JP4984786B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4984786B2
JP4984786B2 JP2006257095A JP2006257095A JP4984786B2 JP 4984786 B2 JP4984786 B2 JP 4984786B2 JP 2006257095 A JP2006257095 A JP 2006257095A JP 2006257095 A JP2006257095 A JP 2006257095A JP 4984786 B2 JP4984786 B2 JP 4984786B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
lead
electrode plate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006257095A
Other languages
Japanese (ja)
Other versions
JP2008078019A (en
Inventor
敏 箕浦
真輔 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2006257095A priority Critical patent/JP4984786B2/en
Publication of JP2008078019A publication Critical patent/JP2008078019A/en
Application granted granted Critical
Publication of JP4984786B2 publication Critical patent/JP4984786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、安価で信頼性が高いという特徴を有するため、自動車に搭載する電池やゴルフカート等の電動車両の駆動電源用電池として用いられる他、無停電電源装置等の産業機器用の電池等、広い範囲の分野で用いられている。   Lead-acid batteries are inexpensive and highly reliable, so they are used as batteries for motor vehicles and power supplies for electric vehicles such as golf carts, batteries for industrial equipment such as uninterruptible power supplies, etc. It is used in a wide range of fields.

鉛蓄電池の負極板及び正極板としては、負極用格子及び正極用格子にそれぞれ負極活物質及び正極活物質を充填して構成したものが用いられている。鉛蓄電池の生産性の向上とメンテナンスフリー化とを図るため、鉛蓄電池の極板に用いる格子としては、鉛−アンチモン系合金からなる鋳造格子に代わって、アンチモンを含まない鉛−カルシウム合金からなるもの、例えば鉛−カルシウム−錫合金のシートをエキスパンド加工したエキスパンド格子が用いられるようになっている。   As a negative electrode plate and a positive electrode plate of a lead storage battery, a negative electrode grid and a positive electrode grid filled with a negative electrode active material and a positive electrode active material, respectively, are used. In order to improve the productivity and maintenance-free of lead-acid batteries, the grid used for the lead-acid battery plate is made of a lead-calcium alloy that does not contain antimony instead of a cast grid made of lead-antimony alloy. For example, an expanded lattice obtained by expanding a sheet of a lead-calcium-tin alloy is used.

鉛−カルシウム−錫合金のシートをエキスパンド加工したエキスパンド格子は、格子の水素過電圧を低下させるアンチモンを含有しないため、このエキスパンド格子を用いれば、電池の充電中におけるガスの発生と、ガスの発生に伴って生じる電解液量の減少とを抑制することができるだけでなく、自己放電をも抑制することができる。   An expanded lattice obtained by expanding a sheet of a lead-calcium-tin alloy does not contain antimony that lowers the hydrogen overvoltage of the lattice. Not only can the accompanying decrease in the amount of electrolytic solution generated be suppressed, but also self-discharge can be suppressed.

しかしながら、アンチモンを含まない鉛−カルシウム合金格子を正極板に用いた場合には、電池の深い充放電サイクルを行った場合に、早期に容量が低下するという問題が生じる。この問題を解決するため、特許文献1に示された鉛蓄電池では、格子の表面にアンチモンを多量に含んだ層を形成したエキスパンド格子を用いている。格子の表面にアンチモンを多量に含んだ層を形成しておくと、格子の表面層に存在するアンチモンが、充放電の繰り返しにより格子と活物質との密着性が低下するのを抑制して、格子と活物質との界面の硫酸鉛化を防ぐ働きをするため、鉛蓄電池の容量が早期に低下するのを防ぐことができる。
特開昭63−148556号公報
However, when a lead-calcium alloy lattice containing no antimony is used for the positive electrode plate, there is a problem that the capacity is quickly reduced when a deep charge / discharge cycle of the battery is performed. In order to solve this problem, the lead storage battery disclosed in Patent Document 1 uses an expanded lattice in which a layer containing a large amount of antimony is formed on the surface of the lattice. If a layer containing a large amount of antimony is formed on the surface of the lattice, antimony present in the surface layer of the lattice suppresses the decrease in the adhesion between the lattice and the active material due to repeated charge and discharge, Since it serves to prevent lead sulfate from being formed at the interface between the lattice and the active material, it is possible to prevent the capacity of the lead-acid battery from being reduced early.
JP-A 63-148556

しかしながら、特許文献1に示されたように、格子体の表面層に多量のアンチモンを存在させておくと、電池の充電中に多量のガスが発生し、それにより電解液の量が減少するとともに、自己放電が増大するおそれがあるため、メンテナンスフリー性が損なわれるおそれがある。   However, as shown in Patent Document 1, if a large amount of antimony is present in the surface layer of the lattice, a large amount of gas is generated during charging of the battery, thereby reducing the amount of electrolyte. Since the self-discharge may increase, the maintenance-free property may be impaired.

