WO2014162674A1 - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
WO2014162674A1
WO2014162674A1 PCT/JP2014/001548 JP2014001548W WO2014162674A1 WO 2014162674 A1 WO2014162674 A1 WO 2014162674A1 JP 2014001548 W JP2014001548 W JP 2014001548W WO 2014162674 A1 WO2014162674 A1 WO 2014162674A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode plate
lead
positive electrode
storage battery
Prior art date
Application number
PCT/JP2014/001548
Other languages
French (fr)
Japanese (ja)
Inventor
悦子 小笠原
岬 原田
杉江 一宏
下田 一彦
健治 泉
小島 優
亮太 菊地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014162674A1 publication Critical patent/WO2014162674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery used in an idling stop vehicle.
  • the idling stop vehicle can improve fuel efficiency by stopping the engine while it is stopped.
  • the lead storage battery supplies all electric power such as an air conditioner and a fan during idling stop, the lead storage battery tends to be insufficiently charged. Therefore, the lead storage battery is required to have a high charge acceptability that can be charged more in a short time in order to solve the shortage of charging.
  • the lead storage battery is also required to have high durability in order to eliminate the decrease in life.
  • Patent Document 1 describes a lead storage battery in which aluminum ions are contained in an electrolytic solution. Aluminum ions have the effect of suppressing the coarsening of the lead sulfate crystals produced at the positive and negative electrodes during discharge, thereby improving the charge acceptance performance of the lead storage battery.
  • Patent Document 2 describes a lead storage battery in which a lead alloy layer containing antimony is provided on the surface of a negative electrode lattice not containing antimony.
  • the lead alloy layer containing antimony has an effect of efficiently charging and recovering the negative electrode plate, and thereby the durability of the lead storage battery can be improved.
  • Patent Document 3 discloses that by adding an alkali metal sulfate such as Na 2 SO 4 to the electrolytic solution, generation of lead ions accompanying a decrease in sulfuric acid concentration during overdischarge is suppressed, and on the negative electrode during charging. A technique for preventing a short circuit from occurring between the positive electrode and the negative electrode due to the growth of PbSO 4 is described.
  • Na 2 SO 4 added to the electrolytic solution has an effect of suppressing a decrease in conductivity of the electrolytic solution accompanying a decrease in sulfuric acid concentration during overdischarge and improving charge recovery after overdischarge.
  • the idling stop vehicle may be provided with a fail-safe mechanism that does not discharge the lead storage battery when the state of charge (SOC) becomes a predetermined value (for example, 60%) or less. is there.
  • SOC state of charge
  • FIG. 1 is a graph schematically showing a state of charge (SOC) when a lead-acid battery is repeatedly discharged and charged in an idling stop vehicle.
  • SOC state of charge
  • the lead-acid battery has a high charge acceptance, the lead-acid battery recovers to about 100% while the car is running. Therefore, even if the idling stop car is run for a long time as shown in the line graph A in FIG. The charge / discharge of the lead storage battery can be repeated.
  • the fail-safe mechanism when the car stops in a state where the charging cannot be sufficiently performed during traveling and the SOC does not recover to 100%, Decrease in SOC due to discharge increases. When such charging / discharging is repeated, the SOC gradually decreases.
  • the fail-safe mechanism when the fail-safe mechanism is provided in the idling stop vehicle, the fail-safe mechanism is activated and the discharge is stopped when the SOC becomes a predetermined value (for example, 60%) or less.
  • the fail-safe mechanism when driving a car with a short mileage (hereinafter referred to as “choy ride”), the fail-safe mechanism is frequently used because the SOC cannot be fully charged and the SOC does not recover to 100%. Invite the situation to operate. Furthermore, when “choy ride” is performed only on weekends, the state of operation of the fail-safe mechanism becomes more conspicuous because the SOC is further lowered due to self-discharge and dark current while the vehicle is stopped.
