JP2008130516A - Liquid lead-acid storage battery - Google Patents
Liquid lead-acid storage battery Download PDFInfo
- Publication number
- JP2008130516A JP2008130516A JP2006317478A JP2006317478A JP2008130516A JP 2008130516 A JP2008130516 A JP 2008130516A JP 2006317478 A JP2006317478 A JP 2006317478A JP 2006317478 A JP2006317478 A JP 2006317478A JP 2008130516 A JP2008130516 A JP 2008130516A
- Authority
- JP
- Japan
- Prior art keywords
- amount
- active material
- positive electrode
- lead
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明は、正・負極活物質量と電解液中の硫酸量を適正な比率にした多量の遊離する電解液を備える液式鉛蓄電池に関するものである。 The present invention relates to a liquid lead-acid battery including a large amount of free electrolytic solution in which the amount of positive and negative electrode active materials and the amount of sulfuric acid in the electrolytic solution are set to an appropriate ratio.
鉛蓄電池は、補水などの保守が必要な液式鉛蓄電池と、補水不要である制御弁式鉛蓄電池とに大別することができる。そして、ニッケル−カドミウム電池を代表とするアルカリ蓄電池と並んで長い歴史を持ち、その安価さもさることながら、安定した性能からくる高い信頼性故に現在でも蓄電池の主流を占めており、自動車用のSLI用電源、小型電子機器や電動車に用いられる移動用電源、或いはコンピュータ等の電源の停電時に作動するバックアップ用据置き用電源として広く使用されている。 Lead-acid batteries can be broadly classified into liquid-type lead-acid batteries that require maintenance such as replenishment and control valve-type lead-acid batteries that do not require replenishment. And it has a long history along with alkaline storage batteries typified by nickel-cadmium batteries, and it occupies the mainstream of storage batteries because of its high reliability due to its stable performance as well as its low cost. It is widely used as a power source for operation, a power source for movement used in small electronic devices and electric vehicles, or a stationary power source for backup that operates in the event of a power failure of a power source such as a computer.
近年、自動車に用いられる鉛蓄電池、即ち自動車用液式鉛蓄電池を取巻く環境は益々厳しくなってきている。その要因として、快適装備の増加、車両全体の高度な電子制御化、さらには電池の小型・軽量化が挙げられ、自動車に用いられる自動車用液式鉛蓄電池に対する負荷は増大の一途を辿っている。しかしながら、自動車用液式鉛蓄電池ではどちらかというと初期特性を重視しており、正極活物質密度を3.8g/cm3以下として用いている。 In recent years, the environment surrounding lead-acid batteries used in automobiles, that is, liquid lead-acid batteries for automobiles, has become increasingly severe. The reasons for this are an increase in comfort equipment, advanced electronic control of the entire vehicle, and further reduction in size and weight of the battery. The load on the liquid lead-acid battery for automobiles used in automobiles continues to increase. . However, in liquid lead-acid batteries for automobiles, the initial characteristics are rather emphasized, and the positive electrode active material density is used as 3.8 g / cm 3 or less.
また、都市部おける自動車は、電車やバス等の交通網の発達により休日のみの使用や渋滞によるストップ&ゴーの繰返し、短い移動距離での使用用途が多い傾向にある。それにより、自動車用液式鉛蓄電池が十分に充電されない状態で長時間放置される、また電装部品が多く装備されることで、暗電流の増加により過放電状態で使用され易くなっている。 In addition, automobiles in urban areas tend to be used only for holidays, repeated stop-and-go due to traffic jams, and short-distance use due to the development of transportation networks such as trains and buses. Accordingly, the liquid lead-acid battery for automobiles is left for a long time in a state where it is not sufficiently charged, and is equipped with many electrical components, so that it is easily used in an overdischarged state due to an increase in dark current.
そして、過放電状態を継続して自動車用液式鉛蓄電池を使用すると、セパレータ内部で極板由来の金属鉛が結晶成長する。即ち、放電末期に電解液中の硫酸イオンが消費され電解液が純水に近くなると、鉛イオンの溶解度が大きくなり正極と負極に生成した硫酸鉛が一部溶解する。その後、充電を行うと電解液中の鉛イオンが負極で還元されて金属鉛が析出し、これが負極板表面で成長して針状結晶となる。この金属鉛の針状結晶は一般に「デンドライト」と呼称されるが、このデンドライトが成長すると他方の極板に到達して短絡(ショート)し、以後の充放電ができなくなる。 When the liquid lead-acid battery for automobiles is used while continuing the overdischarge state, the metallic lead derived from the electrode plate crystal grows inside the separator. That is, when sulfate ions in the electrolytic solution are consumed at the end of discharge and the electrolytic solution is close to pure water, the solubility of lead ions increases, and lead sulfate produced in the positive electrode and the negative electrode is partially dissolved. Thereafter, when charged, lead ions in the electrolytic solution are reduced at the negative electrode to deposit metallic lead, which grows on the surface of the negative electrode plate to form needle crystals. The needle-like crystal of the metal lead is generally called “dendrites”. However, when the dendrites grow, they reach the other electrode plate and are short-circuited, so that subsequent charge / discharge cannot be performed.
鉛蓄電池のデンドライトを抑制する方法として、正極活物質量をPとし、負極活物質量をNとし、前記電解液中に含まれる硫酸量をEとした場合において、前記正極活物質および前記負極活物質を合わせた質量であるP+Nに対する硫酸量の比率であるE/(P+N)を、0.25〜0.35とすること(特許文献1)が提案されている。 As a method for suppressing the dendrite of a lead-acid battery, when the positive electrode active material amount is P, the negative electrode active material amount is N, and the sulfuric acid amount contained in the electrolyte is E, the positive electrode active material and the negative electrode active material It has been proposed that E / (P + N), which is the ratio of the amount of sulfuric acid to P + N, which is the combined mass of substances, be 0.25 to 0.35 (Patent Document 1).
