intermediate pole pillar facing each other with the partition wall partitioning the cell chambers of the battery case from each other were connected by resistance welding at the portion of the through hole provided in the partition wall. In this state, a group of electrode plates before chemical conversion is arranged in each cell of the battery case. The compression force of the electrode plate group was about 10 kPa.
By heat-welding the battery case and lid in this state by the method described in the embodiment, before the chemical formation of No. 1-1 to No. 1-48 and No. 2-1 to No. 2-6. Obtained a lead-acid battery.

次に、No.1-1〜No.1-48の化成前の鉛蓄電池に対しては、サンプルNo.毎に、表1および表2に示すイオン濃度となるように、硫酸アルミニウムおよび/または硫酸リチウムが添加された希硫酸電解液を、各化成前の鉛蓄電池の蓋の注液孔から、電槽の各セル室内へ注入した。その後、通常の条件で電槽化成を行った後、リグニンスルホン酸ナトリウム(水溶性高分子界面活性剤)を表1および表2に示す濃度となるように添加することで、No.1〜No.48の各鉛蓄電池を得た。 Next, for the lead-acid batteries of No. 1-1 to No. 1-48 before chemical conversion, aluminum sulfate and / or aluminum sulfate and / or so as to have the ion concentrations shown in Tables 1 and 2 for each sample No. A dilute sulfuric acid electrolytic solution to which lithium sulfate was added was injected into each cell chamber of the battery case through the injection hole of the lid of the lead-acid battery before each chemical conversion. Then, after chemical conversion of the battery under normal conditions, sodium lignin sulfonate (water-soluble polymer surfactant) was added so as to have the concentrations shown in Tables 1 and 2, and No. 1 to No. 1 to No. Each .48 lead-acid battery was obtained.

また、No.2-1〜No.2-6の化成前の鉛蓄電池に対しては、表3に示すイオン濃度となるように、硫酸アルミニウム、硫酸リチウム、および硫酸ナトリウムが添加された希硫酸電解液を、各化成前の鉛蓄電池の蓋の注液孔から、電槽の各セル室内へ注入した。その後、通常の条件で電槽化成を行った後、リグニンスルホン酸ナトリウム(水溶性高分子界面活性剤)を表3に示す濃度となるように添加することで、No.2-1〜No.2-6の各鉛蓄電池を得た。
つまり、No.2-1〜No.2-6の鉛蓄電池は、No.1-19の鉛蓄電池と化成前の正極板が同じであり、化成後に添加された電解液中のリグニンスルホン酸ナトリウムの濃度も同じであるが、電解液に硫酸ナトリウムが添加されて、ナトリウムイオン濃度が表3に示す濃度になっているという点で、No.1-19の鉛蓄電池と異なる。
For the lead-acid batteries of No. 2-1 to No. 2-6 before chemical conversion, dilute sulfuric acid to which aluminum sulfate, lithium sulfate, and sodium sulfate were added so as to have the ion concentration shown in Table 3 The electrolytic solution was injected into each cell chamber of the battery case through the injection hole of the lid of the lead-acid battery before each chemical conversion. Then, after chemical conversion of the battery under normal conditions, sodium lignin sulfonate (water-soluble polymer surfactant) was added to the concentration shown in Table 3 to obtain No. 2-1 to No. Each lead-acid battery of 2-6 was obtained.
In other words, the lead-acid batteries No. 2-1 to No. 2-6 have the same positive electrode plate before chemical conversion as the lead-acid batteries No. 1-19, and sodium lignin sulfonate in the electrolytic solution added after chemical conversion. However, it differs from the lead-acid battery of No. 1-19 in that sodium sulfate is added to the electrolytic solution and the sodium ion concentration is as shown in Table 3.

[密度の測定]
各鉛蓄電池の正極板について、以下の方法で正極合剤の密度を測定した。
電槽化成後の各鉛蓄電池から正極板を取り出して、水で洗って乾燥させた後、正極板から正極合剤を掻き落として粉末にした。得られた粉末を水銀圧入式ポロシメーターにセットして、正極合剤のメジアン細孔径および密度を水銀圧入法により測定した。
[Measurement of density]
For the positive electrode plate of each lead-acid battery, the density of the positive electrode mixture was measured by the following method.
The positive electrode plate was taken out from each lead-acid battery after the conversion of the battery case, washed with water and dried, and then the positive electrode mixture was scraped off from the positive electrode plate to make a powder. The obtained powder was set in a mercury press-fitting porosimeter, and the median pore diameter and density of the positive electrode mixture were measured by the mercury press-fitting method.