  • the lead storage battery used in the “choi riding” mode as shown in FIG. Even if the lead-acid battery is recovered after overdischarge, if it is used again in the “choi riding” mode, overdischarge due to a decrease in SOC occurs. It is preferable that the number of repetitions of “choi riding” and overdischarge is as small as possible, but sufficient charge acceptance and overdischarge that can be applied to idling stop vehicles used in such “choi riding” mode in the past. There was no lead-acid battery that had both later charge recovery properties.
  • the present invention has been made in view of such problems, and its main purpose is to provide sufficient charge acceptance and charge recovery after overdischarge that can be applied to an idling stop vehicle used in the “choi ride” mode.
  • the purpose is to provide a lead-acid storage battery.
  • a lead storage battery is a lead storage battery in which a group of electrode plates in which a plurality of positive and negative electrode plates are laminated via a separator is housed in a cell chamber together with an electrolyte, and the positive electrode plate contains antimony
  • each of the positive electrode plate and the negative electrode plate is provided with ears at the top thereof, and the plurality of positive electrode plates accommodated in the cell chamber are connected in parallel by a positive electrode strap and are accommodated in the cell chamber.
  • the plurality of negative electrode plates are connected in parallel by a negative electrode strap, the electrode groups accommodated in adjacent cell chambers are connected in series, and the ears of the negative electrode plates are wider at the lower end than at the upper end.
  • the upper end of the ear portion of the positive electrode plate is narrower than the upper end of the ear portion of the negative electrode plate.
  • the negative electrode strap contains antimony.
  • the present invention it is possible to provide a lead storage battery having both sufficient charge acceptance and charge recovery after overdischarge, which can be applied to an idling stop vehicle used in the “choi ride” mode.
  • FIG. 1 is an overview diagram schematically showing a configuration of a lead storage battery in an embodiment of the present invention. It is the general-view figure which showed the principal part of the lead acid battery in other embodiment of this invention.
  • FIG. 2 is an overview diagram schematically showing the configuration of the lead-acid battery 1 in the first embodiment of the present invention.
  • an electrode plate group 5 in which a plurality of positive electrode plates 2 and negative electrode plates 3 are laminated via a separator 4 is accommodated in a cell chamber 6 together with an electrolytic solution.
  • the positive electrode plate 2 includes a positive electrode lattice and a positive electrode active material filled in the positive electrode lattice
  • the negative electrode plate 3 includes a negative electrode lattice and a negative electrode active material filled in the negative electrode lattice.
  • the positive electrode lattice and the negative electrode lattice in this embodiment are both made of lead or a lead alloy containing no antimony (Sb), for example, a Pb—Ca alloy, a Pb—Sn alloy, or a Pb—Sn—Ca alloy.
  • the plurality of positive electrode plates 2 are connected in parallel with each other by the positive electrode straps 7 between the positive electrode lattice ears 9, and the plurality of negative electrode plates 3 are connected in parallel with each other through the negative electrode lattice ears 10 between the negative electrode straps 8.
  • the plurality of electrode plate groups 5 accommodated in each cell chamber 6 are connected in series by a connection body 11.
  • Polar columns (not shown) are welded to the positive strap 7 and the negative strap 8 in the cell chambers 6 at both ends, respectively, and the respective polar columns are connected to the positive terminal 12 and the negative terminal 13 disposed on the lid 14. Each is welded.
  • a surface layer (not shown) made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice.
  • the lead alloy containing antimony has an effect of lowering the hydrogen overvoltage, whereby the charge acceptability of the lead storage battery 1 can be improved.
  • the surface layer is preferably made of a Pb—Sb alloy having an antimony content of 1.0 to 5.0 mass%. When the content of antimony is less than 1.0% by mass, the effect of improving the charge acceptance of the lead storage battery 1 is low. When the content is more than 5.0% by mass, the electrolysis of water contained in the electrolytic solution is reduced. This promotes an increase in the amount of liquid reduction.
  • the electrolytic solution contains aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L.
  • the aluminum ions in the electrolytic solution have an effect of improving charge acceptance so as to be able to cope with a short charging time in the “choi riding” mode.