特許文献1に記載された方法は制御弁式鉛蓄電池、即ち電解液が極板群に含浸保持される程度、或いはこれに少しの遊離する電解液を備えたものに関するものであるが、これを液式鉛蓄電池に適用した場合は、必ずしもデントライトショートを防止し得ないことが分かった。 The method described in Patent Document 1 relates to a control valve-type lead-acid battery, that is, a method in which the electrolyte is impregnated and held in the electrode plate group, or a method in which a small amount of electrolyte is provided. It was found that when applied to a liquid lead-acid battery, dent light short-circuiting cannot always be prevented.
発明者らは、現在の市場を満足すべく、デンドライトショートを抑制すると共に、鉛蓄電池の寿命特性を向上させる方法はないかと種々検討を行った。
そして、液式鉛蓄電池において、正・負極活物質の充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、−0.125X+0.8≦Y(但し3.8≦X≦4.6)と規定することが好適であることを見出し、さらに検討を進めて本発明を完成させるに至ったものである。
本発明は、上記記載のように、液式鉛蓄電池において過放電放置おけるデンドライト生成による短絡を抑制し、且つ寿命特性を向上させると共に従来の初期容量と略同等の液式鉛蓄電池を提供することを目的とする。
In order to satisfy the current market, the inventors have conducted various studies on whether there is a method for suppressing the dendrite short and improving the life characteristics of the lead-acid battery.
In the liquid lead-acid battery, when the ratio (B / A) of the total amount A and the sulfuric acid amount B of the positive and negative electrode active materials is Y and the positive electrode active material density is X [g / cm 3 ], It has been found that it is preferable to define 0.125X + 0.8 ≦ Y (where 3.8 ≦ X ≦ 4.6), and further studies have been made to complete the present invention.
As described above, the present invention provides a liquid lead-acid battery that suppresses short-circuiting due to the formation of dendrites that are left over-discharged in a liquid lead-acid battery, improves life characteristics, and is substantially equivalent to the conventional initial capacity. With the goal.
本発明は、鉛合金からなる基板に活物質ペーストを充填してなる正極板と負極板とを、セパレータを介して交互に積層した極板群を電槽内に収納し、該電槽内に電解液を多量に遊離する電解液が存在する様に多量に注液してなる液式鉛蓄電池において、正極板に充填する正極活物質量と負極板に充填する負極活物質量の充填量の合計をA、電解液中に含まれる硫酸量をB(完全充電され、劣化の進んでいない初期状態)とし、該充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、−0.125X+0.8≦Y(但し3.8≦X≦4.6)の関係を満たすことを特徴とする液式鉛蓄電池である。 The present invention accommodates an electrode plate group in which a positive electrode plate and a negative electrode plate formed by filling a substrate made of a lead alloy with an active material paste alternately with a separator interposed therebetween in a battery case. In a liquid lead acid battery in which a large amount of electrolyte is injected so that a large amount of electrolyte is released, the amount of positive electrode active material charged in the positive electrode plate and the amount of negative electrode active material charged in the negative electrode plate The total is A, the amount of sulfuric acid contained in the electrolyte is B (completely charged initial state where deterioration is not progressing), the ratio (B / A) of the total A to the amount of sulfuric acid B (B / A) is Y, the positive electrode When the active material density is X [g / cm 3 ], the liquid lead-acid battery satisfies the relationship of −0.125X + 0.8 ≦ Y (however, 3.8 ≦ X ≦ 4.6) .
前記記載のように、正極活物質密度X[g/cm3]を3.8≦X≦4.6とし、且つ、−0.125X+0.8≦Yとすることで、過放電放置によるデンドライト生成を抑制して短絡を防止することが可能であると共に、液式鉛蓄電池の寿命を向上させ、従来の初期容量と略同等の液式鉛蓄電池を提供することが可能である。
過放電により正極活物質、負極活物質ともに電解液中の硫酸と反応して多量の硫酸鉛を生成するが、比率Yを−0.125X+0.8≦Yとすることで、電解液中の硫酸イオンは十分に残っているため中性の水のような状態とならず、充電時のデンドライト生成を抑制できる。しかし、比率Yが−0.125X+0.8≧Yの場合、過放電時に正負極板で生成する硫酸鉛により電解液中の硫酸がほとんど消費されてしまうため、電解液は中性の水のような状態となる。そのため、硫酸鉛の溶解度が増加して電解液中に多量の解離した鉛イオンがセパレータ内部に浸透し、通電した時に負極板上に針状のデンドライトが生成し、やがて成長してセパレータを貫通し正極に到達して短絡が発生する。
As described above, when the positive electrode active material density X [g / cm 3 ] is set to 3.8 ≦ X ≦ 4.6 and −0.125X + 0.8 ≦ Y, dendrite is generated due to overdischarge. It is possible to prevent the short circuit by suppressing the above, improve the life of the liquid lead acid battery, and provide a liquid lead acid battery substantially equivalent to the conventional initial capacity.
Both the positive electrode active material and the negative electrode active material react with sulfuric acid in the electrolytic solution due to overdischarge to produce a large amount of lead sulfate. By setting the ratio Y to −0.125X + 0.8 ≦ Y, sulfuric acid in the electrolytic solution Since sufficient ions remain, the state does not become neutral water, and dendrite generation during charging can be suppressed. However, when the ratio Y is −0.125X + 0.8 ≧ Y, the sulfuric acid in the electrolytic solution is almost consumed by the lead sulfate generated in the positive and negative electrode plates during overdischarge, so the electrolytic solution is like neutral water. It becomes a state. As a result, the solubility of lead sulfate increases and a large amount of dissociated lead ions penetrate into the electrolyte, and when energized, needle-like dendrites are formed on the negative electrode plate and eventually grow and penetrate the separator. A short circuit occurs upon reaching the positive electrode.