[デンドライトショート確認試験]
各鉛蓄電池について、デンドライトショート確認試験を以下の手順で行った。
先ず、各鉛蓄電池を25℃の環境に置いて、20時間電流(0.05C)で電圧が10.5Vとなるまで放電させる。次に、各鉛蓄電池を40℃の環境に置き、各鉛蓄電池に499オームの抵抗を接続して、14時間放置する。次に、各鉛蓄電池を25℃の環境に戻し、150A、15Vの条件で定電圧充電する。
次に、各鉛蓄電池を解体して、一番目と三番目のセル室に配置されている極板群を取り出して分解し、計16枚(8×2)のセパレータを目視で観察して、デンドライトショートが生じている(ショート痕がある)セパレータの枚数を調べた。その枚数の全枚数(16)に対する割合(%)をデンドライトショート割合とした。つまり、16枚中2枚のセパレータにショート痕があった場合は、デンドライトショート割合は2/16×100=13%となる。
[Dendrite short confirmation test]
A dendrite short-circuit confirmation test was conducted for each lead-acid battery according to the following procedure.
First, each lead-acid battery is placed in an environment of 25 ° C. and discharged with a current (0.05C) for 20 hours until the voltage reaches 10.5V. Next, each lead-acid battery is placed in an environment of 40 ° C., a resistor of 499 ohms is connected to each lead-acid battery, and the lead-acid battery is left for 14 hours. Next, each lead-acid battery is returned to an environment of 25 ° C. and charged at a constant voltage under the conditions of 150A and 15V.
Next, each lead-acid battery was disassembled, the electrode plates arranged in the first and third cell chambers were taken out and disassembled, and a total of 16 (8 × 2) separators were visually observed. The number of separators with dendrite shorts (with short marks) was examined. The ratio (%) of the total number of sheets (16) was defined as the dendrite short ratio. That is, when two of the 16 separators have short marks, the dendrite short ratio is 2/16 × 100 = 13%.

[減水量を調べる試験(高温過充電試験)]
各鉛蓄電池について、高温過充電試験を、SAE規格J240を参考にして以下の手順で行った。
各鉛蓄電池を、水温が75℃±3℃に制御された水槽内に入れ、下記の条件で放電と充電を行うことを、1920回繰り返した後、各鉛蓄電池の質量を測定した。
放電条件:25A±0.1Aで4分±1秒
充電条件:14.8V±0.03V(制限電流25A±0.1A)で10分±3秒
[Test to check the amount of water reduction (high temperature overcharge test)]
For each lead-acid battery, a high-temperature overcharge test was carried out according to the following procedure with reference to SAE standard J240.
Each lead-acid battery was placed in a water tank whose water temperature was controlled to 75 ° C. ± 3 ° C., and discharging and charging under the following conditions were repeated 1920 times, and then the mass of each lead-acid battery was measured.
Discharge condition: 25A ± 0.1A for 4 minutes ± 1 second Charging condition: 14.8V ± 0.03V (current limit 25A ± 0.1A) for 10 minutes ± 3 seconds

なお、繰り返し回数が480回となる毎に、充電後に水槽中で60〜72時間放置し、440Aで判定放電(30秒後の放電末期電圧が7.2V以上であることを調べるための放電)を行ったが、水の補給は行わなかった。
各鉛蓄電池について、試験後の質量測定値から試験前の質量測定値を引いた質量差を各鉛蓄電池の減水量とし、No.1-19の鉛蓄電池の減水量を100とした各鉛蓄電池の減水量の相対値を算出した。
In addition, every time the number of repetitions becomes 480 times, it is left in a water tank for 60 to 72 hours after charging, and it is judged discharge at 440 A (discharge for checking that the end-of-discharge voltage after 30 seconds is 7.2 V or more). However, water was not replenished.
For each lead-acid battery, the mass difference obtained by subtracting the mass measurement value before the test from the mass measurement value after the test is defined as the water reduction amount of each lead-acid battery, and the water reduction amount of the No. 1-19 lead-acid battery is 100. The relative value of the amount of water reduction was calculated.