  • sodium ions in the electrolyte have an effect of improving charge recovery after overdischarge. As a result, the SOC is easily pushed up during a short charging time in the “choi riding” mode.
  • the lead storage battery recovered after overdischarge is used again in the “choi riding” mode and the charge and discharge are repeated, the decrease in SOC due to discharge can be suppressed, and therefore the operation of the failsafe mechanism can be suppressed.
  • the aluminum ions contained in the electrolytic solution be in the range of 0.03 to 0.27 mol / L and the sodium ions be in the range of 0.03 to 0.28 mol / L.
  • the negative electrode plate 3 is disposed on both sides of the electrode plate group 5, and the negative electrode plate 3 is accommodated in a bag-like separator 4. Thereby, since electrolyte solution can also circulate also into the negative electrode plate 3 arrange
  • FIG. 3 is an overview diagram showing a main part of the lead-acid battery 1 in the second embodiment of the present invention.
  • the ear 10 of the negative electrode plate 3 is wider at the lower end than the upper end, and the upper end of the ear 10 of the negative electrode 3 is wider than the upper end of the ear 9 of the positive electrode 2.
  • the ear 10 of the negative electrode plate 3 that comes into contact with the electrolytic solution partially becomes an active material and loses its original mechanical strength. Although this phenomenon occurred slightly in conventional lead-acid batteries for vehicles, lead-acid batteries used for idling stop vehicles are exposed to deeper charge / discharge, and thus the active material of the ear 10 is more prominent. become.
  • the mechanical strength of the ear 10 of the negative electrode plate 3 may be increased in order to prevent the ear 10 of the negative electrode 3 from becoming thin during repeated charging and discharging. That is, as shown in FIGS. 3A and 3B, the ear 10 of the negative electrode plate 3 may be wider at the lower end than at the upper end.
  • the shape “the lower end is wider than the upper end” is, for example, a shape in which the width of the ear portion 10 is gradually increased from the upper end to the lower end, as shown in FIG. As shown in b), it includes a shape in which the width of the ear portion 10 gradually increases from the upper end to the lower end.
  • the positive electrode active material is deteriorated, and eventually the life of the lead storage battery is reached.
  • the capacity and the power decrease gradually. If the user can recognize these decreases by some means, the replacement timing of the lead storage battery is predicted. It becomes possible.
  • the thinning of the ear portion 10 of the negative electrode plate 3 proceeds with the deterioration of the positive electrode active material. That's enough.
  • the active material deteriorates and the reaction area decreases, so that the internal resistance increases.
  • the current required for starting the engine gradually decreases.
  • Such functional deterioration is because if the upper end of the ear portion 9 of the positive electrode plate 2 is made narrower than the upper end of the ear portion 10 of the negative electrode plate 3, the current path becomes narrower and the internal resistance tends to increase. , Can be noticeable.
  • Lead-acid batteries are recognized by preventing the disconnection due to the narrowing of the ears 10 of the negative electrode plate 3 before the replacement time of the storage battery and recognizing a gradual decrease in engine startability due to an increase in internal resistance. It is possible to predict the replacement period.
  • the positive strap 7 but also the negative strap 8 contain antimony so that the negative strap 8 is not damaged by vibration.
  • the lead acid battery 1 produced in the present example is a liquid lead acid battery having a D23L type size defined in JIS D5301.
  • Each cell chamber 6 accommodates seven positive electrode plates 2 and eight negative electrode plates 3, and the negative electrode plate 3 is accommodated in a bag-like polyethylene separator 4.
  • the positive electrode plate 2 was prepared by kneading lead oxide powder with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice made of a calcium-based lead alloy composition.
  • the negative electrode plate 3 is prepared by adding an organic additive to lead oxide powder, kneading with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice composed of a calcium-based lead alloy composition. Produced.
  • the negative electrode plate 3 is accommodated in a polyethylene bag-like separator 4 and is alternately stacked with the positive electrode plates 2 to form seven positive electrode plates 2 and eight negative electrode plates.
  • An electrode plate group 5 in which 3 and 3 were laminated via a separator 4 was produced.
