JP2016115396A - Lead power storage battery - Google Patents

Lead power storage battery Download PDF

Info

Publication number
JP2016115396A
JP2016115396A JP2013079229A JP2013079229A JP2016115396A JP 2016115396 A JP2016115396 A JP 2016115396A JP 2013079229 A JP2013079229 A JP 2013079229A JP 2013079229 A JP2013079229 A JP 2013079229A JP 2016115396 A JP2016115396 A JP 2016115396A
Authority
JP
Japan
Prior art keywords
lead
negative electrode
storage battery
electrode plate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013079229A
Other languages
Japanese (ja)
Inventor
悦子 小笠原
Etsuko Ogasawara
悦子 小笠原
岬 原田
Misaki Harada
岬 原田
杉江 一宏
Kazuhiro Sugie
一宏 杉江
健治 泉
Kenji Izumi
健治 泉
下田 一彦
Kazuhiko Shimoda
一彦 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013079229A priority Critical patent/JP2016115396A/en
Priority to PCT/JP2014/001548 priority patent/WO2014162674A1/en
Publication of JP2016115396A publication Critical patent/JP2016115396A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead storage battery that is applicable to an idling stop vehicle used in a "bit riding" mode and has both of sufficient charging acceptability and charge recoverability after overdischarge.SOLUTION: A lead power storage battery has an electrode plate group in which plural positive electrode plates and negative electrode plates are stacked through separators, and which is mounted in a cell chamber together with electrolytic liquid. The negative electrode plate has an electrode grid formed of lead or lead alloy which contains no antimony, a surface layer formed of lead alloy containing antimony which is formed on the surface of the negative electrode grid, and a negative electrode active material filled in the negative electrode grid. The electrolytic liquid contains aluminum ions ranging from 0.03 to 0.27 mol/L, and sodium ions ranging from 0.03 to 0.28 mol/L.SELECTED DRAWING: Figure 2

Description

本発明は、アイドリングストップ車に使用される鉛蓄電池に関する。   The present invention relates to a lead storage battery used in an idling stop vehicle.

アイドリングストップ車は、停車中にエンジンを停止することで燃費を向上することができる。しかしながら、鉛蓄電池は、アイドリングストップ中に、エアコンやファンなどの全ての電力を供給するため、鉛蓄電池は充電不足になりやすい。そのため、鉛蓄電池は、充電不足を解消するために、短時間でより多くの充電ができる、高い充電受入性が要求される。また、アイドリングストップ車は、頻繁にエンジンのオン・オフを繰り返すため、放電によって生成された硫酸鉛を、充電によって二酸化鉛と鉛とに回復する間もなく、次の放電が行われるため、鉛蓄電池の寿命が低下しやすくなる。そのため、鉛蓄電池は、寿命の低下を解消するために、高い耐久性も併せ要求される。   The idling stop vehicle can improve fuel consumption by stopping the engine while the vehicle is stopped. However, since the lead storage battery supplies all electric power such as an air conditioner and a fan during idling stop, the lead storage battery tends to be insufficiently charged. Therefore, the lead storage battery is required to have a high charge acceptability that can be charged more in a short time in order to solve the shortage of charging. In addition, since idling stop vehicles frequently turn the engine on and off repeatedly, the lead discharge produced immediately after the lead sulfate generated by discharge is restored to lead dioxide and lead by charging. Life is likely to decrease. Therefore, the lead storage battery is also required to have high durability in order to eliminate the decrease in life.

鉛蓄電池の充電受入性を向上させるために、特許文献1には、電解液にアルミニウムイオンを含有させた鉛蓄電池が記載されている。アルミニウムイオンは、放電時に、正極及び負極に生成される硫酸鉛の結晶の粗大化を抑制する効果を有し、これにより、鉛蓄電池の充電受入性能を向上させることができる。   In order to improve the charge acceptability of the lead storage battery, Patent Document 1 describes a lead storage battery in which aluminum ions are contained in an electrolytic solution. Aluminum ions have the effect of suppressing the coarsening of the lead sulfate crystals produced at the positive and negative electrodes during discharge, thereby improving the charge acceptance performance of the lead storage battery.

また、鉛蓄電池の耐久性を向上させるために、特許文献2には、アンチモンを含まない負極格子の表面に、アンチモンを含む鉛合金層を設けた鉛蓄電池が記載されている。アンチモンを含む鉛合金層は、負極板を効率的に充電回復させる効果を有し、これにより、鉛蓄電池の耐久性を向上させることができる。   Further, in order to improve the durability of the lead storage battery, Patent Document 2 describes a lead storage battery in which a lead alloy layer containing antimony is provided on the surface of a negative electrode lattice not containing antimony. The lead alloy layer containing antimony has an effect of efficiently charging and recovering the negative electrode plate, and thereby the durability of the lead storage battery can be improved.