更に、本発明では、自動車用液式鉛蓄電池に対する負荷は増大の一途を辿っていることに鑑み、寿命特性の向上を図るべく正極活物質密度を上げた。通常、正極活物質密度を上げると初期容量が下がるが、寿命特性が向上すると言われている。初期容量が低下する原因としては、活物質密度を上げることにより細孔容積が小さくなることによって、極板内部に存在する電解液量が少なくなることや、極板内部の液拡散性が低下することが考えられる。また、寿命特性が向上する原因としては、活物質密度を上げることにより相対的に活物質量が増加することや、活物質粒子同士の結合力が増して活物質が構造的に強くなることによって活物質の軟化が抑制されるためだと考えられる。 Furthermore, in the present invention, in view of the ever-increasing load on the liquid lead-acid battery for automobiles, the positive electrode active material density was increased in order to improve the life characteristics. Normally, it is said that increasing the positive electrode active material density decreases the initial capacity, but improves the life characteristics. The cause of the decrease in the initial capacity is that the volume of the electrolyte present in the electrode plate is reduced by decreasing the pore volume by increasing the active material density, and the liquid diffusibility inside the electrode plate is reduced. It is possible. In addition, the life characteristics are improved because the active material amount is relatively increased by increasing the active material density, or the active material is structurally strengthened by increasing the bonding force between the active material particles. This is thought to be because the softening of the active material is suppressed.
しかし、本発明の比率Yと正極活物質密度Xとの範囲内に於いては、正極活物質密度が4.6g/cm3までは液式鉛蓄電池の初期容量の大幅な低下は起こらず、また、正極活物質密度が3.8g/cm3未満の場合、液式鉛蓄電池の初期容量は向上するが寿命特性の向上は見られなかった。 However, within the range of the ratio Y of the present invention and the positive electrode active material density X, the initial capacity of the liquid lead-acid battery does not significantly decrease until the positive electrode active material density is 4.6 g / cm 3 . Moreover, when the positive electrode active material density was less than 3.8 g / cm 3 , the initial capacity of the liquid lead acid battery was improved, but no improvement in the life characteristics was observed.
そこで、本発明では正・負活物質充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、−0.125X+0.8≦Y(但し3.8≦X≦4.6)とすることにより、過放電放置によるデンドライト生成を抑制して短絡を防止すると共に、高率放電特性が正極活物質密度3.8g/cm3未満の場合と略同等で、且つ寿命特性を向上させることを目的とする。 Therefore, in the present invention, when the ratio (B / A) of the total positive / negative active material filling amount A to the sulfuric acid amount B is Y and the positive electrode active material density is X [g / cm 3 ], −0.125X + 0. By setting 8 ≦ Y (however, 3.8 ≦ X ≦ 4.6), dendrite generation due to overdischarge is suppressed to prevent a short circuit, and a high rate discharge characteristic has a positive electrode active material density of 3.8 g / cm. It is substantially the same as the case of less than 3 , and it aims at improving a lifetime characteristic.
なお、本発明では正・負活物質充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、−0.125X+0.8≦Y(但し3.8≦X≦4.6)とすることにより、過放電放置によるデンドライト生成を抑制して短絡を防止することが可能であるが、比率YがY>−0.125X+0.9(但し3.8≦X≦4.6)の場合、電解液を高比重にするか、電解液量を増加する必要が生じる。しかし、高比重にすると、集電体である鉛合金製格子の腐食の進行や導電率低下による高率放電特性の低下を招き、液量を増やした場合は、必要以上に電解液量が増えるばかりか、電池も必要以上に大きく重くなる。また、負極活物質量を調整することでも対応できるが、正極容量に見合う電池容量が得られないという不具合を招く可能性がある。よって、正・負活物質充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、−0.125X+0.8≦Y≦−0.125X+0.9(但し3.8≦X≦4.6)とすることが好ましい。 In the present invention, when the ratio (B / A) of the total amount A and the sulfuric acid amount B of the positive and negative active material filling amounts is Y and the positive electrode active material density is X [g / cm 3 ], −0.125X + 0. By setting 8 ≦ Y (however, 3.8 ≦ X ≦ 4.6), it is possible to suppress the generation of dendrites due to overdischarge and prevent a short circuit, but the ratio Y is Y> −0.125X. In the case of +0.9 (however, 3.8 ≦ X ≦ 4.6), it is necessary to make the electrolytic solution have a high specific gravity or increase the amount of the electrolytic solution. However, when the specific gravity is increased, the corrosion rate of the lead alloy grid, which is the current collector, will deteriorate and the high rate discharge characteristics will decrease due to the decrease in conductivity. If the amount of liquid is increased, the amount of electrolyte will increase more than necessary. Not only that, the battery is bigger and heavier than necessary. Moreover, although it can respond also by adjusting the amount of negative electrode active materials, there exists a possibility of causing the malfunction that the battery capacity corresponding to a positive electrode capacity cannot be obtained. Therefore, when the ratio (B / A) of the total amount A of the positive and negative active materials and the amount B of sulfuric acid (B / A) is Y and the positive electrode active material density is X [g / cm 3 ], −0.125X + 0.8 ≦ Y ≦ −0.125X + 0.9 (however, 3.8 ≦ X ≦ 4.6) is preferable.
