JP4742424B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP4742424B2
JP4742424B2 JP2001018165A JP2001018165A JP4742424B2 JP 4742424 B2 JP4742424 B2 JP 4742424B2 JP 2001018165 A JP2001018165 A JP 2001018165A JP 2001018165 A JP2001018165 A JP 2001018165A JP 4742424 B2 JP4742424 B2 JP 4742424B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
acid battery
active material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001018165A
Other languages
Japanese (ja)
Other versions
JP2002222661A (en
Inventor
琢朗 中山
晴美 室地
道男 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001018165A priority Critical patent/JP4742424B2/en
Publication of JP2002222661A publication Critical patent/JP2002222661A/en
Application granted granted Critical
Publication of JP4742424B2 publication Critical patent/JP4742424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は通信機器、UPS等の非常時バックアップ電源等に利用される制御弁式鉛蓄電池に関するものである。
【0002】
【従来の技術】
制御弁式鉛蓄電池の電圧特性を向上し、出力特性を改善させる技術として、電池のセル内における極板の表面積を増やすことが有効である。
【0003】
しかしながら、近年では非常時バックアップ電源等に利用される制御弁式鉛蓄電池は市場から高電流放電時において高い電圧特性を発揮すること、すなわち、出力向上が要望されている。前記したように出力を向上させることを目的として極板の反応に係る表面積を増やすことが考えられるが、電池構成では、高電流放電時の出力向上が市場の要求する出力まで向上させることができなかった。特に極板群体積をVとした時にV=極板片面の見かけ面積×極板群厚みとし、負極板見かけ表面積の総和をSとした時のS/V値を増加させていくと、定電流放電時における放電電圧が増加する結果、出力である放電電圧×放電電流は増加する。結果として、所定の放電電圧に低下するまでの時間すなわち放電時間が長くなる結果、放電容量は増大する。
【0004】
【発明が解決しようとする課題】
ところがこのS/V値を3.0cm-1以上に増加させても期待した出力向上が得られないことがわかってきた。すなわち、このような構成の電池では電池電圧は負極の反応が律則となっていることが判明してきた。
【0005】
本発明はこのような出力特性を考慮してS/V値を3.0cm-1以上に構成した制御弁式鉛蓄電池において、さらに高率放電時の放電容量を改善した構成を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、格子体に活物質ペーストを充填してなる正極板および負極板セパレータを有する極板群を備えた制御弁式鉛蓄電池において、極板片面の見かけ表面積に極板群厚みを乗じた値を前記極板群の体積値とし、前記極板群の体積値に対する負極板見かけ表面積の総和の比率を3.0cm-1以上4.0cm -1 以下にするとともに、前記負極板の負極活物質にリグニン化合物を含有し、このリグニン化合物の含有率を前記負極活物質に対して、0.15質量%以上としたことにより前記した課題を解決するものである。
【0007】
また、本発明の請求項2に記載の発明は請求項1に記載の構成を有する制御弁式鉛蓄電池において負極活物質中のリグニン化合物の含有量を0.15質量%〜0.50質量%の範囲とし、前記した課題を解決するものである。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0009】
鉛−カルシウム系合金、鉛−スズ系合金等の実質上アンチモンを含まない鉛合金を用いた格子体を作製する。例えば鉛−カルシウム−スズ系合金を溶融し、鋳造鋳型に流し込み、冷却することにより作製した鋳造格子や同様の合金を用いた圧延体をエキスパンド加工したいわゆるエキスパンド格子を用いる。
【0010】
前記のような格子体には、活物質ペーストが充填される。活物質ペーストは、一般に鉛と鉛酸化物との混合粉体に耐硫酸製の合成樹脂繊維や各種添加剤を添加した上で、水と希硫酸とで練合して作製される。正極活物質用のペーストにおいては、化成効率や蓄電池の初期容量特性を考慮して鉛酸化物に鉛丹を添加したものを用いることができる。さらに、この鉛丹としては一酸化鉛を焼成して鉛丹の含有量が90重量%、他は一酸化鉛等の低級酸化物を含有した物が一般的に使用される。また、負極活物質には放電時に硫酸鉛の生成の核になり、反応を均一化する硫酸バリウムを添加するとともにリグニンを負極活物質に対して0.15質量%以上、好ましくは0.15質量%〜0.50質量%、さらに好ましくは0.20質量%以上添加するとよい。