また、特許文献3には、電解液にNa2SO4などのアルカリ金属の硫酸塩を添加することによって、過放電時に硫酸濃度の低下に伴う鉛イオンの生成を抑制し、充電時に負極上にPbSO4が成長することによって、正極と負極間に短絡が発生するのを防止する技術が記載されている。また、電解液に添加されたNa2SO4は、過放電時に硫酸濃度の低下に伴う電解液の導電度の低下を抑制し、過放電後の充電回復性を向上させる効果も有する。 Patent Document 3 discloses that by adding an alkali metal sulfate such as Na 2 SO 4 to the electrolytic solution, generation of lead ions accompanying a decrease in sulfuric acid concentration during overdischarge is suppressed, and on the negative electrode during charging. A technique for preventing a short circuit from occurring between the positive electrode and the negative electrode due to the growth of PbSO 4 is described. In addition, Na 2 SO 4 added to the electrolytic solution has an effect of suppressing a decrease in conductivity of the electrolytic solution accompanying a decrease in sulfuric acid concentration during overdischarge and improving charge recovery after overdischarge.

特開2006−4636号公報JP 2006-4636 A 特開2006−156371号公報JP 2006-156371 A 特開平1−267965号公報JP-A-1-267965

アイドリングストップ車に使用される鉛蓄電池は、充電不足になりやすい。そのため、鉛蓄電池の過放電を防止する目的で、アイドリングストップ車には、充電状態(SOC)が所定値(例えば60%)以下になると鉛蓄電池を放電させないフェールセーフ機構が設けられている場合がある。   Lead-acid batteries used in idling stop vehicles tend to be undercharged. Therefore, for the purpose of preventing overdischarge of the lead storage battery, the idling stop vehicle may be provided with a fail-safe mechanism that does not discharge the lead storage battery when the state of charge (SOC) becomes a predetermined value (for example, 60%) or less. is there.

図1は、アイドリングストップ車において、鉛蓄電池の放電と充電を繰り返したときの充電状態(SOC)を模式的に示したグラフである。図1に示した折れ線グラフは、車が停止中に鉛蓄電池が放電されて、SOCが低下し、再び、車が走行して鉛蓄電池が充電されて、SOCが回復され、これが繰り返されるパターンを示したものである。   FIG. 1 is a graph schematically showing a state of charge (SOC) when a lead-acid battery is repeatedly discharged and charged in an idling stop vehicle. The line graph shown in FIG. 1 shows a pattern in which the lead storage battery is discharged while the vehicle is stopped, the SOC decreases, the vehicle travels again, the lead storage battery is charged, the SOC is recovered, and this is repeated. It is shown.

鉛蓄電池の充電受入性が高ければ、車の走行中に、鉛蓄電池はSOCが約100%まで回復するため、図1中の折れ線グラフAに示すように、アイドリングストップ車を長く走行させても、鉛蓄電池の充放電を繰り返すことができる。   If the lead-acid battery has a high charge acceptance, the lead-acid battery recovers to about 100% while the car is running. Therefore, even if the idling stop car is run for a long time as shown in the line graph A in FIG. The charge / discharge of the lead storage battery can be repeated.

しかしながら、鉛蓄電池の充電受入性が高くないと、図1中の折れ線グラフBに示すように、走行中に充電が十分にできず、SOCが100%まで回復しない状態で、車が停止すると、放電によるSOCの低下が大きくなる。このような充放電が繰り返されると、SOCが徐々に下がり続けることになる。この場合、アイドリングストップ車にフェールセーフ機構が設けられていると、SOCが所定値(例えば60%)以下になった時点で、フェールセーフ機構が働き、放電がストップする事態が生じる。   However, if the rechargeability of the lead storage battery is not high, as shown in the line graph B in FIG. 1, when the car stops in a state where the charging cannot be sufficiently performed during traveling and the SOC does not recover to 100%, Decrease in SOC due to discharge increases. When such charging / discharging is repeated, the SOC gradually decreases. In this case, when the fail-safe mechanism is provided in the idling stop vehicle, the fail-safe mechanism is activated and the discharge is stopped when the SOC becomes a predetermined value (for example, 60%) or less.

特に、1回の走行距離が短い車の乗り方(以下、「チョイ乗り」という)をする場合、走行中の充電が十分にできず、SOCが100%まで回復しないため、フェールセーフ機構が頻繁に作動する事態を招く。さらに、週末しか「チョイ乗り」をしないような場合には、停車中の自己放電や暗電流によるSOCの低下がさらに進むため、フェールセーフ機構が作動する事態がより顕著になる。   In particular, when driving a car with a short mileage (hereinafter referred to as “choy ride”), the fail-safe mechanism is frequently used because the SOC cannot be fully charged and the SOC does not recover to 100%. Invite the situation to operate. Furthermore, when “choy ride” is performed only on weekends, the state of operation of the fail-safe mechanism becomes more conspicuous because the SOC is further lowered due to self-discharge and dark current while the vehicle is stopped.