本発明は、液式鉛蓄電池の正・負極活物質量と電解液中の硫酸量を適正な比率にすることで、過放電放置によるデンドライト生成を抑制して短絡を防止することが可能であり、更に寿命特性を向上させることが可能であり工業的に優れた効果を有する。 The present invention makes it possible to prevent the generation of dendrite due to overdischarge and prevent a short circuit by adjusting the amount of positive and negative electrode active materials of the liquid lead-acid battery and the amount of sulfuric acid in the electrolyte to an appropriate ratio. Further, it is possible to further improve the life characteristics and have an industrially excellent effect.
鉛合金からなる基板に活物質ペーストを充填してなる正極板と負極板とを、セパレータを介して交互に積層した極板群を電槽内に収納し、該電槽内に電解液を多量に遊離する電解液が存在する様に多量に注液してなる液式鉛蓄電池において、正極板に充填する正極活物質量と負極板に充填する負極活物質量の充填量の合計をA、電解液中に含まれる硫酸量をB(完全充電され、劣化の進んでいない初期状態)とすると、該充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、−0.125X+0.8≦Y(但し3.8≦X≦4.6)とすることで、過放電放置によるデンドライト生成を抑制して短絡を防止し、且つ初期特性が正極活物質密度3.8g/cm3未満の場合と略同等で、更に寿命特性を向上した液式鉛蓄電池を提供するものである。 An electrode plate group in which a positive electrode plate and a negative electrode plate formed by filling a lead alloy substrate with an active material paste are alternately stacked via a separator is housed in a battery case, and a large amount of electrolyte is contained in the battery case. In the liquid lead-acid battery in which a large amount of electrolyte is injected so that a free electrolyte exists, the total amount of the positive electrode active material charged in the positive electrode plate and the negative electrode active material amount charged in the negative electrode plate is A, If the amount of sulfuric acid contained in the electrolyte solution is B (completely charged and the initial state is not deteriorated), the ratio of the total amount A to the amount of sulfuric acid B (B / A) is Y, the positive electrode active material density When X is [g / cm 3 ], -0.125X + 0.8 ≦ Y (however, 3.8 ≦ X ≦ 4.6) prevents dendrite generation due to overdischarge and prevents short circuit. and, and if the initial characteristic is less than the positive active material density 3.8 g / cm 3 and at substantially the same, further lifetime There is provided a liquid type lead-acid battery with improved resistance.
まず、公知の方法により作製した正極活物質を鉛合金からなる基板に充填し、熟成、乾燥を行い正極未化成極板を作製した。同様に、公知の方法により作製した負極活物質を鉛合金からなる基板に充填し、熟成、乾燥を行い負極未化成極板を作製した。次いで、作製した複数の正極未化成極板と負極未化成極板を、ポリエチレン製のセパレータを介して交互に積層した極板群を形成した。そして、夫々の極板に突出して形成されている同極性の極板耳を互いに溶接し、極板耳とストラップとを溶接し、電槽に収納した。そして、該電槽に電槽蓋を施し、電槽蓋に施してある注液口より比重1.260(20℃)の希硫酸を注入し、55℃に調節された水槽において電槽化成を行い、自動車用の液式鉛蓄電池を10個作製した(鉛蓄電池1)。
なお、該正極未化成極板の正極活物質密度X[g/cm3]はX=4.0とした。
また、正極板に充填した正極活物質量と負極板に充填した負極活物質量の充填量の合計をA、電解液中に含まれる硫酸量をB(完全充電され、劣化の進んでいない初期状態)とすると、該充填量の合計Aと硫酸量Bの比率をY=B/A=0.31となるように硫酸量により調整した。
First, a positive electrode active material prepared by a known method was filled in a substrate made of a lead alloy, and aged and dried to prepare a positive electrode non-formed electrode plate. Similarly, a negative electrode active material prepared by a known method was filled in a substrate made of a lead alloy, and aged and dried to prepare a negative electrode non-formed electrode plate. Next, an electrode plate group was formed in which a plurality of positive electrode unformed electrode plates and negative electrode unformed electrode plates were alternately laminated via a polyethylene separator. Then, the electrode tabs of the same polarity formed so as to protrude from the respective electrode plates were welded together, the electrode plate ears and the strap were welded, and stored in the battery case. Then, the battery case is provided with a battery case lid, diluted sulfuric acid having a specific gravity of 1.260 (20 ° C.) is injected from the injection port provided on the battery case lid, and the battery case is formed in a water tank adjusted to 55 ° C. 10 liquid lead-acid batteries for automobiles were produced (lead-acid battery 1).
The positive electrode active material density X [g / cm 3 ] of the positive electrode unformed electrode plate was set to X = 4.0.
In addition, the total amount of the positive electrode active material filled in the positive electrode plate and the amount of the negative electrode active material filled in the negative electrode plate is A, and the amount of sulfuric acid contained in the electrolyte solution is B (completely charged and the initial deterioration is not progressing) State), the ratio of the total amount A and the amount of sulfuric acid B was adjusted by the amount of sulfuric acid so that Y = B / A = 0.31.
また、表1に記載の通り、正極活物質密度X[g/cm3]はX=4.0または4.4とし、比率Yを夫々変化させた以外は上記と同様の方法で自動車用の種々の液式鉛蓄電池を10個ずつ作製した(鉛蓄電池2〜23)。 Moreover, as described in Table 1, the positive electrode active material density X [g / cm 3 ] was set to X = 4.0 or 4.4, and the ratio Y was changed, respectively. Ten various liquid lead acid batteries were produced (lead acid batteries 2 to 23).