[PSOC寿命試験]
各鉛蓄電池について、「SBA S 0101(2014年版)」のアイドリングストップ寿命試験を実施した。
具体的には、各鉛蓄電池を25℃±2℃に制御された環境(気相空間)に置き、電池近傍の風速を2.0m/s以下として、下記の条件で放電と充電を繰り返した。
放電条件:54.9A±1Aで59.0秒±0.2秒の放電の後、300A±1Aで1.0秒±0.2秒の放電
充電条件:14.00V±0.03V(制限電流100.0A±0.5A)で60.0秒±0.3秒の充電
[PSOC life test]
An idling stop life test of "SBA S 0101 (2014 version)" was carried out for each lead-acid battery.
Specifically, each lead-acid battery was placed in an environment (gas phase space) controlled at 25 ° C ± 2 ° C, the wind speed in the vicinity of the battery was set to 2.0 m / s or less, and discharging and charging were repeated under the following conditions. ..
Discharge condition: 54.9A ± 1A for 59.0 seconds ± 0.2 seconds, then 300A ± 1A for 1.0 seconds ± 0.2 seconds Discharge Condition: 14.00V ± 0.03V (Limited) Charging for 60.0 seconds ± 0.3 seconds with a current of 100.0 A ± 0.5 A)

なお、繰り返し回数が3600回となる毎に、充電後に40〜48時間放置してから放電と充電の繰り返しを再開した。また、300A±1Aで1.0秒±0.2秒の放電後の電圧が7.2V未満となった時点で試験を終了し、それまでの時間を寿命とした。また、繰り返し回数が30000回となるまで、水の補給は行わなかった。
これらの測定および試験結果を、各サンプルの電解液の構成とともに、下記の表1〜表3に示す。寿命は、No.1-19の鉛蓄電池の値を100とした相対値を示す。
Every time the number of repetitions reached 3600, the battery was left for 40 to 48 hours after charging, and then the repetition of discharging and charging was restarted. Further, the test was terminated when the voltage after discharging at 300 A ± 1 A for 1.0 second ± 0.2 seconds became less than 7.2 V, and the time up to that point was taken as the life. In addition, water was not replenished until the number of repetitions reached 30,000.
These measurements and test results are shown in Tables 1 to 3 below, along with the composition of the electrolyte for each sample. The life is a relative value with the value of the lead storage battery of No. 1-19 as 100.

Figure 2021111445
Figure 2021111445

Figure 2021111445
Figure 2021111445

Figure 2021111445
Figure 2021111445

表1および表2に示すように、本発明の一態様の構成要件である「正極合剤の密度が4.3g/cm3以上であること」、「電解液は、アルミニウムイオンおよびリチウムイオンの少なくとも一方を含み、アルミニウムイオンおよびリチウムイオンの合計濃度が0.01mol/L以上0.30mol/L以下であること」、および「高分子界面活性剤を含み、高分子界面活性剤の濃度が0.002質量%以上であること」の全てを満たす鉛蓄電池(表に「実施例」と記載されているもの)は、デンドライトショート割合が6と少なく、減水量(相対値)が106以下と少なく、寿命(相対値)が98以上と長くなっている。 As shown in Tables 1 and 2, the constituent requirements of one aspect of the present invention are "the density of the positive electrode mixture is 4.3 g / cm 3 or more" and "the electrolyte is aluminum ion and lithium ion. It contains at least one and the total concentration of aluminum ions and lithium ions is 0.01 mol / L or more and 0.30 mol / L or less. ”And“ It contains a polymer surfactant and the concentration of the polymer surfactant is 0. Lead-acid batteries that satisfy all of ".002 mass% or more" (listed as "Examples" in the table) have a low dendrite short-circuit ratio of 6 and a low water reduction (relative value) of 106 or less. , The life (relative value) is as long as 98 or more.