  • Each of the electrode plate groups 5 was accommodated in a cell chamber 6 partitioned into six, and a lead storage battery 1 in which six cells were directly connected was produced.
  • SOC state of charge
  • the charge recovery property when repeated was evaluated by the following method.
  • (A) Discharge to 10.5 V with a 5-hour rate current (discharge current 9.8 A).
  • (B) Then, after applying a load corresponding to 10 W and discharging at a temperature of 40 ° C. ⁇ 2 ° C. for 14 days, it is left in an open circuit state for 14 days.
  • (D) After that, after being left in the atmosphere at ⁇ 15 ° C. ⁇ 1 ° C. for 16 hours or more, the battery is discharged at 300 A to 6.0 V.
  • the test of the life characteristic was performed under the conditions shown below, which almost conformed to the battery industry association standard (SBA S 0101).
  • the ambient temperature was 25 ° C. ⁇ 2 ° C.
  • Example 1 Batteries 1 to 5 in which a surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice, and aluminum ions contained in the electrolytic solution are changed to a range of 0.01 to 0.30 mol / L, and sodium Batteries 6 to 10 in which the ions were changed in the range of 0.01 to 0.45 mol / L were prepared, and the characteristics of the “choy ride” mode of each battery and the charge recovery after overdischarge were evaluated.
  • the negative electrode plate was disposed on both sides of the electrode plate group and housed in a bag-shaped separator.
  • the negative electrode lattice is composed of an expanded lattice of Pb-1.2Sn-0.1Ca, and the surface layer is composed of Pb-3 mass% Sb foil.
  • the positive electrode lattice is an expanded lattice of Pb-1.6Sn-0.1Ca, and no surface layer is provided.
  • edge part 10 of the negative electrode plate 3 was made into the rectangle, and the width
  • Table 1 is a table showing the evaluation results of each characteristic.
  • a battery 11 in which a surface layer was not provided on the surface of the negative electrode grid, and a battery 12 in which a positive electrode plate instead of the negative electrode plate was accommodated in a bag-like separator were produced.
  • the electrolytic solution contains both aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L.
  • the SOC indicating “choi riding” mode characteristics is 78% or more, and the duration indicating the overdischarge recovery is 2.9 minutes or more.
  • the idling stop vehicle is used in the “choi riding” mode, it has a suitable performance.
  • the duration indicating the overdischarge recoverability is as short as 2.5 minutes. This is thought to be due to the lack of sodium ions in the electrolyte.
  • the SOC showing the “choy ride” mode characteristic is slightly low at 75%. This is thought to be because sodium ions in the electrolytic solution inhibit the charging reaction.
  • the SOC showing the “choy ride” mode characteristic is slightly low as 75%. This is presumably because the aluminum ions in the electrolyte are insufficient.
  • the duration indicating the overdischarge recoverability is as short as 2.5 minutes. This is considered because the aluminum ion in electrolyte solution has inhibited the charge recovery property after overdischarge.
  • the SOC showing the “choi riding” mode characteristic is very low as 75%. This is presumably because the lead alloy foil containing Sb was not provided on the surface of the negative electrode lattice, so that the hydrogen overvoltage was not lowered and the charge acceptance was low.
  • the battery 12 in which the positive electrode plate was housed in the bag-shaped separator also had a low SOC of 75% indicating “choy ride” mode characteristics. This is because the negative electrode plates arranged on both sides of the electrode plate group are not accommodated in the bag-shaped separator, so the negative electrode plate is pressed against the inner wall of the cell chamber, and as a result, the electrolyte solution to the negative electrode plate on the cell chamber side This is thought to be due to a decrease in charge acceptance due to insufficient wraparound.
  • a surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice containing no antimony, and negative electrode plates contained in a bag-like separator are arranged on both sides of the electrode plate group. Furthermore, the fail-safe mechanism is activated by containing both aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L in the electrolyte. It is possible to provide a lead-acid battery suitable for an idling stop vehicle used in the “choi riding” mode, including the charge recovery after over-discharge.