そして、種々作製した自動車用の液式鉛蓄電池(蓄電池1〜23)について、過放電放置後のデンドライトの発生し易さを確認するため浸透短絡試験を行った。浸透短絡試験は、先ず、25℃の環境下で放電電流0.2C(5時間率電流)で放電終止電圧10.5Vまで放電し、その後、60℃の環境下で12V−10Wランプを接続した状態で14日間放置(放電)し、更に、ランプを外して60℃の環境下で14日間放置(自己放電)した。そして、60℃の環境下で定電圧充電を4時間行った後、電圧測定を行い浸透短絡の有無を確認した後、更に種々の自動車用液式鉛蓄電池を解体しセパレータへの鉛の浸透短絡の有無を目視によって確認した。
表1に、種々作製した自動車用の液式鉛蓄電池の正極活物質の充填量および密度、正極活物質と負極活物質の充填量の合計量A、硫酸量B、正極活物質と負極活物質の充填量の比率、比率Y=B/Aおよび浸透短絡の有無を示した。
And about the liquid lead acid battery (storage batteries 1-23) for various produced automobiles, the penetration short circuit test was done in order to confirm the ease of generating the dendrite after overdischarge leaving. In the penetration short circuit test, first, discharge was performed at a discharge current of 0.2 C (5 hour rate current) in an environment of 25 ° C. to a discharge end voltage of 10.5 V, and then a 12 V-10 W lamp was connected in an environment of 60 ° C. The state was left for 14 days (discharge), and the lamp was removed and left for 14 days in a 60 ° C. environment (self-discharge). And after performing constant voltage charge for 4 hours in an environment of 60 ° C., after measuring the voltage and confirming the presence or absence of permeation short circuit, various liquid lead acid batteries for automobiles were disassembled and lead permeation short circuit to the separator The presence or absence of was confirmed visually.
Table 1 shows the filling amount and density of the positive electrode active material and the total amount A of the positive electrode active material and the negative electrode active material, the sulfuric acid amount B, the positive electrode active material and the negative electrode active material of the various liquid lead-acid batteries for automobiles. The ratio of the filling amount, the ratio Y = B / A, and the presence or absence of an osmotic short circuit are shown.
表1に示すように、正極活物質密度X[g/cm3]がX=4.0で正・負極活物質の充填量の合計Aと硫酸量Bの比率Yが0.30以上(鉛蓄電池1〜10)の場合、浸透短絡は見られず、また、正極活物質密度X[g/cm3]がX=4.4で正・負極活物質の充填量の合計Aと硫酸量Bの比率Yが0.25以上(鉛蓄電池14〜20)の場合、浸透短絡は見られなかった。
しかし、正極活物質密度X[g/cm3]がX=4.0で、正・負極活物質の充填量の合計Aと硫酸量Bの比率Yが0.30未満(鉛蓄電池11〜13)、および、正極活物質密度X[g/cm3]がX=4.4で、正・負極活物質の充填量の合計Aと硫酸量Bの比率Yが0.25未満(鉛蓄電池21〜23)の場合、浸透短絡の発生が確認され、これは、過放電時に正負極板で生成する硫酸鉛により電解液中の硫酸がほとんど消費されてしまうため電解液は中性の水のような状態となり、硫酸鉛の溶解度が増加して電解液中に多量の解離した鉛イオンが浮遊して通電した瞬間に負極板上に針状のデンドライトが成長してセパレータを貫通し正極に到達したことが原因であると考えられる。
As shown in Table 1, the positive electrode active material density X [g / cm 3 ] is X = 4.0, and the ratio Y between the total amount A of the positive and negative electrode active materials and the sulfuric acid amount B is 0.30 or more (lead In the case of storage batteries 1 to 10), no osmotic short circuit is observed, and the positive electrode active material density X [g / cm 3 ] is X = 4.4, and the total amount A and sulfuric acid amount B of the positive and negative electrode active materials When the ratio Y was 0.25 or more (lead batteries 14 to 20), no permeation short circuit was observed.
However, the positive electrode active material density X [g / cm 3 ] is X = 4.0, and the ratio Y between the total amount A and the sulfuric acid amount B of the positive and negative electrode active materials is less than 0.30 (lead batteries 11 to 13). ), And the positive electrode active material density X [g / cm 3 ] is X = 4.4, and the ratio Y between the total amount A and the amount of sulfuric acid B of the positive and negative electrode active materials is less than 0.25 (lead storage battery 21 In the case of ˜23), the occurrence of an infiltration short circuit was confirmed. This is because the sulfuric acid in the electrolytic solution is almost consumed by the lead sulfate generated on the positive and negative electrode plates during overdischarge, and the electrolytic solution is neutral water. As the lead sulfate solubility increased and a large amount of dissociated lead ions floated in the electrolyte and became energized, needle-shaped dendrites grew on the negative electrode plate, penetrated the separator, and reached the positive electrode This is considered to be the cause.
図1は、表1に基づいて正極活物質密度X[g/cm3]と比率Yとの関係を示したものである。
ここで、図中に示されるY=−0.125X+0.8の近似曲線は、正極活物質密度X[g/cm3]がX=4.0およびX=4.4において、浸透短絡が見られなかった比率Yの最小値により算出したものである。図1に示されるように、正極活物質密度X[g/cm3]がX=4.0およびX=4.4において−0.125X+0.8≦Yでは浸透短絡の発生が無いことを示唆し、−0.125X+0.8≧Yでは浸透短絡が発生する。
なお、図中に示されるY=−0.125X+0.9の近似曲線は、本発明の好ましい範囲を示したのである。比率Yが−0.125X+0.8≦Yで浸透短絡の発生は見られないが、表1中の鉛蓄電池8や鉛蓄電池18では、必要以上に電解液量を増加するとか電解液濃度を上げる必要が生じ、その為に鉛蓄電池の化成時に電解液が溢れたり、濃度が濃いことによる弊害が発生する。
FIG. 1 shows the relationship between the positive electrode active material density X [g / cm 3 ] and the ratio Y based on Table 1.