【0011】
負極および正極活物質ペーストが充填された格子体は、その後、常法に従って熟成乾燥され、未化成の負極板1および正極板2とする。
【0012】
この極板はガラスマットセパレータ3とともに組み合わされ、同一極性の極板が複数枚数ある場合には同一極性の極板耳を集合溶接し、端子取り出し部を形成して極板群4が構成される。この極板群4を図1、極板群4に用いられる負極板1を図2に示す。
【0013】
図1に示す極板群4を構成している負極板1の高さHと極板幅W、極板群4の電槽収納状態における積層方向の厚みをTとして、この各寸法を乗じたものを極板群体積(V)とする。なお、また、図2に示される負極板1の高さHと幅Wを乗じて、その値に極板群4に用いられる負極板1の枚数と負極板1には表裏を示す係数2を各乗じたものを負極板見かけ表面積の総和(S)とする。
【0014】
この負極板見かけ表面積(S)と極板群体積(V)の比率(S/V)が3.0cm-1とした極板群構成を樹脂製の電槽に挿入し、セル間接続、蓋接着工程を経て未注液の蓄電池が作製される。その後、希硫酸に硫酸ナトリウム等の添加剤を添加した化成液を蓄電池に注液し、通電化成後、注液口に安全弁を形成して制御弁式鉛蓄電池が作製される。化成終了後は電解液の殆んどは極板群4に含浸保持されており、充電中に発生した酸素ガスが負極に吸収される、負極吸収式の電池が構成されている。
【0015】
なお、円筒形電池のように極板とセパレータとが捲き回された極板群を有する場合には、極板群外径(R)よりπR2/4(極板群端面の面積)に極板高さhを乗じて極板群体積を求めればよい。
【0016】
【実施例】
本発明の構成によるシール形鉛蓄電池について高電流放電の評価を行い、本発明の効果を明らかにした。以下にその内容を記載する。
【0017】
表1の構成で本発明例および比較例の制御弁式鉛蓄電池を作製した。リグニン化合物としてはリグニンスルホン酸ナトリウムを用いた。全て公称電圧12V、20時間率定格容量7Ah相当である。表1に示した電池A〜電池Mについて以下に示す評価方法で、3CA相当の高電流放電特性の評価を行った。
【0018】
【表1】

Figure 0004742424
【0019】
試験条件は以下の通りである。
【0020】
[高電流放電試験]
(1)電池A〜電池Mについて、25℃において13.8V定電圧充電を6時間行う。
(2)充電状態にある電池A〜電池Mについて、25℃において24時間放置する。
(3)25℃雰囲気下において21A放電で終止電圧9.6Vまで放電し、その時の放電時間から放電容量を算出した。
【0021】
これらの結果を図3に示す。
【0022】
この図3に示した結果より、(S/V)値が3.0cm-1未満の領域においては、負極添加剤のリグニン化合物の添加量にかかわらず、(S/V)の値の増加に伴い高電流放電容量の向上が見られる。一方、(S/V)値が3.0cm-1以上の領域においては、(S/V)値の上昇によっても高率放電容量の改善が殆んど認められない。このような領域においては、負極添加剤のリグニン化合物の含有量が高率放電容量に大きな影響を及ぼすことがわかる。すなわち、(S/V)値が3.0cm-1以上の領域で構成される制御弁式鉛蓄電池の高率放電容量を確保するために負極活物質中のリグニン化合物の含有量を少なくとも0.15質量%以上、好ましくは0.20質量%以上とする。リグニン化合物量の含有量が0.50質量%を超えても電池記号P,Vはともに高率放電容量の増加はないのでこのリグニン化合物の含有量を0.15質量%以上0.50質量%以下とすることが好ましい。なお、電池記号Qは負極活物質中のリグニン含有量が0.10質量%と少ないので放電持続時間は短い。
【0023】
このように図3の結果から明らかなように、本発明の構成によれば高電流放電時において、良好な高電流放電容量特性を示すことが確認できた。この本発明の電池においては比較例の電池に比較して高率放電時における負極電位がより卑に移行しており、負極中のリグニン量が負極の分極に大きく影響していると推測される。
【0024】
【発明の効果】
以上の結果から、本発明の構成によれば、特に極板面積を増大させることにより極板群体積に対する負極板の見かけ表面積の総和(S/V)値が3.0cm-1以上に構成した制御弁式鉛蓄電池において高率放電特性が向上効果を得ることができることから工業上極めて有効である。
【図面の簡単な説明】
【図1】極板群を示す斜視図
【図2】負極板を示す正面図
【図3】本発明例および比較例の制御弁式鉛蓄電池の高率放電特性を示す図
【符号の説明】
1 負極板
2 正極板
3 セパレータ
4 極板群[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control valve type lead-acid battery used for communication equipment, emergency backup power supply such as UPS.
