JPH07183029A - Manufacture of lead-acid battery - Google Patents
Manufacture of lead-acid batteryInfo
- Publication number
- JPH07183029A JPH07183029A JP5346275A JP34627593A JPH07183029A JP H07183029 A JPH07183029 A JP H07183029A JP 5346275 A JP5346275 A JP 5346275A JP 34627593 A JP34627593 A JP 34627593A JP H07183029 A JPH07183029 A JP H07183029A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- lead
- unformed
- sulfuric acid
- electrode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は鉛蓄電池の製造方法の改
良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method of manufacturing a lead storage battery.
【0002】[0002]
【従来の技術とその課題】現在、鉛蓄電池は自動車用や
電動車用、ポータブル機器用をはじめとしてあらゆる分
野で用いられており、その中でも自動車用電池の生産量
が最も多い。2. Description of the Related Art At present, lead-acid batteries are used in all fields including automobiles, electric vehicles, portable devices and the like, and among them, the amount of automobile batteries produced is the largest.
【0003】自動車用電池のもっとも重要な性能はエン
ジンを始動させるための、大きな電流と高い電圧とを必
要とするセルモーターを充分に回転させることであり、
この始動性能、すなわち高率放電性能が自動車用鉛蓄電
池の良否を判定する基準になる。The most important performance of an automobile battery is to fully rotate a starter motor, which requires a large current and a high voltage, to start the engine.
This starting performance, that is, the high rate discharge performance is a criterion for judging the quality of the lead acid battery for automobiles.
【0004】鉛蓄電池の高率放電性能は温度依存性が強
く、低温になるほどその性能が低下する。そのために、
長期間使用し寿命末期に近づいた自動車用鉛蓄電池は比
較的気温の高い春から秋のはじめにかけてはなんとかエ
ンジンを始動させることができるが、気温が低下し始め
る秋の終わりから冬にかけて高率放電性能が著しく低下
し、エンジンが始動できない状態になって寿命となるこ
とが多い。The high rate discharge performance of a lead storage battery has a strong temperature dependency, and its performance decreases as the temperature decreases. for that reason,
A lead-acid battery for automobiles that has been used for a long time and is nearing the end of its life can manage to start the engine from spring to early autumn when the temperature is relatively high, but high rate discharge from the end of autumn to winter when the temperature begins to drop. Performance is significantly reduced, and the engine often fails to start and reaches the end of its life.
【0005】このように、自動車用電池は冬期にエンジ
ンが始動できなくなって寿命となることが多く、需要が
集中する傾向がある。As described above, in the case of automobile batteries, the engine cannot be started in winter and the service life is often long, and demand tends to be concentrated.
【0006】電池製造メーカーにとって電池の需要は年
間を通して安定しているのが望ましく、需要期に必要な
電池を生産できるだけの設備を保有しようとすると不需
要期に生産過多になったり、あるいは生産設備を遊ばせ
ておかなければならなくなる。For battery manufacturers, it is desirable that the demand for batteries be stable throughout the year, and if it is attempted to have equipment capable of producing the batteries required during the demand period, the production will become excessive during the non-demand period or the production facilities Will have to keep playing.
【0007】そこで、不需要期に生産した電池を保存し
ておき、これを需要期に出荷する工夫が種々考えられ、
実際に採用されている。[0007] Therefore, various ideas have been conceived for storing the batteries produced during the non-demand period and shipping the batteries during the demand period.
It is actually adopted.
【0008】鉛蓄電池の製造方法には、極板の化成方法
について分類すると電槽化成とタンク化成とがある。電
槽化成は未化成の正極板と未化成の負極板とを用いて組
み立てた電池に電解液である希硫酸を注入し、あらかじ
め決めた電流で所定時間通電して化成する方法である。
この方法の場合、電槽化成したのちの電池を保存してお
くと自己放電のために容量および電解液の比重が低下
し、実際に車に搭載されるときには保存期間に見合った
補充電を行なわなければならなず、放置期間が長くなり
すぎると補充電しても元の容量まで回復しないという欠
点がある。The method of manufacturing a lead storage battery is classified into a battery case formation and a tank formation when the electrode plate formation method is classified. The battery case formation is a method in which diluted sulfuric acid, which is an electrolytic solution, is injected into a battery assembled by using an unformed positive electrode plate and an unformed negative electrode plate, and a predetermined current is applied for a predetermined time to perform formation.