Here, the approximated curve of Y = −0.125X + 0.8 shown in the figure shows an osmotic short circuit when the positive electrode active material density X [g / cm 3 ] is X = 4.0 and X = 4.4. It is calculated by the minimum value of the ratio Y that was not obtained. As shown in FIG. 1, when the positive electrode active material density X [g / cm 3 ] is −0.125X + 0.8 ≦ Y when X = 4.0 and X = 4.4, it is suggested that no permeation short circuit occurs. When −0.125X + 0.8 ≧ Y, a penetration short circuit occurs.
Note that the approximate curve of Y = −0.125X + 0.9 shown in the figure shows a preferable range of the present invention. Osmotic short-circuiting is not observed when the ratio Y is −0.125X + 0.8 ≦ Y. However, in the lead storage battery 8 and the lead storage battery 18 in Table 1, the amount of the electrolyte is increased more than necessary or the concentration of the electrolyte is increased. Therefore, when the lead acid battery is formed, the electrolyte solution overflows or the concentration is high.
次に、実施例1において算出した比率Yの近似曲線Y=−0.125X+0.8の優位性を確認するため、表2に記載の通り、正極活物質密度X[g/cm3]を3.6≦X≦4.8とし、比率Yを夫々変化させた以外は実施例1と同様の方法で自動車用の種々の液式鉛蓄電池を10個ずつ作製した(本発明1〜13、比較例1〜10)。
表2に、種々作製した自動車用の液式鉛蓄電池の正極活物質の充填量および密度、正極活物質と負極活物質の充填量の合計量A、硫酸量B、正極活物質と負極活物質の充填量の比率、比率Y=B/Aおよび浸透短絡の有無を示した。なお、浸透短絡の有無は実施例1と同様に電圧測定を行い浸透短絡の有無を確認した後、更に種々の自動車用液式鉛蓄電池を解体しセパレータへの鉛の浸透短絡の有無を目視によって確認した。
Next, in order to confirm the superiority of the approximate curve Y = −0.125X + 0.8 of the ratio Y calculated in Example 1, the positive electrode active material density X [g / cm 3 ] is 3 as shown in Table 2. 10 ≦ X ≦ 4.8 and 10 liquid lead-acid batteries for automobiles were manufactured in a similar manner to Example 1 except that the ratio Y was changed (Inventions 1 to 13 and Comparisons). Examples 1-10).
Table 2 shows the filling amount and density of the positive electrode active material, the total amount A of the positive electrode active material and the negative electrode active material, the sulfuric acid amount B, the positive electrode active material and the negative electrode active material of the liquid lead-acid batteries for automobiles produced in various ways. The ratio of the filling amount, the ratio Y = B / A, and the presence or absence of an osmotic short circuit are shown. In addition, the presence or absence of the penetration short-circuit was measured by measuring the voltage in the same manner as in Example 1, and then the presence or absence of the penetration short-circuit was confirmed. confirmed.
図2は、表2に基づいて 正極活物質密度X[g/cm3]と比率Yとの関係を示したものである。表2および図2に示されるように、正・負極活物質充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、比率Yを−0.125X+0.8≦Yとした範囲において浸透短絡は見られなかった。しかし、比率Yを−0.125X+0.8≧Yとした範囲において浸透短絡の発生が確認された。
なお、この場合においても、Yが−0.125x+0.9の値を超える場合は、浸透短絡の発生は見られないが、必要以上に電解液量を増加するとか電解液濃度を上げる必要が生じ、その為に鉛蓄電池の化成時に電解液が溢れたり、濃度が濃いことによる弊害が発生する。
FIG. 2 shows the relationship between the positive electrode active material density X [g / cm 3 ] and the ratio Y based on Table 2. As shown in Table 2 and FIG. 2, when the ratio (B / A) of the total amount A of the positive and negative electrode active materials and the amount of sulfuric acid B (B / A) is Y, and the positive electrode active material density is X [g / cm 3 ] In the range where the ratio Y was set to -0.125X + 0.8 ≦ Y, no osmotic short circuit was observed. However, the occurrence of permeation short circuit was confirmed in the range where the ratio Y was set to -0.125X + 0.8 ≧ Y.
Even in this case, when Y exceeds a value of −0.125x + 0.9, no permeation short circuit is observed, but it is necessary to increase the amount of electrolyte or increase the concentration of electrolyte more than necessary. Therefore, when the lead acid battery is formed, the electrolyte overflows or the concentration is high.
次に、種々作製した液式鉛蓄電池のうち−0.125X+0.8≦Y≦−0.125X+0.9(但し3.8≦X≦4.6)の範囲に入る代表的な液式鉛蓄電池(本発明2、6、11)、および範囲外の代表的な液式鉛蓄電池(比較例3、11)の正極板の利用率を確認するため5時間率放電試験を夫々行った。5時間率放電試験の条件は、環境温度25℃一定とし、放電電流5.4Aで放電終止電圧10.5Vで行った。そして、その時の正極活物質の利用率を算出した。
なお、本実施例において正極板の利用率の算出は、放電容量をap(g)、正極に含まれる全活物質量の理論容量をbp(g)とした時の両者の比率であり、正極活物質利用率(%)=ap/bp×100で表されるものとする。
その後、5時間率放電試験で用いた種々の液式鉛蓄電池(本発明2、6、11、比較例3、11)を用いて重負荷寿命試験を行った。重負荷寿命試験の条件は、40〜45℃の水槽中で、5Aの定電流放電を1時間、次いで1.25Aの定電流充電を5時間行った。この定電流放電および定電流充電を1サイクルとし、25サイクル毎に容量試験を行った。なお、容量試験の条件は、環境温度25℃一定とし、放電電流20.0Aで放電終止電圧10.5Vまで放電し、初期容量の50%を下回った時点で寿命とした。
表3は、種々作製した液式鉛蓄電池(本発明2、6、11、比較例3、11)の利用率と重負荷寿命試験のサイクル寿命結果を示したものである。
Next, typical liquid lead acid batteries that fall within the range of −0.125X + 0.8 ≦ Y ≦ −0.125X + 0.9 (provided that 3.8 ≦ X ≦ 4.6) among the various liquid lead acid batteries produced. (Inventions 2, 6, and 11) and a 5-hour rate discharge test were conducted to confirm the utilization rate of the positive electrode plates of typical liquid lead acid batteries (Comparative Examples 3 and 11) outside the range. The conditions for the 5-hour rate discharge test were set at a constant ambient temperature of 25 ° C., a discharge current of 5.4 A, and a final discharge voltage of 10.5 V. And the utilization factor of the positive electrode active material at that time was calculated.