これに対して、上記三つの構成要件の少なくともいずれかを満たさない鉛蓄電池(表に「比較例」と記載されているもの)は、合格と判定される「デンドライトショート割合が6以下」、「減水量(相対値)が110以下」、および「寿命(相対値)が98以上」のいずれかを満たさない。
また、上記三つの構成要件の全てを満たす鉛蓄電池のうち、正極合剤の密度のみが異なるNo.1-19およびNo.1-37の鉛蓄電池を比較すると、密度が4.5g/cm3であるNo.1-37の鉛蓄電池は、密度が4.3g/cm3であるNo.1-19の鉛蓄電池よりも寿命が長くなっている。
On the other hand, lead-acid batteries that do not meet at least one of the above three constituent requirements (those described as "comparative examples" in the table) are judged to pass "dendrite short ratio of 6 or less" and " It does not satisfy either "the amount of water reduction (relative value) is 110 or less" or "the life (relative value) is 98 or more".
In addition, among the lead-acid batteries that satisfy all of the above three constituent requirements, the lead-acid batteries of No. 1-19 and No. 1-37, which differ only in the density of the positive electrode mixture, have a density of 4.5 g / cm 3 The lead-acid battery of No. 1-37 has a longer life than the lead-acid battery of No. 1-19 having a density of 4.3 g / cm 3.

さらに、表3に示すように、上記三つの構成要件に加えて、「電解液のナトリウムイオン濃度が50ppm以上10000ppmであること」を満たす鉛蓄電池(表に「好適例」と記載されているもの)は、デンドライトショート割合が0であり、減水量(相対値)は102以下と少なく、寿命(相対値)は100以上となっている。
なお、No.1-19の鉛蓄電池は、電解液に硫酸ナトリウムを添加しない(よって、ナトリウムイオン濃度は10ppm程度である)以外はNo.2-1〜No.2-6と同じ構成の鉛蓄電池であるが、そのデンドライトショート割合は、電解液のナトリウムイオン濃度が40ppmであるNo.2-1の鉛蓄電池と同じ値(6%)となっている。また、電解液のナトリウムイオン濃度が11000ppmであると、10000ppm以下である場合よりもPSOC寿命が少し低下している。よって、電解液にナトリウムイオンを含む場合、ナトリウムイオン濃度は50ppm以上10000ppm以下の範囲が好ましいことが分かる。
Further, as shown in Table 3, in addition to the above three constituent requirements, a lead-acid battery satisfying "the sodium ion concentration of the electrolytic solution is 50 ppm or more and 10000 ppm" (listed as "preferable example" in the table). ), The dendrite short-circuit ratio is 0, the amount of water reduction (relative value) is as small as 102 or less, and the life (relative value) is 100 or more.
The lead-acid battery of No. 1-19 has the same composition as No. 2-1 to No. 2-6 except that sodium sulfate is not added to the electrolytic solution (therefore, the sodium ion concentration is about 10 ppm). Although it is a storage battery, its dendrite short-circuit ratio is the same value (6%) as that of the No. 2-1 lead-acid battery in which the sodium ion concentration of the electrolytic solution is 40 ppm. Further, when the sodium ion concentration of the electrolytic solution is 11000 ppm, the PSOC life is slightly shorter than when it is 10,000 ppm or less. Therefore, when the electrolytic solution contains sodium ions, it can be seen that the sodium ion concentration is preferably in the range of 50 ppm or more and 10000 ppm or less.

Claims (3)

セル室と、前記セル室に電解液と共に収納された極板群と、を備え、前記極板群は、交互に配置された負極板および正極板と、前記負極板と前記正極板との間に配置されたセパレータと、からなる積層体を有する鉛蓄電池であって、
前記正極板は、集電体と、前記集電体の格子状基板に保持された正極合剤と、からなり、
前記正極合剤の密度が4.3g/cm3以上であり、
前記電解液は、アルミニウムイオンおよびリチウムイオンの少なくとも一方と、高分子界面活性剤と、を含み、アルミニウムイオンおよびリチウムイオンの合計濃度が0.01mol/L以上0.30mol/L以下であり、高分子界面活性剤の濃度が0.002質量%以上である鉛蓄電池。
A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is between the negative electrode plates and the positive electrode plates arranged alternately, and between the negative electrode plate and the positive electrode plate. A lead-acid battery having a laminate composed of a separator arranged in
The positive electrode plate is composed of a current collector and a positive electrode mixture held on a grid-like substrate of the current collector.
The density of the positive electrode mixture is 4.3 g / cm 3 or more, and
The electrolytic solution contains at least one of aluminum ions and lithium ions and a polymer surfactant, and the total concentration of aluminum ions and lithium ions is 0.01 mol / L or more and 0.30 mol / L or less, which is high. A lead-acid battery having a concentration of a molecular surfactant of 0.002% by mass or more.
前記電解液のナトリウムイオン濃度が50ppm以上10000ppm以下である請求項1記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the sodium ion concentration of the electrolytic solution is 50 ppm or more and 10000 ppm or less. 前記高分子界面活性剤はリグニンスルホン酸塩である請求項1または2記載の鉛蓄電池。 The lead-acid battery according to claim 1 or 2, wherein the polymer surfactant is a lignin sulfonate.
JP2020000382A 2020-01-06 2020-01-06 lead acid battery Active JP7128482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000382A JP7128482B2 (en) 2020-01-06 2020-01-06 lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020000382A JP7128482B2 (en) 2020-01-06 2020-01-06 lead acid battery