本発明の目的は、正極用の格子として、アンチモンを含有しない鉛−カルシウム合金の格子を用いて、メンテナンスフリー性を損なうことなく、深い充放電サイクルによる容量の早期の低下を防ぐことができるようにした鉛蓄電池を提供することにある。   The object of the present invention is to use a lead-calcium alloy lattice that does not contain antimony as a positive electrode lattice, so that it is possible to prevent an early decrease in capacity due to a deep charge / discharge cycle without impairing maintenance-free properties. The object is to provide a lead acid battery.

本発明は、アンチモンを含まない鉛−カルシウム合金からなる格子に活物質を充填して構成した正極板を用いた鉛蓄電池に係わるもので、本発明においては、正極板1枚の単位面積当たりの活物質量をP(g/cm)、活物質の多孔度をQ(%)としたときに、P/Qが0.01〜0.013の範囲に収まるようにする。 The present invention relates to a lead storage battery using a positive electrode plate formed by filling a lattice made of a lead-calcium alloy containing no antimony with an active material, and in the present invention, per positive electrode plate per unit area. When the amount of the active material is P (g / cm 2 ) and the porosity of the active material is Q (%), P / Q is set within the range of 0.01 to 0.013.

ここで、単位面積当たりの活物質量P(g/cm)は、極板に充填された正極活物質の量(g)を、正極活物質が充填された極板の投影面積(cm)で割った量であり、下記の式により与えられる。
P={極板に充填された活物質重量(g)}÷
{活物質が充填された極板の投影面積(cm)} …(1)
Here, the active material amount P (g / cm 2 ) per unit area is the amount (g) of the positive electrode active material filled in the electrode plate, and the projected area (cm 2 ) of the electrode plate filled with the positive electrode active material. ) And is given by the following equation.
P = {weight of active material filled in electrode plate (g)} ÷
{Projected area of electrode plate filled with active material (cm 2 )} (1)

また活物質の多孔度Q(%)は、化成後の正極板において、活物質の見かけの体積の中で細孔が占める体積の割合であり、下記の式により与えられる。
Q=[{活物質中の空間体積(cm)}÷{活物質の見かけの体積(cm)}]×100(%)
…(2)
The porosity Q (%) of the active material is a ratio of the volume occupied by pores in the apparent volume of the active material in the positive electrode plate after chemical conversion, and is given by the following equation.
Q = [{space volume in active material (cm 3 )} ÷ {apparent volume of active material (cm 3 )}] × 100 (%)
... (2)

後記する実施例から明らかなように、P/Qが0.01未満である場合、早期の容量低下を抑制することができない。これは、P/Qを0.01未満とすると、鉛蓄電池の容量が早期に低下する原因である、格子/活物質界面での硫酸鉛化が生じやすくなることによると思われる。またP/Qが0.013を超えると、活物質量が多くなりすぎるため、コストが高くなるだけでなく、正極板の厚みが厚くなりすぎて、極板群を電槽内に挿入することが困難になる。従って、P/Qは0.01ないし0.013の範囲にあることが適当である。   As is clear from the examples described later, when P / Q is less than 0.01, it is not possible to suppress early capacity reduction. This is presumably because when P / Q is less than 0.01, lead sulfate is likely to occur at the lattice / active material interface, which is the cause of the early decrease in the capacity of the lead storage battery. Further, if P / Q exceeds 0.013, the amount of active material becomes too large, which not only increases the cost, but the thickness of the positive electrode plate becomes too thick and the electrode plate group is inserted into the battery case. Becomes difficult. Accordingly, P / Q is suitably in the range of 0.01 to 0.013.