  • Example 2 As shown in FIG. 3A, the lower end of the ear 10 is made wider than the upper end, the upper end of the ear 10 of the negative electrode plate 3 is wider than the upper end of the ear 9 of the positive electrode 2, and A battery A was fabricated using a lead alloy containing 0.11 mol / L sodium ion and 0.2 mol / L aluminum ion in the electrolytic solution, and both the positive strap 7 and the negative strap 8 containing antimony.
  • a battery B similar to the battery A was produced except that the ear portion 10 was formed in the shape shown in FIG.
  • a battery C similar to the battery A was produced except that a lead-tin alloy containing no antimony was used as the negative electrode strap 8.
  • Table 2 is a table showing the evaluation results of each characteristic.
  • the battery D is the same as the battery A except that the width of the upper end and the lower end of the ear portion 10 is the same, and the upper end of the ear portion 10 of the negative electrode plate 3 and the upper end of the ear portion 9 of the positive electrode plate 2.
  • the battery E is the same as the battery A, except that the width of the upper end and the lower end of the ear portion 10 is the same (rectangular), and the upper end of the ear portion 10 of the negative electrode plate 3 and the ear of the positive electrode plate 2 are the same.
  • a battery F similar to the battery A was produced except that the width of the upper end of the portion 9 was the same.
  • the lower end of the ear portion 10 is wider than the upper end, and the upper end of the ear portion 9 of the positive electrode plate 2 is narrower than the upper end of the ear portion 10 of the negative electrode plate 3.
  • a to C had good life characteristics in consideration of vibration resistance. In addition, it was not only a long life, but also a gradual decrease in engine startability (deterioration of active material) due to an increase in internal resistance that allowed the user to recognize when to replace the lead storage battery. Actually, as a result of disassembling the batteries A to C after the life test, there was no battery that had reached the end of its life due to the disconnection due to the ear thinning.
  • the batteries D and F in which the shape of the ear portion 10 is rectangular, and the batteries D and F in which the widths of the upper end of the ear portion 10 of the negative electrode plate 3 and the upper end of the ear portion 9 of the positive electrode plate 2 are the same are Compared with the batteries A to C, the life characteristics considering vibration were inferior. As a result of disassembling these batteries after the life test, they had reached the end of their service life due to disconnection due to narrowing of the ears.
  • the battery C that does not contain antimony as the negative electrode strap 8 has a better life characteristic in consideration of vibration resistance because it is unlikely to be thinned, but the deterioration mode is different from this (breakage of the negative electrode strap 8 itself).
  • Basic vibration resistance becomes slightly inferior. From this, it is preferable to use a lead alloy containing antimony for the negative electrode strap 8 in order to achieve both high life characteristics considering vibration resistance and basic vibration resistance.
  • the present invention is useful for a lead storage battery used in an idling stop vehicle.

Abstract

In a lead acid storage battery of the present invention, an electrode plate group (5), wherein a plurality of positive electrode plates (2) and a plurality of negative electrode plates (3) are laminated with separators (4) being interposed therebetween, is housed in a cell chamber (6). Each positive electrode plate is provided with a positive electrode grid and a positive electrode active material that is filled in the positive electrode grid. Each negative electrode plate is provided with a negative electrode grid, a surface layer that is formed on the surface of the negative electrode grid and is formed of a lead alloy containing antimony, and a negative electrode active material that is filled in the negative electrode grid. The electrolyte solution contains 0.03-0.27 mol/L of aluminum ions and 0.03-0.28 mol/L of sodium ions. Negative electrode plates, each of which is contained in a bag-like separator, are arranged on both sides of the electrode plate group.

Description

鉛蓄電池Lead acid battery
 本発明は、アイドリングストップ車に使用される鉛蓄電池に関する。 The present invention relates to a lead storage battery used in an idling stop vehicle.