一方で、図1に示すような「チョイ乗り」モードで使用した鉛蓄電池は、徐々にSOCが低下して過放電しやすくなる。過放電後に鉛蓄電池を回復させても、再び「チョイ乗り」モードで使用すれば、SOCの低下による過放電が起こる。この「チョイ乗り」と過放電の繰り返し回数は、できるだけ少ないことが好ましいが、従来、このような「チョイ乗り」モードで使用するアイドリングストップ車にも適用しうる、十分な充電受入性と過放電後の充電回復性とを併せ持った鉛蓄電池はなかった。   On the other hand, the lead storage battery used in the “choi riding” mode as shown in FIG. Even if the lead-acid battery is recovered after overdischarge, if it is used again in the “choi riding” mode, overdischarge due to a decrease in SOC occurs. It is preferable that the number of repetitions of “choi riding” and overdischarge is as small as possible, but sufficient charge acceptance and overdischarge that can be applied to idling stop vehicles used in such “choi riding” mode in the past. There was no lead-acid battery that had both later charge recovery properties.

本発明は、かかる課題に鑑みなされたもので、その主な目的は、「チョイ乗り」モードで使用するアイドリングストップ車に適用しうる、十分な充電受入性と過放電後の充電回復性とを併せ持った鉛蓄電池を提供することにある。   The present invention has been made in view of such problems, and its main purpose is to provide sufficient charge acceptance and charge recovery after overdischarge that can be applied to an idling stop vehicle used in the “choi ride” mode. The purpose is to provide a lead-acid storage battery.

本発明に係る鉛蓄電池は、複数の正極板及び負極板がセパレータを介して積層された極板群が、電解液と共にセル室に収容された鉛蓄電池であって、正極板は、アンチモンを含有しない鉛または鉛合金からなる正極格子と、正極格子に充填された正極活物質とを備え、負極板は、アンチモンを含有しない鉛または鉛合金からなる負極格子と、負極格子の表面に形成されたアンチモンを含有する鉛合金からなる表面層と、負極格子に充填された負極活物質とを備え、電解液は、0.03〜0.27mol/Lの範囲のアルミニウムイオンと、0.03〜0.28mol/Lの範囲のナトリウムイオンとを含有していることを特徴とする。   A lead storage battery according to the present invention is a lead storage battery in which a group of electrode plates in which a plurality of positive and negative electrode plates are laminated via a separator is housed in a cell chamber together with an electrolyte, and the positive electrode plate contains antimony A negative electrode plate made of lead or a lead alloy not containing antimony, and a positive electrode lattice made of lead or a lead alloy, and a positive electrode active material filled in the positive electrode lattice; A surface layer made of a lead alloy containing antimony and a negative electrode active material filled in a negative electrode lattice, and an electrolytic solution containing aluminum ions in a range of 0.03 to 0.27 mol / L, 0.03 to 0 It is characterized by containing sodium ions in a range of .28 mol / L.

ある好適な実施形態において、極板群の両側には、袋状の前記セパレータに収容された負極板が配置されている。   In a preferred embodiment, negative electrode plates accommodated in the bag-shaped separator are arranged on both sides of the electrode plate group.

本発明によれば、「チョイ乗り」モードで使用するアイドリングストップ車に適用しうる、十分な充電受入性と過放電後の充電回復性とを併せ持った鉛蓄電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lead storage battery which has sufficient charge acceptance property and charge recovery property after overdischarge which can be applied to the idling stop vehicle used in "choi riding" mode can be provided.

アイドリングストップ車における鉛蓄電池の放電と充電を繰り返したときの充電状態(SOC)を模式的に示したグラフA graph schematically showing the state of charge (SOC) when the lead-acid battery is repeatedly discharged and charged in an idling stop vehicle. 本発明の一実施形態における鉛蓄電池の構成を模式的に示した概観図1 is an overview diagram schematically showing the configuration of a lead storage battery according to an embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention. Furthermore, combinations with other embodiments are possible.

図2は、本発明の一実施形態における鉛蓄電池1の構成を模式的に示した概観図である。   FIG. 2 is an overview diagram schematically showing the configuration of the lead storage battery 1 in one embodiment of the present invention.

図2に示すように、鉛蓄電池1は、複数の正極板2及び負極板3がセパレータ4を介して積層された極板群5が、電解液と共にセル室6に収容されている。   As shown in FIG. 2, in the lead storage battery 1, an electrode plate group 5 in which a plurality of positive electrode plates 2 and a negative electrode plate 3 are stacked via a separator 4 is accommodated in a cell chamber 6 together with an electrolytic solution.

ここで、正極板2は、正極格子と、正極格子に充填された正極活物質とを備え、負極板3は、負極格子と、負極格子に充填された負極活物質とを備えている。なお、本実施形態における正極格子及び負極格子は、共に、アンチモン(Sb)を含有しない鉛または鉛合金からなり、例えば、Pb−Ca合金、Pb−Sn合金、Pb−Sn−Ca合金からなる。   Here, the positive electrode plate 2 includes a positive electrode lattice and a positive electrode active material filled in the positive electrode lattice, and the negative electrode plate 3 includes a negative electrode lattice and a negative electrode active material filled in the negative electrode lattice. Note that the positive electrode lattice and the negative electrode lattice in this embodiment are both made of lead or a lead alloy containing no antimony (Sb), for example, a Pb—Ca alloy, a Pb—Sn alloy, or a Pb—Sn—Ca alloy.