In this method, if the battery after forming the battery case is stored, the capacity and the specific gravity of the electrolyte will decrease due to self-discharge, and when the battery is actually installed in the vehicle, supplementary charging corresponding to the storage period will be performed. However, if the battery is left for too long, it will not recover to the original capacity even if it is supplemented.
【0009】また、組み立てた電池を未化成のまま保存
して、需要期に希硫酸を注入して化成を行なうことも考
えられる。しかし、未化成のままで電池を保存すると、
未化成の極板の主成分である一酸化鉛が保存中に空気中
の二酸化炭素と反応して炭酸鉛を生成し、希硫酸を注入
したときにこれが希硫酸と反応して硫酸鉛になる際に極
板から脱落して容量がでなかったり、極板下部で短絡を
起こしたりする欠点がある。It is also conceivable to store the assembled battery in an unformed state and inject it with dilute sulfuric acid during the demand period to perform the formation. However, if the battery is stored unformed,
Lead monoxide, which is the main component of the unformed electrode, reacts with carbon dioxide in the air during storage to produce lead carbonate, and when dilute sulfuric acid is injected, this reacts with dilute sulfuric acid to form lead sulfate. At that time, there is a defect that the electrode is dropped from the electrode plate to lose the capacity, or a short circuit occurs at the lower part of the electrode plate.
【0010】一方、タンク化成は極板のまま希硫酸中で
化成する方法で、化成後、水洗し不活性ガス中で乾燥を
行なった正極板および負極板を用いて電池を組み立て、
車に搭載する直前に電解液を注入し、そのまま使用す
る。この場合、電池を組み立ててから車に搭載するまで
の保存中に電槽化成を行なった電池のように自己放電を
起こすことはなく、未化成で電池を保存したときのよう
に炭酸鉛を生成することもない。しかしながら、極板化
成を行なった負極板はわずかな水分の存在下で、空気中
の酸素と反応して酸化鉛を生成し、電解液である希硫酸
を注入すると酸化鉛が硫酸鉛となり、放電できなくなっ
てしまう。On the other hand, the tank formation is a method of forming the electrode plate in dilute sulfuric acid as it is. After the formation, a battery is assembled by using a positive electrode plate and a negative electrode plate which are washed with water and dried in an inert gas.
Just inject the electrolyte just before mounting it in the car and use it as it is. In this case, it does not cause self-discharge like the battery that has undergone battery case formation during storage from the time the battery is assembled to the time it is installed in the car, and it produces lead carbonate as if the battery had not been formed. There is nothing to do. However, the negative electrode plate that has undergone electrode plate formation reacts with oxygen in the air to produce lead oxide in the presence of a slight amount of water, and when dilute sulfuric acid, which is the electrolyte, is injected, lead oxide becomes lead sulfate and discharge. I can not do it.
【0011】また、極板化成を行なった正極板はこれも
わずかな水分の存在下で格子である鉛と活物質である二
酸化鉛とが反応して格子と活物質との界面に一酸化鉛が
生成し、電解液である希硫酸を注入すると硫酸鉛とな
り、これが放電時の抵抗となって放電できなくなる現象
を引き起こすという欠点がある。Further, in the positive electrode plate subjected to the electrode plate formation, lead, which is also a lattice, reacts with lead dioxide, which is an active material, in the presence of a slight amount of water, and lead monoxide is present at the interface between the lattice and the active material. Is generated, and when dilute sulfuric acid as an electrolytic solution is injected, it becomes lead sulfate, which becomes a resistance at the time of discharge and causes a phenomenon that discharge cannot be performed.
【0012】[0012]
【課題を解決するための手段】本発明は上述の問題点を
除去するもので、その内容は未化成の正極板および未化
成の負極板とをセパレータを介して交互に積層してなる
極板群を電槽に収納し、電池組立後に電槽に密封処理を
施し、使用前に開封して希硫酸を注入して化成をおこな
うことを特徴とし、性能を低下させることなく長期間保
存することのできる鉛蓄電池を提供するものである。DISCLOSURE OF THE INVENTION The present invention eliminates the above-mentioned problems, and its contents are an electrode plate in which an unformed positive electrode plate and an unformed negative electrode plate are alternately laminated with a separator interposed therebetween. The group is stored in a battery case, the battery case is sealed after the battery is assembled, the container is opened before use and diluted sulfuric acid is injected to perform chemical conversion, and it is stored for a long time without degrading the performance. The present invention provides a lead acid battery that can be used.
【0013】[0013]
【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.