 アイドリングストップ車は、停車中にエンジンを停止することで燃費を向上することができる。しかしながら、鉛蓄電池は、アイドリングストップ中に、エアコンやファンなどの全ての電力を供給するため、鉛蓄電池は充電不足になりやすい。そのため、鉛蓄電池は、充電不足を解消するために、短時間でより多くの充電ができる、高い充電受入性が要求される。 The idling stop vehicle can improve fuel efficiency by stopping the engine while it is stopped. However, since the lead storage battery supplies all electric power such as an air conditioner and a fan during idling stop, the lead storage battery tends to be insufficiently charged. Therefore, the lead storage battery is required to have a high charge acceptability that can be charged more in a short time in order to solve the shortage of charging.
 また、アイドリングストップ車は、頻繁にエンジンのオン・オフを繰り返すため、放電によって生成された硫酸鉛を、充電によって二酸化鉛と鉛とに回復する間もなく、次の放電が行われるため、鉛蓄電池の寿命が低下しやすくなる。そのため、鉛蓄電池は、寿命の低下を解消するために、高い耐久性も併せ要求される。 In addition, since idling stop vehicles frequently turn the engine on and off repeatedly, the lead discharge produced immediately after the lead sulfate generated by discharge is restored to lead dioxide and lead by charging. Life is likely to decrease. Therefore, the lead storage battery is also required to have high durability in order to eliminate the decrease in life.
 鉛蓄電池の充電受入性を向上させるために、特許文献1には、電解液にアルミニウムイオンを含有させた鉛蓄電池が記載されている。アルミニウムイオンは、放電時に、正極及び負極に生成される硫酸鉛の結晶の粗大化を抑制する効果を有し、これにより、鉛蓄電池の充電受入性能を向上させることができる。 In order to improve the charge acceptability of a lead storage battery, Patent Document 1 describes a lead storage battery in which aluminum ions are contained in an electrolytic solution. Aluminum ions have the effect of suppressing the coarsening of the lead sulfate crystals produced at the positive and negative electrodes during discharge, thereby improving the charge acceptance performance of the lead storage battery.
 また、鉛蓄電池の耐久性を向上させるために、特許文献2には、アンチモンを含まない負極格子の表面に、アンチモンを含む鉛合金層を設けた鉛蓄電池が記載されている。アンチモンを含む鉛合金層は、負極板を効率的に充電回復させる効果を有し、これにより、鉛蓄電池の耐久性を向上させることができる。 Further, in order to improve the durability of the lead storage battery, Patent Document 2 describes a lead storage battery in which a lead alloy layer containing antimony is provided on the surface of a negative electrode lattice not containing antimony. The lead alloy layer containing antimony has an effect of efficiently charging and recovering the negative electrode plate, and thereby the durability of the lead storage battery can be improved.
 また、特許文献3には、電解液にNa2SO4などのアルカリ金属の硫酸塩を添加することによって、過放電時に硫酸濃度の低下に伴う鉛イオンの生成を抑制し、充電時に負極上にPbSO4が成長することによって、正極と負極間に短絡が発生するのを防止する技術が記載されている。また、電解液に添加されたNa2SO4は、過放電時に硫酸濃度の低下に伴う電解液の導電度の低下を抑制し、過放電後の充電回復性を向上させる効果も有する。 Patent Document 3 discloses that by adding an alkali metal sulfate such as Na 2 SO 4 to the electrolytic solution, generation of lead ions accompanying a decrease in sulfuric acid concentration during overdischarge is suppressed, and on the negative electrode during charging. A technique for preventing a short circuit from occurring between the positive electrode and the negative electrode due to the growth of PbSO 4 is described. In addition, Na 2 SO 4 added to the electrolytic solution has an effect of suppressing a decrease in conductivity of the electrolytic solution accompanying a decrease in sulfuric acid concentration during overdischarge and improving charge recovery after overdischarge.