複数の正極板2は、正極格子の耳部9同士が正極ストラップ7によって、互いに並列接続されており、複数の負極板3は、負極格子の耳部10同士が負極ストラップ8によって、互いに並列接続されている。さらに、各セル室6内に収容された複数の極板群5は、接続体11によって直列接続されている。両端のセル室6における正極ストラップ7及び負極ストラップ8には、それぞれ極柱(不図示)が溶接されており、各極柱は、蓋14に配設された正極端子12及び負極端子13に、それぞれ溶接されている。   The plurality of positive electrode plates 2 are connected in parallel with each other by the positive electrode straps 7 between the positive electrode lattice ears 9, and the plurality of negative electrode plates 3 are connected in parallel with each other through the negative electrode lattice ears 10 between the negative electrode straps 8. Has been. Further, the plurality of electrode plate groups 5 accommodated in each cell chamber 6 are connected in series by a connection body 11. Polar columns (not shown) are welded to the positive strap 7 and the negative strap 8 in the cell chambers 6 at both ends, respectively, and the respective polar columns are connected to the positive terminal 12 and the negative terminal 13 disposed on the lid 14. Each is welded.

本実施形態において、負極格子の表面には、アンチモンを含有する鉛合金からなる表面層(不図示)が形成されている。アンチモンを含む鉛合金は、水素過電圧を下げる効果を有し、これにより、鉛蓄電池1の充電受入性を向上させることができる。なお、表面層は、アンチモンの含有量が、1.0〜5.0質量%のPb−Sb系合金からなることが好ましい。   In the present embodiment, a surface layer (not shown) made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice. The lead alloy containing antimony has an effect of lowering the hydrogen overvoltage, whereby the charge acceptability of the lead storage battery 1 can be improved. In addition, it is preferable that a surface layer consists of a Pb-Sb type | system | group alloy whose content of antimony is 1.0-5.0 mass%.

また、本実施形態において、電解液は、0.03〜0.27mol/Lの範囲のアルミニウムイオンと、0.03〜0.28mol/Lの範囲のナトリウムイオンとを含有している。電解液中のアルミニウムイオンは、「チョイ乗り」モードでの僅かな充電時間にも対応できるように、充電受入性を向上させる効果を有する。一方で電解液中のナトリムイオンは、過放電後の充電回復性を向上させる効果を有する。これらにより、「チョイ乗り」モードの僅かな充電時間にSOCを押し上げやすくなる上に、過放電後に回復した鉛蓄電池が再び「チョイ乗り」モードで使用されて充放電が繰り返されても、放電によるSOCの低下を抑制できるため、フェールセーフ機構の作動を抑制することができる。なおアルミニウムイオンを過剰に添加するとナトリウムイオンの効果を相殺させることになり、ナトリウムイオンを過剰に添加するとアルミニウムイオンの効果を相殺させることになる。したがって電解液に含有させるアルミニウムイオンは0.03〜0.27mol/Lの範囲となり、ナトリウムイオンは0.03〜0.28mol/Lの範囲となる。   Moreover, in this embodiment, electrolyte solution contains the aluminum ion of the range of 0.03-0.27 mol / L, and the sodium ion of the range of 0.03-0.28 mol / L. The aluminum ions in the electrolytic solution have an effect of improving charge acceptance so as to be able to cope with a short charging time in the “choi riding” mode. On the other hand, sodium ions in the electrolyte have an effect of improving charge recovery after overdischarge. As a result, it is easy to push up the SOC during a short charging time in the “choi riding” mode, and even if the lead storage battery recovered after overdischarge is used again in the “choi riding” mode and is repeatedly charged and discharged, Since the decrease in SOC can be suppressed, the operation of the fail-safe mechanism can be suppressed. If an excessive amount of aluminum ions is added, the effect of sodium ions is offset, and if an excessive amount of sodium ions is added, the effect of aluminum ions is canceled. Therefore, the aluminum ions contained in the electrolytic solution are in the range of 0.03 to 0.27 mol / L, and the sodium ions are in the range of 0.03 to 0.28 mol / L.

さらに、本実施形態において、負極板3は、好ましくは極板群5の両側に配置されており、かつ、負極板3は、袋状のセパレータ4に収容されている。これにより、極板群5の両側に配置された負極板3にも、電解液が回り込むことができるため、鉛蓄電池1の充電受入性がさらに向上し、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより効果的に抑制することができる。   Further, in the present embodiment, the negative electrode plate 3 is preferably disposed on both sides of the electrode plate group 5, and the negative electrode plate 3 is accommodated in a bag-like separator 4. As a result, the electrolyte solution can also flow into the negative electrode plates 3 arranged on both sides of the electrode plate group 5, so that the charge acceptance of the lead storage battery 1 is further improved, and the idling stop used in the “choi riding” mode. Even when applied to a vehicle, the operation of the fail-safe mechanism can be more effectively suppressed.