【0014】鉛粉に希硫酸を加えて練合して調整した正
極ペーストをPb−Sb系合金格子に充填し、熟成を施
したのち乾燥して未化成の正極板を作製した。一方、鉛
粉に少量の添加剤を加えて混合したのち、希硫酸を加え
て練合し、Pb−Sb合金格子に充填し、熟成を施した
のち乾燥して未化成の負極板を作製した。A positive electrode paste prepared by adding dilute sulfuric acid to lead powder and kneading the mixture was filled in a Pb-Sb alloy grid, aged and dried to prepare an unformed positive electrode plate. On the other hand, a small amount of an additive was added to lead powder, mixed with dilute sulfuric acid, kneaded, filled in a Pb-Sb alloy lattice, aged, and dried to prepare an unformed negative electrode plate. .
【0015】この未化成の正極板4枚と未化成の負極板
5枚とを隔離体を介して積層した極板群を電槽に収納し
て液式の自動車用鉛蓄電池(公称容量28Ah、5時間
率)を組み立て、注液口に孔の開いていない密封液栓を
取り付けて電池内に大気が進入しないように密封処理を
施し、鉛蓄電池Aを作製した。本実施例では電池を密封
するために孔の開いていない密封液栓を用いたが、電池
全体を合成樹脂製の袋にいれて密封してもよいし、アル
ミシールなどを注液口に溶着して密封してもよい。A battery-type lead acid battery for automobiles (nominal capacity 28 Ah, a nominal capacity of 28 Ah, with a capacity of 28 Ah (5 hour rate) was assembled, a sealing liquid stopper having no holes was attached to the liquid injection port, and a sealing treatment was performed so that the atmosphere did not enter the battery, thereby producing a lead acid battery A. In this embodiment, a sealing liquid stopper having no holes was used to seal the battery, but the entire battery may be put in a synthetic resin bag to be sealed, or an aluminum seal or the like may be welded to the liquid injection port. May be sealed.
【0016】このようにして作製した電池Aを40℃の
部屋に保存し、3カ月ごとに取り出して開封し、希硫酸
を注入したのち電槽化成をおこない、5時間率容量およ
び低温ハイレート容量を調べた。なお、比較のために同
じロットの未化成の正・負極板を用いて組み立て密封処
理を施していない電池Bも同様に40℃の部屋に保存
し、3カ月ごとに取り出して希硫酸を注入したのち電槽
化成をおこない、5時間率容量および低温ハイレート容
量を調べた。The battery A thus prepared was stored in a room at 40 ° C., taken out every three months and opened, and after dilute sulfuric acid was injected, battery case formation was carried out to obtain a 5-hour rate capacity and a low temperature high rate capacity. Examined. For comparison, the battery B which was not assembled and sealed using the unformed positive and negative electrode plates of the same lot was also stored in a room at 40 ° C., taken out every three months, and injected with dilute sulfuric acid. After that, battery case formation was performed and the 5-hour rate capacity and the low temperature high rate capacity were examined.
【0017】また、同じロットの未化成の正・負極板を
用いて組み立て、組立後直ちに希硫酸を注入して電槽化
成をおこなった電池Cについても同様に40℃の部屋に
保存し、3カ月ごとに取り出して充分に補充電をおこな
ったのち、5時間率容量および低温ハイレート容量を調
べた。The battery C, which was assembled using unformed positive and negative electrode plates of the same lot and was injected with dilute sulfuric acid immediately after assembly to perform battery case formation, was also stored in a room at 40 ° C. After being taken out every month and fully supplemented, the 5-hour rate capacity and the low temperature high rate capacity were examined.
【0018】さらに、電池Aおよび電池Bを6カ月間保
存したのち電槽化成をおこなった電池A6およびB6に
ついてJISーD5301に規定された軽負荷寿命試験
に供した。比較のために電池組立後直ちに電槽化成をお
こなった電池Cを放置せずにそのまま(電池C0)、お
よび、6カ月保存したのち補充電をおこなった電池C6
についても同様の寿命試験に供した。Further, after the batteries A and B were stored for 6 months, the batteries A6 and B6 subjected to battery case formation were subjected to a light load life test stipulated in JIS-D5301. For comparison, the battery C, which has been subjected to battery case formation immediately after battery assembly, is not left as it is (battery C0), and is stored for 6 months and then subjected to supplemental charging, and is a battery C6.
Was also subjected to the same life test.
【0019】図1に保存期間と5時間率容量との関係
を、図2に保存期間と低温ハイレート容量との関係を、
図3に軽負荷寿命試験の結果を示す。FIG. 1 shows the relationship between the storage period and the 5-hour rate capacity, and FIG. 2 shows the relationship between the storage period and the low temperature high rate capacity.