特開2006-4636号公報JP 2006-4636 A 特開2006-156371号公報JP 2006-156371 A 特開平1-267965号公報Japanese Laid-Open Patent Publication No. 1-2267965
 アイドリングストップ車に使用される鉛蓄電池は、充電不足になりやすい。そのため、鉛蓄電池の過放電を防止する目的で、アイドリングストップ車には、充電状態(SOC)が所定値(例えば60%)以下になると鉛蓄電池を放電させないフェールセーフ機構が設けられている場合がある。 鉛 Lead-acid batteries used in idling stop vehicles tend to be undercharged. Therefore, for the purpose of preventing overdischarge of the lead storage battery, the idling stop vehicle may be provided with a fail-safe mechanism that does not discharge the lead storage battery when the state of charge (SOC) becomes a predetermined value (for example, 60%) or less. is there.
 図1は、アイドリングストップ車において、鉛蓄電池の放電と充電を繰り返したときの充電状態(SOC)を模式的に示したグラフである。図1に示した折れ線グラフは、車が停止中に鉛蓄電池が放電されて、SOCが低下し、再び、車が走行して鉛蓄電池が充電されて、SOCが回復され、これが繰り返されるパターンを示したものである。 FIG. 1 is a graph schematically showing a state of charge (SOC) when a lead-acid battery is repeatedly discharged and charged in an idling stop vehicle. The line graph shown in FIG. 1 shows a pattern in which the lead storage battery is discharged while the vehicle is stopped, the SOC decreases, the vehicle travels again, the lead storage battery is charged, the SOC is recovered, and this is repeated. It is shown.
 鉛蓄電池の充電受入性が高ければ、車の走行中に、鉛蓄電池はSOCが約100%まで回復するため、図1中の折れ線グラフAに示すように、アイドリングストップ車を長く走行させても、鉛蓄電池の充放電を繰り返すことができる。 If the lead-acid battery has a high charge acceptance, the lead-acid battery recovers to about 100% while the car is running. Therefore, even if the idling stop car is run for a long time as shown in the line graph A in FIG. The charge / discharge of the lead storage battery can be repeated.
 しかしながら、鉛蓄電池の充電受入性が高くないと、図1中の折れ線グラフBに示すように、走行中に充電が十分にできず、SOCが100%まで回復しない状態で、車が停止すると、放電によるSOCの低下が大きくなる。このような充放電が繰り返されると、SOCが徐々に下がり続けることになる。この場合、アイドリングストップ車にフェールセーフ機構が設けられていると、SOCが所定値(例えば60%)以下になった時点で、フェールセーフ機構が働き、放電がストップする事態が生じる。 However, if the rechargeability of the lead storage battery is not high, as shown in the line graph B in FIG. 1, when the car stops in a state where the charging cannot be sufficiently performed during traveling and the SOC does not recover to 100%, Decrease in SOC due to discharge increases. When such charging / discharging is repeated, the SOC gradually decreases. In this case, when the fail-safe mechanism is provided in the idling stop vehicle, the fail-safe mechanism is activated and the discharge is stopped when the SOC becomes a predetermined value (for example, 60%) or less.
 特に、1回の走行距離が短い車の乗り方(以下、「チョイ乗り」という)をする場合、走行中の充電が十分にできず、SOCが100%まで回復しないため、フェールセーフ機構が頻繁に作動する事態を招く。さらに、週末しか「チョイ乗り」をしないような場合には、停車中の自己放電や暗電流によるSOCの低下がさらに進むため、フェールセーフ機構が作動する事態がより顕著になる。 In particular, when driving a car with a short mileage (hereinafter referred to as “choy ride”), the fail-safe mechanism is frequently used because the SOC cannot be fully charged and the SOC does not recover to 100%. Invite the situation to operate. Furthermore, when “choy ride” is performed only on weekends, the state of operation of the fail-safe mechanism becomes more conspicuous because the SOC is further lowered due to self-discharge and dark current while the vehicle is stopped.