以下、本発明の実施例を挙げて、本発明の構成及び効果をさらに説明する。なお、本発明は、これら実施例に限定されるものではない。
(1)鉛蓄電池の作製
本実施例で作製した鉛蓄電池1は、JISD5301に規定するD23Lタイプの大きさの液式鉛蓄電池である。各セル室6には、7枚の正極板2と8枚の負極板3とが収容され、負極板3は、袋状のポリエチレン製のセパレータ4に収容されている。
Hereinafter, the structure and effect of the present invention will be further described with reference to examples of the present invention. The present invention is not limited to these examples.
(1) Production of lead acid battery The lead acid battery 1 produced in the present example is a liquid lead acid battery having a D23L type size defined in JIS D5301. Each cell chamber 6 accommodates seven positive electrode plates 2 and eight negative electrode plates 3, and the negative electrode plate 3 is accommodated in a bag-like polyethylene separator 4.

正極板2は、酸化鉛粉を硫酸と精製水とで混練してペーストを作製し、これをカルシウム系鉛合金の組成からなるエキスパンド格子に充填して作製した。   The positive electrode plate 2 was prepared by kneading lead oxide powder with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice made of a calcium-based lead alloy composition.

負極板3は、酸化鉛粉に対し、有機添加剤等を添加して、硫酸と精製水とで混練してペーストを作成し、これをカルシウム系鉛合金の組成からなるエキスパンド格子に充填して作製した。   The negative electrode plate 3 is prepared by adding an organic additive to lead oxide powder, kneading with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice composed of a calcium-based lead alloy composition. Produced.

作製した正極板2及び負極板3を熟成乾燥した後、負極板3をポリエチレンの袋状のセパレータ4に収容し、正極板2と交互に重ね、7枚の正極板2と8枚の負極板3とがセパレータ4を介して積層された極板群5を作製した。この極板群5を、6つに仕切られたセル室6にそれぞれ収容し、6つのセルを直接接続した鉛蓄電池1を作製した。   After the produced positive electrode plate 2 and negative electrode plate 3 are aged and dried, the negative electrode plate 3 is accommodated in a polyethylene bag-like separator 4 and is alternately stacked with the positive electrode plates 2 to form seven positive electrode plates 2 and eight negative electrode plates. An electrode plate group 5 in which 3 and 3 were laminated via a separator 4 was produced. Each of the electrode plate groups 5 was accommodated in a cell chamber 6 partitioned into six, and a lead storage battery 1 in which six cells were directly connected was produced.

この鉛蓄電池1に、密度が1.28g/cm3の希硫酸からなる電解液を入れ、電槽化成を行って、12V48Ahの鉛蓄電池1を得た。
(2)鉛蓄電池の評価
(2−1)「チョイ乗り」モードの特性評価
作製した鉛蓄電池1に対して、「チョイ乗り」モードを想定した充放電を繰り返して、鉛蓄電池の「チョイ乗り」モードの特性評価を行った。なお、環境温度は、25℃±2℃で行った。
(A)9.6Aにて2.5時間放電し24時間放置する。
(B)放電電流20Aで、40秒間放電する。
(C)14.2Vの充電電圧(制限電流50A)で、60秒間充電する。
(D)(B)、(C)の充放電を18回繰り返した後、放電電流20mAで、83.5時間放電する。
(E)(B)〜(D)の充放電を1サイクルとして、20サイクル繰り返す。
An electrolytic solution made of dilute sulfuric acid having a density of 1.28 g / cm 3 was put into the lead storage battery 1 and a battery case was formed to obtain a lead storage battery 1 of 12V48Ah.
(2) Evaluation of lead-acid battery (2-1) Characteristic evaluation of “cho-riding” mode The lead-acid battery 1 was repeatedly charged / discharged assuming the “cho-riding” mode, and the lead-acid battery “choy riding” The mode characteristics were evaluated. The ambient temperature was 25 ° C. ± 2 ° C.
(A) Discharge at 9.6 A for 2.5 hours and leave for 24 hours.
(B) Discharge at a discharge current of 20 A for 40 seconds.
(C) Charge for 60 seconds at a charge voltage of 14.2 V (limit current 50 A).
(D) Charge / discharge of (B) and (C) is repeated 18 times, and then discharged at a discharge current of 20 mA for 83.5 hours.
(E) Charging / discharging of (B) to (D) is set as one cycle, and 20 cycles are repeated.