本発明によれば、正極板1枚の単位面積当たりの活物質量P(g/cm)と活物質の多孔度Q(%)との比P/Qを0.01〜0.013の範囲に設定したことにより、アンチモンを含まない鉛−カルシウム合金格子を用いて、メンテナンスフリー性を損なうことなく、深い充放電サイクルによる電池容量の早期の低下を防ぐことができるという利点が得られる。 According to the present invention, the ratio P / Q between the active material amount P (g / cm 2 ) per unit area of the positive electrode plate and the porosity Q (%) of the active material is 0.01 to 0.013. By setting to the range, there is an advantage that an early decrease in battery capacity due to a deep charge / discharge cycle can be prevented using a lead-calcium alloy lattice containing no antimony without impairing the maintenance-free property.

以下実施例により、本発明の好ましい実施形態を説明する。   The following examples illustrate preferred embodiments of the present invention.

アンチモンを含まない鉛−カルシウム合金からなる連続シートをエキスパンド加工することにより格子を得た。この格子に酸化鉛を主成分とする鉛粉と、鉛丹と、カットファイバ(カーボンファイバを細かくカットしたもの)と、硫酸と、水とを混練して得た正極活物質(ペースト)を充填した。このようにして得られた極板を熟成、乾燥して未化成の正極板を作成した。次にこの未化成の正極板7枚と、未化成の負極板8枚とをセパレータを介して交互に配置したものを希硫酸とともに電槽内に挿入して化成を行い、2Vの電池を得た。   A lattice was obtained by expanding a continuous sheet made of a lead-calcium alloy containing no antimony. This grid is filled with positive electrode active material (paste) obtained by kneading lead powder mainly composed of lead oxide, red lead, cut fiber (finely cut carbon fiber), sulfuric acid, and water. did. The electrode plate thus obtained was aged and dried to prepare an unformed positive electrode plate. Next, this unformed positive electrode plate and 8 unformed negative electrode plates arranged alternately via separators are inserted into a battery case together with dilute sulfuric acid to form a 2V battery. It was.

上記の方法で電池を作成する際に、正極活物質中の水分量を調整することにより多孔度Q(%)を調整し、また正極活物質の充填量を調整することにより単位面積当たりの活物質量(g/cm)を調整して、正極板1枚の単位面積当たりの活物質量Pと活物質の多孔度Q(%)との比P/Qがそれぞれ0.006,0.008,0.01,0.012,0.013及び0.016の値を示す6種類のサンプル用電池を作成した。 When producing a battery by the above method, the porosity Q (%) is adjusted by adjusting the amount of water in the positive electrode active material, and the active amount per unit area is adjusted by adjusting the filling amount of the positive electrode active material. By adjusting the amount of substance (g / cm 2 ), the ratio P / Q between the amount P of active material per unit area of the positive electrode plate and the porosity Q (%) of the active material is 0.006, 0. Six types of sample batteries having values of 008, 0.01, 0.012, 0.013 and 0.016 were prepared.

上記のようにして得られた電池を5時間率サイクル試験(放電電流:7.2A、温度:25℃、放電終止電圧:1.75V、充電終止:放電量の130%)に供し、P/Qの各値に対して10サイクル目の容量と1サイクル目の容量との比を求めたところ、下記の表1に示す結果が得られた。

Figure 0004984786
The battery thus obtained was subjected to a 5-hour rate cycle test (discharge current: 7.2 A, temperature: 25 ° C., end-of-discharge voltage: 1.75 V, end-of-charge: 130% of the discharge amount), P / When the ratio between the capacity at the 10th cycle and the capacity at the 1st cycle was determined for each value of Q, the results shown in Table 1 below were obtained.
Figure 0004984786

上記の結果から明らかなように、正極板1枚の単位面積当たりの活物質量P(g/cm)と活物質の多孔度Q(%)との比P/Qを0.01ないし0.013の範囲に設定すれば、10サイクル目/1サイクル目の容量比を95%以上とすることができ、アンチモンを含有しない鉛−カルシウム合金の格子を用いた場合でも、早期の容量低下を防ぐことができる。これは、硫酸が極板の深部にまで供給されなくなるために、格子/活物質界面が硫酸鉛化されるのを抑制することができことによると思われる。 As is clear from the above results, the ratio P / Q between the active material amount P (g / cm 2 ) per unit area of the positive electrode plate and the porosity Q (%) of the active material is 0.01 to 0. .013 range, the capacity ratio of the 10th cycle / 1st cycle can be 95% or more, and even when a lead-calcium alloy lattice not containing antimony is used, an early capacity decrease can be achieved. Can be prevented. This is considered to be because sulfuric acid is not supplied to the deep part of the electrode plate, so that the lattice / active material interface can be prevented from being converted to lead sulfate.