[0002]
[Prior art]
Increasing the surface area of the electrode plate in the battery cell is effective as a technique for improving the voltage characteristics and improving the output characteristics of the control valve type lead-acid battery.
[0003]
However, in recent years, control valve type lead-acid batteries used for emergency backup power supplies and the like are demanded from the market to exhibit high voltage characteristics during high current discharge, that is, to improve output. As described above, it is conceivable to increase the surface area related to the reaction of the electrode plate for the purpose of improving the output, but in the battery configuration, the output improvement at the time of high current discharge can be improved to the output required by the market. There wasn't. In particular, when the electrode plate group volume is V, V = apparent area of one side of the electrode plate × electrode plate group thickness, and when the sum of the negative electrode plate apparent surface areas is S, the S / V value is increased. As a result of an increase in the discharge voltage during discharge, the output discharge voltage × discharge current increases. As a result, the time until the voltage drops to a predetermined discharge voltage, that is, the discharge time becomes longer, and as a result, the discharge capacity increases.
[0004]
[Problems to be solved by the invention]
However, it has been found that even if the S / V value is increased to 3.0 cm −1 or more, the expected output improvement cannot be obtained. In other words, it has been found that the battery voltage in such a configuration is governed by the negative electrode reaction.
[0005]
In view of such output characteristics, the present invention provides a control valve type lead-acid battery configured to have an S / V value of 3.0 cm −1 or more and further improving the discharge capacity during high rate discharge. Objective.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention is a valve-regulated lead-acid battery having a electrode plate group having a positive electrode plate and a negative electrode plate and a separator formed by filling an active material paste grid, plate one side of the apparent the value obtained by multiplying the electrode plate group thickness to the surface area and the volume value of the electrode plate group, the ratio of the sum of the negative electrode plate apparent surface area to volume value of the electrode plate assembly 3.0 cm -1 or 4.0 cm -1 below In addition, the negative electrode active material of the negative electrode plate contains a lignin compound, and the content of the lignin compound is 0.15% by mass or more with respect to the negative electrode active material. is there.
[0007]
In addition, the invention according to claim 2 of the present invention is such that the content of the lignin compound in the negative electrode active material is 0.15 mass% to 0.50 mass% in the control valve type lead storage battery having the configuration according to claim 1. The above-described problems are solved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0009]
A lattice body using a lead alloy substantially free of antimony such as a lead-calcium alloy or a lead-tin alloy is prepared. For example, a lead-calcium-tin-based alloy is melted, poured into a casting mold, and cooled, and a so-called expanded lattice obtained by expanding a rolled body using the same alloy is used.
[0010]
The lattice material as described above is filled with an active material paste. The active material paste is generally produced by adding sulfuric acid-resistant synthetic resin fibers and various additives to a mixed powder of lead and lead oxide and then kneading with water and dilute sulfuric acid. In the paste for the positive electrode active material, a material obtained by adding lead oxide to lead oxide can be used in consideration of the chemical conversion efficiency and the initial capacity characteristics of the storage battery. Further, as the lead tan, lead monoxide is calcined and the content of the lead tan is 90% by weight, and the others contain a lower oxide such as lead monoxide. Further, the negative electrode active material is added with barium sulfate which becomes the nucleus of lead sulfate generation during discharge and makes the reaction uniform, and lignin is 0.15% by mass or more, preferably 0.15% by mass with respect to the negative electrode active material. % To 0.50 mass%, more preferably 0.20 mass% or more.
[0011]
Thereafter, the lattice body filled with the negative electrode and the positive electrode active material paste is aged and dried according to a conventional method to obtain an unformed negative electrode plate 1 and positive electrode plate 2.