上記の20サイクル後の鉛蓄電池の充電状態(SOC)を測定して、この値を、「チョイ乗り」モードの特性とした。
(2−2)過放電後の充電回復性
作製した鉛蓄電池1に対して、過放電後に回復した鉛蓄電池1が、再び「チョイ乗り」モードで使用される場合を想定して、充放電を繰り返したときの充電回復性を、以下の方法で評価した。
(A)5時間率電流(放電電流9.8A)で、10.5Vまで放電する。
(B)その後、10W相当の負荷を付けて、40℃±2℃の温度下で、14日間放電した後、開路状態で14日間放置する。
(C)その後、25℃±3℃の温度下で、15.0Vの充電電圧(制限電流25A)で、4時間充電する。
(D)その後、−15 ℃±1 ℃の大気中に16時間以上放置した後、300Aで、6.0 Vまで放電する。
The state of charge (SOC) of the lead-acid battery after the above 20 cycles was measured, and this value was taken as the “choy ride” mode characteristic.
(2-2) Charge recovery after overdischarge Assuming the case where the lead storage battery 1 recovered after overdischarge is used again in the “choi riding” mode with respect to the produced lead storage battery 1 The charge recovery property when repeated was evaluated by the following method.
(A) Discharge to 10.5 V with a 5-hour rate current (discharge current 9.8 A).
(B) Then, after applying a load corresponding to 10 W and discharging at a temperature of 40 ° C. ± 2 ° C. for 14 days, it is left in an open circuit state for 14 days.
(C) Thereafter, the battery is charged for 4 hours at a charging voltage of 15.0 V (limit current 25 A) at a temperature of 25 ° C. ± 3 ° C.
(D) Then, after leaving it in the atmosphere of −15 ° C. ± 1 ° C. for 16 hours or more, it is discharged to 6.0 V at 300 A.

鉛蓄電池の電圧が6.0Vに至るまでの持続時間を、過放電後の充電回復性として評価した。   The duration until the lead-acid battery voltage reached 6.0 V was evaluated as the charge recovery after overdischarge.

(実施例1)
負極格子の表面に、アンチモンを含有する鉛合金からなる表面層を形成するとともに、電解液に含有させるアルミニウムイオンを0.01〜0.30mol/L、ナトリウムイオンを0.01〜0.45mol/Lの範囲に変えた電池1〜7を作製し、各電池の「チョイ乗り」モードの特性、及び過放電後の充電回復性を評価した。なお、負極板は、極板群の両側に配置し、かつ、袋状のセパレータに収容した。
Example 1
A surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice, and 0.01 to 0.30 mol / L of aluminum ions and 0.01 to 0.45 mol / L of sodium ions contained in the electrolytic solution. Batteries 1 to 7 that were changed to the range of L were prepared, and the characteristics of the “choi riding” mode of each battery and the charge recovery after overdischarge were evaluated. The negative electrode plate was disposed on both sides of the electrode plate group and housed in a bag-shaped separator.

ここで、負極格子は、Pb−1.2Sn−0.1Caのエキスパンド格子からなり、表面層は、Pb−3質量%Sb箔からなる。また、正極格子は、Pb−1.6Sn−0.1Caのエキスパンド格子からなり、表面層は設けていない。   Here, the negative electrode lattice is composed of an expanded lattice of Pb-1.2Sn-0.1Ca, and the surface layer is composed of Pb-3 mass% Sb foil. Moreover, the positive electrode lattice is an expanded lattice of Pb-1.6Sn-0.1Ca, and no surface layer is provided.

(表1)は、各特性の評価結果を示した表である。なお、比較例として、負極格子の表面に表面層を設けていない電池8、及び、袋状のセパレータに負極板でなく正極板を収容した電池9を作製した。   (Table 1) is a table showing the evaluation results of each characteristic. As comparative examples, a battery 8 in which a surface layer was not provided on the surface of the negative electrode grid, and a battery 9 in which a positive electrode plate instead of the negative electrode plate was accommodated in a bag-shaped separator were produced.

Figure 2016115396
Figure 2016115396

(表1)に示すように、電解液に、0.03〜0.27mol/Lの範囲のアルミニウムイオンと、0.03〜0.28mol/Lの範囲のナトリウムイオンの双方を含有している電池2〜6では、「チョイ乗り」モード特性を示すSOCが78%以上であり、かつ、過放電の回復性を示す持続時間が2.9分以上で、どれも共に優れ、「チョイ乗り」モードでアイドリングストップ車を使用する場合に、好適な性能を有する。   As shown in (Table 1), the electrolytic solution contains both aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L. In the batteries 2 to 6, the SOC indicating “choy ride” mode characteristics is 78% or more, and the duration of 2.9 minutes or more indicating the overdischarge recoverability is excellent. When using an idling stop vehicle in the mode, it has suitable performance.

これに対して、電解液中のナトリウムイオンの含有量が0.01mol/Lの電池1では、過放電の回復性を示す持続時間が2.5分と短くなっている。これは、電解液中のナトリウムイオンが不足しているためと考えられる。一方で、電解液中のナトリウムイオンの含有量が0.45mol/Lの電池5では、「チョイ乗り」モード特性を示すSOCが75%とやや低くなっている。これは、電解液中のナトリウムイオンが充電反応を阻害しているためと考えられる。   On the other hand, in the battery 1 having a sodium ion content of 0.01 mol / L in the electrolytic solution, the duration of the overdischarge recoverability is as short as 2.5 minutes. This is thought to be due to the lack of sodium ions in the electrolyte. On the other hand, in the battery 5 having a sodium ion content of 0.45 mol / L in the electrolytic solution, the SOC showing the “choy ride” mode characteristic is slightly low at 75%. This is thought to be because sodium ions in the electrolytic solution inhibit the charging reaction.