In this example, the calculation of the utilization rate of the positive electrode plate is the ratio between the discharge capacity when ap (g) and the theoretical capacity of the total amount of active material contained in the positive electrode is bp (g). The active material utilization rate (%) = ap / bp × 100.
Then, the heavy load life test was done using the various liquid lead acid batteries (Invention 2, 6, 11, Comparative Example 3, 11) used in the 5-hour rate discharge test. The conditions of the heavy load life test were as follows: a constant current discharge of 5 A for 1 hour and then a constant current charge of 1.25 A for 5 hours in a water bath at 40 to 45 ° C. This constant current discharge and constant current charge was made into 1 cycle, and the capacity | capacitance test was done every 25 cycles. The capacity test was performed at a constant ambient temperature of 25 ° C., discharged at a discharge current of 20.0 A to a discharge end voltage of 10.5 V, and reached the end of life when it fell below 50% of the initial capacity.
Table 3 shows the utilization rate of various types of liquid lead acid batteries (Inventions 2, 6, 11 and Comparative Examples 3 and 11) and the cycle life results of the heavy load life test.
表3に示すように、種々の液式鉛蓄電池(本発明2、6、11、比較例3、11)において、本発明2、11は正極板の利用率およびサイクル寿命特性に優れており、それに比し、本発明6、比較例3、11は浸透短絡の発生は見られなかったものの、比較例3では利用率は良いもののサイクル寿命数が、比較例11ではサイクル寿命は良いものの利用率が大幅に低いことが分かる。重負荷寿試験後に種々の液式鉛蓄電池を解体したところ、比較例3では正極活物質密度が低いために活物資の軟化が促進していた。
なお、本発明6では規定量の硫酸量にするため構造上電解液比重を上げざるを得なかったため、本発明2、11の液式鉛蓄電池に比し格子腐食が進行して、サイクル寿命の大きな向上は得られなかった。
As shown in Table 3, in various liquid lead-acid batteries (Inventions 2, 6, 11 and Comparative Examples 3, 11), Inventions 2 and 11 are excellent in the utilization rate and cycle life characteristics of the positive electrode plate, In contrast, in the present invention 6 and Comparative Examples 3 and 11, no permeation short circuit was observed, but in Comparative Example 3, the utilization rate was good, but the cycle life number was good, but in Comparative Example 11, the utilization rate was good. Can be seen to be significantly lower. When various liquid lead-acid batteries were disassembled after the heavy load life test, in Comparative Example 3, softening of the active material was promoted because the positive electrode active material density was low.
In the present invention 6, since the specific amount of sulfuric acid was inevitably increased in order to obtain a prescribed amount of sulfuric acid, the lattice corrosion progressed as compared with the liquid lead acid batteries of the present inventions 2 and 11, and the cycle life was reduced. There was no significant improvement.
以上の結果より、充填量の合計Aと硫酸量Bの比率(B/A)をY、正極活物質密度をX[g/cm3]としたとき、−0.125X+0.8≦Y(但し3.8≦X≦4.6)とすることで、過放電放置によるデンドライト生成を抑制して短絡を防止し、且つ寿命特性が向上した液式鉛蓄電池を提供することができるものである。 From the above results, when the ratio (B / A) of the total amount A and the sulfuric acid amount B is Y and the positive electrode active material density is X [g / cm 3 ], −0.125X + 0.8 ≦ Y (provided that By satisfying 3.8 ≦ X ≦ 4.6), it is possible to provide a liquid lead-acid battery that suppresses generation of dendrites due to being left overdischarged, prevents a short circuit, and has improved life characteristics.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006317478A JP2008130516A (en) | 2006-11-24 | 2006-11-24 | Liquid lead-acid storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006317478A JP2008130516A (en) | 2006-11-24 | 2006-11-24 | Liquid lead-acid storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008130516A true JP2008130516A (en) | 2008-06-05 |
Family
ID=39556124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006317478A Pending JP2008130516A (en) | 2006-11-24 | 2006-11-24 | Liquid lead-acid storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008130516A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013098016A (en) * | 2011-11-01 | 2013-05-20 | Shin Kobe Electric Mach Co Ltd | Lead acid battery |
JPWO2011108175A1 (en) * | 2010-03-02 | 2013-06-20 | 新神戸電機株式会社 | Lead acid battery |
WO2014076883A1 (en) * | 2012-11-13 | 2014-05-22 | パナソニック株式会社 | Lead-acid cell |
WO2014128803A1 (en) * | 2013-02-22 | 2014-08-28 | 株式会社Gsユアサ | Flooded lead-acid battery |
JP2015032482A (en) * | 2013-08-02 | 2015-02-16 | 株式会社Gsユアサ | Liquid-type lead storage battery |
JP2018116943A (en) * | 2015-06-18 | 2018-07-26 | 日立化成株式会社 | Lead storage battery |