Figure 3 shows the results of the light load life test.
【0020】電池組立後直ちに電槽化成をおこなった電
池Cは保存期間が長くなるとともに5時間率容量および
低温ハイレート容量ともに低下し、特に保存期間が6カ
月以上になると性能低下が著しくなった。これは保存中
の自己放電で生成した硫酸鉛が保存期間が長くなるにし
たがい大きく成長し、補充電を過剰におこなっても正極
ではPbO2、負極ではPbに完全には戻らなかったも
のと考えられる。Battery C, which had been subjected to battery case formation immediately after battery assembly, had a longer storage period and a decrease in both the 5-hour rate capacity and the low-temperature high-rate capacity, and especially when the storage period was 6 months or more, the performance deteriorated significantly. It is considered that this is because lead sulfate generated by self-discharge during storage grew greatly as the storage period became longer, and did not completely return to PbO2 in the positive electrode and Pb in the negative electrode even if excessive supplementary charging was performed. .
【0021】6カ月保存したのち補充電をおこなった電
池C6のJIS軽負荷寿命性能は約2000サイクル以
下で、組み立ててすぐに電槽化成をおこない寿命試験に
供した電池C0の寿命性能(約3500サイクル)より
もかなり劣っていた。上述した硫酸鉛が充分に充電でき
なくなったことによるものと思われる。The JIS C light load life performance of the battery C6 which has been stored for 6 months and then subjected to supplementary charge is about 2000 cycles or less, and the life performance of the battery C0 (about 3500) subjected to a life test by performing battery case formation immediately after assembly. Cycle) was much worse. This is probably because the lead sulfate described above could not be fully charged.
【0022】一方、密封処理を施さずに未化成のまま保
存した電池Bは電槽化成を施した後に保存した電池Cほ
どではなかったものの、この電池の5時間率容量および
低温ハイレート容量は保存期間とともに低下した。密封
処理を施さずに6カ月保存したのち電槽化成をおこなっ
た電池B6をJIS軽負荷寿命試験に供したところ、約
1700サイクルで寿命となり、寿命試験後に電池を解
体すると正極活物質の軟化が著しく、これが短寿命の原
因と思われた。密封処理を施さずに未化成のまま電池を
保存すると、大気中の二酸化炭素と未化成の活物質とが
反応して炭酸鉛が生成し、これが活物質の劣化を引き起
こしたものと考えられる。On the other hand, although the battery B stored without being sealed without being sealed was not as good as the battery C stored after being subjected to battery case formation, the 5 hour rate capacity and the low temperature high rate capacity of this cell were saved. Declined over time. When the battery B6, which had been stored for 6 months without sealing treatment and then subjected to battery case formation, was subjected to a JIS light load life test, it had a life of about 1700 cycles. Remarkably, this seemed to be the cause of the short life. It is considered that when the battery is stored in an unformed state without being sealed, carbon dioxide in the atmosphere reacts with the unformed active material to produce lead carbonate, which causes deterioration of the active material.
【0023】また、密封処理を施して未化成のまま保存
した電池Aは約1年間保存しても電槽化成後の5時間率
容量および低温ハイレート容量ともにほとんど低下しな
かった。また、密封処理を施して6カ月保存したのち電
槽化成をおこなった本発明による電池A6をJIS規格
に規定されている軽負荷寿命試験に供したところ、電池
組立後直ちに電槽化成をおこない、保存せずに軽負荷寿
命試験に供した電池C0とほぼ同等の寿命性能を示し
た。未化成の正・負極板を用いて組み立てた電池に密封
処理を施すことにより、活物質の劣化を引き起こさずに
長期間保存できたものと思われる。Battery A, which had been sealed and stored in an unformed state, showed almost no decrease in both the 5-hour rate capacity and the low temperature high rate capacity after the cell formation even after being stored for about 1 year. Further, the battery A6 according to the present invention, which was subjected to a sealing treatment and stored for 6 months and then formed into a battery case, was subjected to a light load life test stipulated in the JIS standard. The battery exhibited almost the same life performance as the battery C0 used for the light load life test without storing. It is considered that the battery assembled by using the unformed positive and negative electrode plates could be stored for a long period of time without causing deterioration of the active material by performing the sealing treatment.
【0024】なお、本実施例では正・負極板ともにPb
−Sb合金格子を用いた。これは放置中の自己放電が最
も大きく、本発明の効果が最も顕著に現われた場合につ
いて示したものであって、正・負極板ともに、あるいは
どちらかにPb−Ca系合金を用いた場合であっても未
化成極板を用いて電池を組み立て密封して保存すること
により保存中の活物質の劣化を抑制することができた。In this embodiment, Pb is used for both the positive and negative electrodes.