また、電解液中のアルミニウムイオンの含有量が0.01mol/Lの電池6では、「チョイ乗り」モード特性を示すSOCが75%とやや低くなっている。これは、電解液中のアルミニウムイオンが不足しているためと考えられる。一方で、電解液中のナトリウムイオンの含有量が0.3mol/Lの電池9では、過放電の回復性を示す持続時間が2.5分と短くなっている。これは、電解液中のアルミニウムイオンが過放電後の充電回復性を阻害しているためと考えられる。   Further, in the battery 6 in which the content of aluminum ions in the electrolytic solution is 0.01 mol / L, the SOC showing the “choy ride” mode characteristic is slightly low as 75%. This is presumably because the aluminum ions in the electrolyte are insufficient. On the other hand, in the battery 9 in which the content of sodium ions in the electrolytic solution is 0.3 mol / L, the duration indicating the overdischarge recoverability is as short as 2.5 minutes. This is considered because the aluminum ion in electrolyte solution has inhibited the charge recovery property after overdischarge.

一方、負極格子に表面層を設けていない電池11では、「チョイ乗り」モード特性を示すSOCが75%と非常に低くなっている。これは、負極格子の表面に、Sbを含む鉛合金箔が設けられていないため、水素過電圧が下がらず、充電受入性が低かったためと考えられる。   On the other hand, in the battery 11 in which the surface layer is not provided on the negative electrode lattice, the SOC showing the “choy ride” mode characteristic is very low as 75%. This is presumably because the lead alloy foil containing Sb was not provided on the surface of the negative electrode lattice, so that the hydrogen overvoltage was not lowered and the charge acceptance was low.

また、袋状のセパレータに正極板を収容した電池11もまた、「チョイ乗り」モード特性を示すSOCが75%と低かった。これは、極板群の両側に配置された負極板が袋状のセパレータに収容されていないため、負極板がセル室の内壁に押しつけられ、その結果、セル室側の負極板への電解液の回り込みが不足したため、充電受入性が低下したためと考えられる。   In addition, the battery 11 in which the positive electrode plate was housed in the bag-shaped separator also had a low SOC of 75%, which exhibited “choy ride” mode characteristics. This is because the negative electrode plates arranged on both sides of the electrode plate group are not accommodated in the bag-shaped separator, so the negative electrode plate is pressed against the inner wall of the cell chamber, and as a result, the electrolyte solution to the negative electrode plate on the cell chamber side This is thought to be due to a decrease in charge acceptance due to insufficient wraparound.

以上の結果から、アンチモンを含有しない負極格子の表面に、アンチモンを含有する鉛合金からなる表面層を形成するとともに、極板群の両側に、袋状のセパレータに収容された負極板を配置し、さらに電解液に、0.03〜0.27mol/Lの範囲のアルミニウムイオンと、0.03〜0.28mol/Lの範囲のナトリウムイオンの双方を含有させることによって、フェールセーフ機構の作動を抑制した、過放電後の充電回復性まで含めて「チョイ乗り」モードで使用するアイドリングストップ車に適合した鉛蓄電池を提供することができる。   From the above results, a surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice containing no antimony, and negative electrode plates contained in a bag-like separator are arranged on both sides of the electrode plate group. Further, by allowing the electrolyte to contain both aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L, the operation of the fail-safe mechanism can be improved. It is possible to provide a lead-acid battery suitable for an idling stop vehicle that is used in the “choi riding” mode, including suppressed charge recovery after overdischarge.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

本発明は、アイドリングストップ車に使用される鉛蓄電池に有用である。   The present invention is useful for a lead storage battery used in an idling stop vehicle.

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 極板群
6 セル室
7 正極ストラップ
8 負極ストラップ
9、10 耳部
11 接続体
12 正極端子
13 負極端子
14 蓋
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Electrode plate group 6 Cell chamber 7 Positive electrode strap 8 Negative electrode strap 9, 10 Ear part 11 Connection body 12 Positive electrode terminal 13 Negative electrode terminal 14 Cover

Claims (2)