JP2020047555A (en) * | 2018-09-21 | 2020-03-26 | 古河電池株式会社 | Liquid lead storage battery |
CN111883856A (en) * | 2020-01-19 | 2020-11-03 | 超威电源集团有限公司 | Method for manufacturing lead-acid storage battery |
JP2021114404A (en) * | 2020-01-17 | 2021-08-05 | 古河電池株式会社 | Lead acid battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62119875A (en) * | 1985-11-18 | 1987-06-01 | Yuasa Battery Co Ltd | Lead storage battery |
JPS62154579A (en) * | 1985-12-27 | 1987-07-09 | Furukawa Battery Co Ltd:The | Lead-acid battery |
JPH07183029A (en) * | 1993-12-22 | 1995-07-21 | Japan Storage Battery Co Ltd | Manufacture of lead-acid battery |
JP2003151617A (en) * | 2001-11-14 | 2003-05-23 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2006100082A (en) * | 2004-09-29 | 2006-04-13 | Furukawa Battery Co Ltd:The | Lead-acid storage battery |
-
2006
- 2006-11-24 JP JP2006317478A patent/JP2008130516A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62119875A (en) * | 1985-11-18 | 1987-06-01 | Yuasa Battery Co Ltd | Lead storage battery |
JPS62154579A (en) * | 1985-12-27 | 1987-07-09 | Furukawa Battery Co Ltd:The | Lead-acid battery |
JPH07183029A (en) * | 1993-12-22 | 1995-07-21 | Japan Storage Battery Co Ltd | Manufacture of lead-acid battery |
JP2003151617A (en) * | 2001-11-14 | 2003-05-23 | Japan Storage Battery Co Ltd | Lead-acid battery |
JP2006100082A (en) * | 2004-09-29 | 2006-04-13 | Furukawa Battery Co Ltd:The | Lead-acid storage battery |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2011108175A1 (en) * | 2010-03-02 | 2013-06-20 | 新神戸電機株式会社 | Lead acid battery |
JP5598532B2 (en) * | 2010-03-02 | 2014-10-01 | 新神戸電機株式会社 | Lead acid battery |
JP2013098016A (en) * | 2011-11-01 | 2013-05-20 | Shin Kobe Electric Mach Co Ltd | Lead acid battery |
JPWO2014076883A1 (en) * | 2012-11-13 | 2017-01-05 | パナソニック株式会社 | Lead-acid battery for auxiliary equipment in hybrid vehicles |
WO2014076883A1 (en) * | 2012-11-13 | 2014-05-22 | パナソニック株式会社 | Lead-acid cell |
WO2014128803A1 (en) * | 2013-02-22 | 2014-08-28 | 株式会社Gsユアサ | Flooded lead-acid battery |
JPWO2014128803A1 (en) * | 2013-02-22 | 2017-02-02 | 株式会社Gsユアサ | Liquid lead-acid battery |
US9570779B2 (en) | 2013-02-22 | 2017-02-14 | Gs Yuasa International Ltd. | Flooded lead-acid battery |
JP2015032482A (en) * | 2013-08-02 | 2015-02-16 | 株式会社Gsユアサ | Liquid-type lead storage battery |
JP2018116943A (en) * | 2015-06-18 | 2018-07-26 | 日立化成株式会社 | Lead storage battery |
JP2020017547A (en) * | 2015-06-18 | 2020-01-30 | 日立化成株式会社 | Lead storage battery |
JP2020047555A (en) * | 2018-09-21 | 2020-03-26 | 古河電池株式会社 | Liquid lead storage battery |
JP2021114404A (en) * | 2020-01-17 | 2021-08-05 | 古河電池株式会社 | Lead acid battery |
JP7128483B2 (en) | 2020-01-17 | 2022-08-31 | 古河電池株式会社 | lead acid battery |
CN111883856A (en) * | 2020-01-19 | 2020-11-03 | 超威电源集团有限公司 | Method for manufacturing lead-acid storage battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Review on the research of failure modes and mechanism for lead–acid batteries | |
JP2008130516A (en) | Liquid lead-acid storage battery | |
CN103109412B (en) | Lead battery and be equipped with the idling stop vehicle of this lead battery | |
JP2008243487A (en) | Lead acid battery | |
JPWO2014097522A1 (en) | Lead acid battery | |
JP6168138B2 (en) | Liquid lead-acid battery | |
WO2014162674A1 (en) | Lead acid storage battery | |
JP5748091B2 (en) | Lead acid battery | |
CN101777650B (en) | Battery and cathode composition thereof | |
JP2014123510A (en) | Lead storage battery | |
US20030228525A1 (en) | Lead-acid battery having an organic polymer additive and process thereof | |
JP2013134957A (en) | Method for manufacturing lead-acid battery, and lead-acid battery | |
US7160645B2 (en) | Lead-acid battery having an organic polymer additive and process thereof | |
JP5531746B2 (en) | Lead acid battery | |
JP2006114417A (en) | Lead-acid storage battery | |
JP2007035339A (en) | Control valve type lead-acid storage battery | |
JP2004014283A (en) | Valve regulated lead battery | |
JP6921037B2 (en) | Lead-acid battery | |
JP6164502B2 (en) | Lead acid battery | |
JP2014160588A (en) | Control valve type lead storage battery | |
JP3094423B2 (en) | Lead storage battery | |
JP2005294142A (en) | Lead storage battery | |
JP5909974B2 (en) | Lead acid battery | |
JP2006155901A (en) | Control valve type lead-acid storage battery | |
JP2011159551A (en) | Lead-acid storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120309 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120821 |