[0012]
This electrode plate is combined with the glass mat separator 3, and when there are a plurality of electrode plates with the same polarity, the electrode plates with the same polarity are welded together to form a terminal take-out portion, thereby forming the electrode plate group 4. . The electrode plate group 4 is shown in FIG. 1, and the negative electrode plate 1 used in the electrode plate group 4 is shown in FIG.
[0013]
The height H and the electrode plate width W of the negative electrode plate 1 constituting the electrode plate group 4 shown in FIG. 1 and the thickness in the stacking direction of the electrode plate group 4 in the battery case storage state are set to T, and these dimensions are multiplied. The electrode plate group volume (V). Also, the height H and the width W of the negative electrode plate 1 shown in FIG. 2 are multiplied, and this value is multiplied by the number of negative electrode plates 1 used in the electrode plate group 4 and a coefficient 2 indicating the front and back of the negative electrode plate 1. The product of each is defined as the sum (S) of the apparent surface area of the negative electrode plate.
[0014]
This electrode plate group configuration in which the ratio (S / V) of the apparent surface area (S) to the electrode plate group volume (V) is 3.0 cm −1 is inserted into a resin battery case, and the connection between the cells, the lid An unpoured storage battery is produced through the bonding process. Thereafter, a chemical conversion liquid in which an additive such as sodium sulfate is added to dilute sulfuric acid is poured into the storage battery, and after energization conversion, a safety valve is formed in the liquid injection port to produce a control valve type lead storage battery. After the chemical conversion is completed, most of the electrolytic solution is impregnated and held in the electrode plate group 4 to constitute a negative electrode absorption type battery in which oxygen gas generated during charging is absorbed by the negative electrode.
[0015]
Incidentally, in the case of having a polar plate group and the plate and separator are wound respectively as cylindrical batteries, pole .pi.R 2/4 from the electrode plate group outer diameter (R) (the area of the electrode plate group end face) The electrode group volume may be obtained by multiplying the plate height h.
[0016]
【Example】
The sealed lead-acid battery according to the configuration of the present invention was evaluated for high current discharge, and the effects of the present invention were clarified. The contents are described below.
[0017]
The control valve type lead acid battery of the example of the present invention and a comparative example was produced with the composition of Table 1. As the lignin compound, sodium lignin sulfonate was used. All are equivalent to a nominal voltage of 12 V and a 20 hour rate rated capacity of 7 Ah. The battery A to battery M shown in Table 1 were evaluated for high current discharge characteristics corresponding to 3CA by the following evaluation method.
[0018]
[Table 1]
Figure 0004742424
[0019]
The test conditions are as follows.
[0020]
[High current discharge test]
(1) About battery A-battery M, 13.8V constant voltage charge is performed at 25 degreeC for 6 hours.
(2) The batteries A to M in a charged state are left at 25 ° C. for 24 hours.
(3) In a 25 ° C. atmosphere, the battery was discharged with 21 A discharge to a final voltage of 9.6 V, and the discharge capacity was calculated from the discharge time at that time.
[0021]
These results are shown in FIG.
[0022]
From the results shown in FIG. 3, in the region where the (S / V) value is less than 3.0 cm −1 , the value of (S / V) increases regardless of the amount of lignin compound added as the negative electrode additive. Along with this, an improvement in the high current discharge capacity is seen. On the other hand, in the region where the (S / V) value is 3.0 cm −1 or more, even if the (S / V) value increases, almost no improvement in the high rate discharge capacity is observed. In such a region, it can be seen that the content of the lignin compound of the negative electrode additive has a large effect on the high rate discharge capacity. That is, the content of the lignin compound in the negative electrode active material is set to at least 0.00 in order to ensure a high rate discharge capacity of the control valve type lead-acid battery composed of a region having an (S / V) value of 3.0 cm −1 or more. 15 mass% or more, preferably 0.20 mass% or more. Even if the content of the lignin compound exceeds 0.50 mass%, the battery symbols P and V do not increase the high rate discharge capacity, so the content of this lignin compound is 0.15 mass% or more and 0.50 mass%. The following is preferable. The battery symbol Q has a short discharge duration because the lignin content in the negative electrode active material is as low as 0.10% by mass.