このように、本発明によれば、アンチモンを含有しない鉛−カルシウム合金の格子を用いた場合でも、格子/活物質界面が硫酸鉛化されるのを抑制することができるため、メンテナンスフリー性を損なうことなく、電池の早期の容量低下を抑制し、優れたサイクル特性をを得ることができる。   Thus, according to the present invention, even when a lead-calcium alloy lattice containing no antimony is used, the lattice / active material interface can be prevented from being lead sulfated. Without damaging the battery, it is possible to suppress an early capacity drop of the battery and to obtain excellent cycle characteristics.

Claims (1)

アンチモンを含まない鉛−カルシウム合金からなる格子に活物質を充填して構成した正極板を用いた鉛蓄電池において、
前記正極板に充填された正極活物質の量(g)を正極活物質が充填された極板の投影面積(cm )で割った量を正極板の単位面積当たりの活物質量P(g/cm )とし、化成後の正極板において活物質の見かけの体積の中で細孔が占める体積の割合を活物質の多孔度Q(%)としたときに、P/Qが0.01〜0.013であることを特徴とする鉛蓄電池。
In a lead storage battery using a positive electrode plate configured by filling an active material into a lattice made of a lead-calcium alloy containing no antimony,
The amount obtained by dividing the amount (g) of the positive electrode active material filled in the positive electrode plate by the projected area (cm 2 ) of the electrode plate filled with the positive electrode active material is the amount P (g) of active material per unit area of the positive electrode plate. / Cm 2 ), and the ratio of the volume occupied by the pores in the apparent volume of the active material in the positive electrode plate after chemical conversion is defined as the porosity Q (%) of the active material, P / Q is 0.01 Lead acid battery characterized by being -0.013.
JP2006257095A 2006-09-22 2006-09-22 Lead acid battery Active JP4984786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257095A JP4984786B2 (en) 2006-09-22 2006-09-22 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257095A JP4984786B2 (en) 2006-09-22 2006-09-22 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2008078019A JP2008078019A (en) 2008-04-03
JP4984786B2 true JP4984786B2 (en) 2012-07-25

Family

ID=39349861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257095A Active JP4984786B2 (en) 2006-09-22 2006-09-22 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4984786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329982B (en) * 2011-10-10 2013-06-26 天能电池集团有限公司 Lead-antimony rare-earth positive grid alloy and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168370A (en) * 1980-05-30 1981-12-24 Shin Kobe Electric Mach Co Ltd Lead acid battery
JPH05205732A (en) * 1992-01-29 1993-08-13 Shin Kobe Electric Mach Co Ltd Manufacture of anode plate for lead-acid battery
JPH06140030A (en) * 1992-10-26 1994-05-20 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP3987998B2 (en) * 1997-02-03 2007-10-10 株式会社ジーエス・ユアサコーポレーション Unformed positive electrode plate for lead acid battery
JP2005044759A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Lead-acid storage battery and manufacturing method of the same

Also Published As

Publication number Publication date
JP2008078019A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
CN102576863A (en) Negative plate for lead acid battery
JP5748091B2 (en) Lead acid battery
WO2011130127A1 (en) Positive active material for a lead-acid battery
JP6575536B2 (en) Lead acid battery
JP2017188477A (en) Lead storage battery
JP4984786B2 (en) Lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP6255696B2 (en) Lead acid battery
JP2007305370A (en) Lead storage cell
JP4857894B2 (en) Lead acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2002198085A (en) Lead storage battery
JP6164502B2 (en) Lead acid battery
JP2019207786A (en) Lead acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP4802903B2 (en) Lead acid battery
JP5088679B2 (en) Lead acid battery
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JP5277885B2 (en) Method for producing lead-acid battery
JP2003346790A (en) Lead acid storage battery
JP2009252606A (en) Manufacturing method of lead acid storage battery
JP2017069022A (en) Lead storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250