複数の正極板及び負極板がセパレータを介して積層された極板群が、電解液と共にセル室に収容された鉛蓄電池であって、
前記正極板は、アンチモンを含有しない鉛または鉛合金からなる正極格子と、該正極格子に充填された正極活物質とを備え、
前記負極板は、アンチモンを含有しない鉛または鉛合金からなる負極格子と、該負極格子の表面に形成されたアンチモンを含有する鉛合金からなる表面層と、前記負極格子に充填された負極活物質とを備え、
前記電解液は、0.03〜0.27mol/Lの範囲のアルミニウムイオンと、0.03〜0.28mol/Lの範囲のナトリウムイオンとを含有している鉛蓄電池。
An electrode plate group in which a plurality of positive electrode plates and negative electrode plates are laminated via a separator is a lead storage battery housed in a cell chamber together with an electrolyte solution,
The positive electrode plate includes a positive electrode lattice made of lead or a lead alloy containing no antimony, and a positive electrode active material filled in the positive electrode lattice,
The negative electrode plate includes a negative electrode lattice made of lead or a lead alloy not containing antimony, a surface layer made of a lead alloy containing antimony formed on the surface of the negative electrode lattice, and a negative electrode active material filled in the negative electrode lattice And
The said electrolyte solution is a lead acid battery containing the aluminum ion of the range of 0.03-0.27 mol / L, and the sodium ion of the range of 0.03-0.28 mol / L.
前記極板群の両側には、袋状の前記セパレータに収容された負極板が配置されている、請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein negative electrode plates accommodated in the bag-shaped separator are disposed on both sides of the electrode plate group.
JP2013079229A 2013-04-05 2013-04-05 Lead power storage battery Pending JP2016115396A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013079229A JP2016115396A (en) 2013-04-05 2013-04-05 Lead power storage battery
PCT/JP2014/001548 WO2014162674A1 (en) 2013-04-05 2014-03-18 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079229A JP2016115396A (en) 2013-04-05 2013-04-05 Lead power storage battery

Publications (1)

Publication Number Publication Date
JP2016115396A true JP2016115396A (en) 2016-06-23

Family

ID=51657989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079229A Pending JP2016115396A (en) 2013-04-05 2013-04-05 Lead power storage battery

Country Status (2)

Country Link
JP (1) JP2016115396A (en)
WO (1) WO2014162674A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072252A (en) * 2019-11-01 2021-05-06 古河電池株式会社 Lead-acid battery
JP2021111492A (en) * 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111618A (en) * 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111445A (en) * 2020-01-06 2021-08-02 古河電池株式会社 Lead-acid battery
JP2021114404A (en) * 2020-01-17 2021-08-05 古河電池株式会社 Lead acid battery
WO2022259679A1 (en) * 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve type lead acid storage battery and power storage system provided with same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717318B2 (en) * 2015-10-22 2020-07-01 株式会社Gsユアサ Lead-acid battery separator and lead-acid battery
CN111279543A (en) * 2017-10-31 2020-06-12 株式会社杰士汤浅国际 Lead-acid battery
CN113972407A (en) * 2021-09-29 2022-01-25 江苏同科蓄电池股份有限公司 Ultra-thin lead-acid storage battery plate cluster module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2563350B2 (en) * 1987-06-29 1996-12-11 松下電器産業株式会社 Lead acid battery grid
JPH0864226A (en) * 1994-08-18 1996-03-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
US20060216595A1 (en) * 2005-03-22 2006-09-28 Holliday Rex W Battery assembly having improved lug profile
JP2008218258A (en) * 2007-03-06 2008-09-18 Gs Yuasa Corporation:Kk Lead acid battery
JP5477288B2 (en) * 2008-05-20 2014-04-23 株式会社Gsユアサ Lead-acid battery and method for manufacturing the same
JP5035408B2 (en) * 2010-09-13 2012-09-26 新神戸電機株式会社 Lead acid battery and lead acid battery manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072252A (en) * 2019-11-01 2021-05-06 古河電池株式会社 Lead-acid battery
JP2021111445A (en) * 2020-01-06 2021-08-02 古河電池株式会社 Lead-acid battery
JP7128482B2 (en) 2020-01-06 2022-08-31 古河電池株式会社 lead acid battery
JP2021111492A (en) * 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111618A (en) * 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7079831B2 (en) 2020-01-08 2022-06-02 古河電池株式会社 Liquid lead-acid battery
JP7348082B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery
JP2021114404A (en) * 2020-01-17 2021-08-05 古河電池株式会社 Lead acid battery
JP7128483B2 (en) 2020-01-17 2022-08-31 古河電池株式会社 lead acid battery
WO2022259679A1 (en) * 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve type lead acid storage battery and power storage system provided with same

Also Published As

Publication number Publication date
WO2014162674A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP5596241B1 (en) Lead acid battery
JP2016115396A (en) Lead power storage battery
JP6331161B2 (en) Control valve type lead acid battery
JP6045329B2 (en) Lead acid battery
US9570779B2 (en) Flooded lead-acid battery
JP5748091B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2011181436A (en) Lead acid battery
JP2008243493A (en) Lead acid storage battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP5531746B2 (en) Lead acid battery
JP6255696B2 (en) Lead acid battery
WO2014097516A1 (en) Lead storage battery
JP5573785B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2005294142A (en) Lead storage battery
JP6164502B2 (en) Lead acid battery
JP5504383B1 (en) Lead acid battery
JP5754607B2 (en) Lead acid battery
JP4984786B2 (en) Lead acid battery
JP2005268061A (en) Lead storage cell
JP4802903B2 (en) Lead acid battery
JP6006429B2 (en) Lead acid battery