[0023]
Thus, as is apparent from the results of FIG. 3, it was confirmed that according to the configuration of the present invention, good high current discharge capacity characteristics were exhibited during high current discharge. In this battery of the present invention, the negative electrode potential during high rate discharge shifts to a lower level compared to the battery of the comparative example, and it is estimated that the amount of lignin in the negative electrode greatly affects the polarization of the negative electrode. .
[0024]
【The invention's effect】
From the above results, according to the configuration of the present invention, the total (S / V) value of the apparent surface area of the negative electrode plate with respect to the electrode plate group volume was set to 3.0 cm −1 or more, particularly by increasing the electrode plate area. In a control valve type lead-acid battery, the high rate discharge characteristic can obtain an improvement effect, which is extremely effective industrially.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an electrode plate group. FIG. 2 is a front view showing a negative electrode plate. FIG. 3 is a diagram showing high-rate discharge characteristics of a control valve type lead-acid battery according to the present invention and a comparative example.
DESCRIPTION OF SYMBOLS 1 Negative electrode plate 2 Positive electrode plate 3 Separator 4 Electrode plate group

Claims (2)

格子体に活物質ペーストを充填してなる正極板および負極板セパレータを有する極板群を備えた制御弁式鉛蓄電池において、極板片面の見かけ面積に極板群厚みを乗じた値を前記極板群の体積値とし、前記極板群の体積値に対する負極板見かけ表面積の総和の比率を3.0cm-1以上4.0cm -1 以下にするとともに、前記負極板の負極活物質にリグニン化合物を前記負極活物質に対して、0.15質量%以上含有したことを特徴とする制御弁式鉛蓄電池。In the valve-regulated lead-acid battery having a electrode plate group having a positive electrode plate and a negative electrode plate and a separator formed by filling an active material paste grid, wherein a value obtained by multiplying the electrode plate group thickness apparent area of the electrode plate sided to a volume value of the electrode plate group, lignin ratio of the sum of the negative electrode plate apparent surface area to volume value of the electrode assembly as well as below 3.0 cm -1 or 4.0 cm -1, the negative electrode active material of the negative electrode plate A valve-regulated lead-acid battery comprising 0.15% by mass or more of a compound based on the negative electrode active material. 前記負極活物質に前記リグニン化合物を0.15質量%〜0.50質量%の範囲で含有したことを特徴とする請求項1に記載の制御弁式鉛蓄電池。  The valve-regulated lead-acid battery according to claim 1, wherein the lignin compound is contained in the negative electrode active material in a range of 0.15% by mass to 0.50% by mass.
JP2001018165A 2001-01-26 2001-01-26 Control valve type lead acid battery Expired - Lifetime JP4742424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018165A JP4742424B2 (en) 2001-01-26 2001-01-26 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001018165A JP4742424B2 (en) 2001-01-26 2001-01-26 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2002222661A JP2002222661A (en) 2002-08-09
JP4742424B2 true JP4742424B2 (en) 2011-08-10

Family

ID=18884223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018165A Expired - Lifetime JP4742424B2 (en) 2001-01-26 2001-01-26 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP4742424B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035433B1 (en) 2014-12-18 2020-02-19 GS Yuasa International Ltd. Lead-acid battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169503A (en) * 1993-12-15 1995-07-04 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2000100424A (en) * 1998-09-25 2000-04-07 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2000348715A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery

Also Published As

Publication number Publication date
JP2002222661A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
JP2008130516A (en) Liquid lead-acid storage battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JPH08264202A (en) Lead-acid battery
JP2001028263A (en) Lead-acid battery formation method
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
WO2004010526A1 (en) Control valve type lead battery
JP4742424B2 (en) Control valve type lead acid battery
JP7128482B2 (en) lead acid battery
JP2003338312A (en) Control valve type lead-acid battery
JP2003338310A (en) Lead storage battery
JP4292666B2 (en) Sealed lead acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP3091167B2 (en) Lead storage battery
JP4984786B2 (en) Lead acid battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP2002198085A (en) Lead storage battery
JP2003317711A (en) Formation method of lead-acid battery
JP3094423B2 (en) Lead storage battery
JPH11329420A (en) Manufacture of lead-acid battery
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate
JP2009289595A (en) Sealed lead acid storage battery
JP2001250589A (en) Charging method of sealed lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4742424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term