Publications (2)

Publication Number Publication Date
JP2021111445A true JP2021111445A (en) 2021-08-02
JP7128482B2 JP7128482B2 (en) 2022-08-31

Family

ID=77060067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000382A Active JP7128482B2 (en) 2020-01-06 2020-01-06 lead acid battery

Country Status (1)

Country Link
JP (1) JP7128482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991190A (en) * 2021-09-07 2022-01-28 江苏海宝电池科技有限公司 Colloid electrolyte for power battery and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236967A (en) * 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH06196200A (en) * 1992-12-24 1994-07-15 Toyo Riken Kk Function recovering method and function recovering liquid for lead-acid battery
JPH0878045A (en) * 1994-09-07 1996-03-22 Shin Kobe Electric Mach Co Ltd Lead acid storage battery
JP2001250589A (en) * 2000-03-08 2001-09-14 Matsushita Electric Ind Co Ltd Charging method of sealed lead storage battery
JP2007059277A (en) * 2005-08-25 2007-03-08 Furukawa Battery Co Ltd:The Method of manufacturing lead-acid storage battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
JP2013134957A (en) * 2011-12-27 2013-07-08 Gs Yuasa Corp Method for manufacturing lead-acid battery, and lead-acid battery
JP2016115396A (en) * 2013-04-05 2016-06-23 パナソニック株式会社 Lead power storage battery
JP2017016970A (en) * 2015-07-06 2017-01-19 日立化成株式会社 Lead storage battery
WO2019087686A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236967A (en) * 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH06196200A (en) * 1992-12-24 1994-07-15 Toyo Riken Kk Function recovering method and function recovering liquid for lead-acid battery
JPH0878045A (en) * 1994-09-07 1996-03-22 Shin Kobe Electric Mach Co Ltd Lead acid storage battery
JP2001250589A (en) * 2000-03-08 2001-09-14 Matsushita Electric Ind Co Ltd Charging method of sealed lead storage battery
JP2007059277A (en) * 2005-08-25 2007-03-08 Furukawa Battery Co Ltd:The Method of manufacturing lead-acid storage battery
JP2007066558A (en) * 2005-08-29 2007-03-15 Furukawa Battery Co Ltd:The Lead-acid battery
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
JP2013134957A (en) * 2011-12-27 2013-07-08 Gs Yuasa Corp Method for manufacturing lead-acid battery, and lead-acid battery
JP2016115396A (en) * 2013-04-05 2016-06-23 パナソニック株式会社 Lead power storage battery
JP2017016970A (en) * 2015-07-06 2017-01-19 日立化成株式会社 Lead storage battery
WO2019087686A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991190A (en) * 2021-09-07 2022-01-28 江苏海宝电池科技有限公司 Colloid electrolyte for power battery and preparation method thereof

Also Published As

Publication number Publication date
JP7128482B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
JP5857962B2 (en) Lead acid battery
EP2544292A1 (en) Lead storage battery
EP3635805B1 (en) Lead-acid battery
JP6977770B2 (en) Liquid lead-acid battery
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP4053272B2 (en) Negative electrode for lead acid battery
JP2008243493A (en) Lead acid storage battery
JP6164266B2 (en) Lead acid battery
WO2013114822A1 (en) Lead-acid battery
JP6525167B2 (en) Lead storage battery
JP7128482B2 (en) lead acid battery
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP2011070870A (en) Lead-acid battery
JP2004014283A (en) Valve regulated lead battery
JP2016162612A (en) Control valve type lead storage battery
JP6730406B2 (en) Lead acid battery
JP7212649B2 (en) Lead-acid battery and manufacturing method thereof
JP6734456B1 (en) Lead acid battery
JP7049739B2 (en) Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2023154163A (en) lead acid battery
JP2005268061A (en) Lead storage cell
JP4742424B2 (en) Control valve type lead acid battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7128482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150