A -Sb alloy grid was used. This shows the case where the self-discharge during standing is the largest and the effect of the present invention is most prominent, and in the case where the Pb-Ca alloy is used for the positive and / or negative electrode plates. Even if there was, it was possible to suppress deterioration of the active material during storage by assembling and sealing the battery using the unformed electrode plate and storing.
【0025】[0025]
【発明の効果】上述の実施例からも明らかなように、本
発明は、未化成の正・負極板を用いて組み立てた電池に
密封処理を施すことにより、電池性能を低下させること
なく長期間保存することができ、製品の品質の安定化が
はかれ、さらに年間を通して安定に生産することがで
き、その工業的価値は甚だ大なるものである。As is apparent from the above-described embodiments, the present invention provides a battery assembled by using the unformed positive and negative electrode plates with a sealing treatment so that the battery performance is not deteriorated for a long period of time. It can be preserved, the product quality is stabilized, and it can be stably produced throughout the year, and its industrial value is enormous.
【図1】保存期間と5時間率容量との関係を示す図FIG. 1 is a diagram showing a relationship between a storage period and a 5-hour rate capacity.
【図2】保存期間と低温ハイレート容量との関係を示す
図FIG. 2 is a diagram showing a relationship between a storage period and a low temperature high rate capacity.
【図3】JISD5301軽負荷寿命試験結果図[Fig. 3] JIS D5301 light load life test result diagram
Claims (1)
パレータを介して交互に積層してなる極板群を電槽に収
納し、電池組立後に電槽に密封処理を施し、使用前に開
封して希硫酸を注入して化成をおこなうことを特徴とす
る鉛蓄電池の製造方法。1. An electrode group, in which an unformed positive electrode plate and an unformed negative electrode plate are alternately laminated with a separator in between, is housed in a battery case, and after the battery is assembled, the battery container is sealed and used. A method for manufacturing a lead acid battery, which comprises unsealing before and injecting dilute sulfuric acid to perform chemical conversion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5346275A JPH07183029A (en) | 1993-12-22 | 1993-12-22 | Manufacture of lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5346275A JPH07183029A (en) | 1993-12-22 | 1993-12-22 | Manufacture of lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07183029A true JPH07183029A (en) | 1995-07-21 |
Family
ID=18382304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5346275A Pending JPH07183029A (en) | 1993-12-22 | 1993-12-22 | Manufacture of lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07183029A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008130516A (en) * | 2006-11-24 | 2008-06-05 | Furukawa Battery Co Ltd:The | Liquid lead-acid storage battery |
-
1993
- 1993-12-22 JP JP5346275A patent/JPH07183029A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008130516A (en) * | 2006-11-24 | 2008-06-05 | Furukawa Battery Co Ltd:The | Liquid lead-acid storage battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI459610B (en) | Flooded lead-acid battery and method of making the same | |
EP1729364B1 (en) | Lead battery and lead battery storage method | |
WO2014162674A1 (en) | Lead acid storage battery | |
JP2014157703A (en) | Lead accumulator | |
EP0809311A1 (en) | Negative electrode plate for lead storage battery containing graphite powder | |
WO2013114822A1 (en) | Lead-acid battery | |
JP2003174734A (en) | Hybrid secondary battery | |
JP4515902B2 (en) | Lead acid battery | |
JP3936157B2 (en) | Manufacturing method for sealed lead-acid batteries | |
JP2002025630A (en) | Power supply system of running vehicle | |
EP2381524B1 (en) | Lead acid battery | |
US5935731A (en) | Cylindrical battery | |
JPH07153496A (en) | Secondary battery | |
JPH07183029A (en) | Manufacture of lead-acid battery | |
JP5573785B2 (en) | Lead acid battery | |
JP4010630B2 (en) | Hydrogen storage alloy electrode | |
JP2003219575A (en) | Power system | |
JP2007035339A (en) | Control valve type lead-acid storage battery | |
JP4356321B2 (en) | Lead acid battery | |
JP2003338312A (en) | Control valve type lead-acid battery | |
JPH09306443A (en) | Non-aqueous electrolyte battery | |
WO2020066763A1 (en) | Lead battery | |
JP2003086254A (en) | Hybrid secondary battery | |
JP2001286004A (en) | Power supply system for running vehicle | |
JP4232385B2 (en) | Control valve type lead acid battery |