 一方で、図1に示すような「チョイ乗り」モードで使用した鉛蓄電池は、徐々にSOCが低下して過放電しやすくなる。過放電後に鉛蓄電池を回復させても、再び「チョイ乗り」モードで使用すれば、SOCの低下による過放電が起こる。この「チョイ乗り」と過放電の繰り返し回数は、できるだけ少ないことが好ましいが、従来、このような「チョイ乗り」モードで使用するアイドリングストップ車にも適用しうる、十分な充電受入性と過放電後の充電回復性とを併せ持った鉛蓄電池はなかった。 On the other hand, the lead storage battery used in the “choi riding” mode as shown in FIG. Even if the lead-acid battery is recovered after overdischarge, if it is used again in the “choi riding” mode, overdischarge due to a decrease in SOC occurs. It is preferable that the number of repetitions of “choi riding” and overdischarge is as small as possible, but sufficient charge acceptance and overdischarge that can be applied to idling stop vehicles used in such “choi riding” mode in the past. There was no lead-acid battery that had both later charge recovery properties.
 本発明は、かかる課題に鑑みなされたもので、その主な目的は、「チョイ乗り」モードで使用するアイドリングストップ車に適用しうる、十分な充電受入性と過放電後の充電回復性とを併せ持った鉛蓄電池を提供することにある。 The present invention has been made in view of such problems, and its main purpose is to provide sufficient charge acceptance and charge recovery after overdischarge that can be applied to an idling stop vehicle used in the “choi ride” mode. The purpose is to provide a lead-acid storage battery.
 本発明に係る鉛蓄電池は、複数の正極板及び負極板がセパレータを介して積層された極板群が、電解液と共にセル室に収容された鉛蓄電池であって、正極板は、アンチモンを含有しない鉛または鉛合金からなる正極格子と、正極格子に充填された正極活物質とを備え、負極板は、アンチモンを含有しない鉛または鉛合金からなる負極格子と、負極格子の表面に形成されたアンチモンを含有する鉛合金からなる表面層と、負極格子に充填された負極活物質とを備え、電解液は、0.03~0.27mol/Lの範囲のアルミニウムイオンと、0.03~0.28mol/Lの範囲のナトリウムイオンとを含有し、極板群の両側には、袋状の前記セパレータに収容された負極板が配置されていることを特徴とする。 A lead storage battery according to the present invention is a lead storage battery in which a group of electrode plates in which a plurality of positive and negative electrode plates are laminated via a separator is housed in a cell chamber together with an electrolyte, and the positive electrode plate contains antimony A negative electrode plate made of lead or a lead alloy not containing antimony, and a positive electrode lattice made of lead or a lead alloy, and a positive electrode active material filled in the positive electrode lattice; A surface layer made of a lead alloy containing antimony and a negative electrode active material filled in a negative electrode lattice, and an electrolytic solution containing aluminum ions in the range of 0.03 to 0.27 mol / L, 0.03 to 0 It contains sodium ions in a range of .28 mol / L, and on both sides of the electrode plate group, negative electrode plates accommodated in the bag-like separator are arranged.
 ある好適な実施形態において、正極板および負極板は、その上部に耳部をそれぞれ備え、セル室に収容された複数の正極板は、正極ストラップによって並列に接続されており、セル室に収容された複数の負極板は、負極ストラップによって並列に接続されており、隣り合うセル室に収容された電極群は、直列に接続されており、負極板の耳部は上端よりも下端の方が幅広であり、かつ、正極板の耳部の上端は、負極板の耳部の上端より幅狭である。 In a preferred embodiment, each of the positive electrode plate and the negative electrode plate is provided with ears at the top thereof, and the plurality of positive electrode plates accommodated in the cell chamber are connected in parallel by a positive electrode strap and are accommodated in the cell chamber. The plurality of negative electrode plates are connected in parallel by a negative electrode strap, the electrode groups accommodated in adjacent cell chambers are connected in series, and the ears of the negative electrode plates are wider at the lower end than at the upper end. In addition, the upper end of the ear portion of the positive electrode plate is narrower than the upper end of the ear portion of the negative electrode plate.
 ある好適な実施形態において、負極ストラップはアンチモンを含有している。 In a preferred embodiment, the negative electrode strap contains antimony.
 本発明によれば、「チョイ乗り」モードで使用するアイドリングストップ車に適用しうる、十分な充電受入性と過放電後の充電回復性とを併せ持った鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a lead storage battery having both sufficient charge acceptance and charge recovery after overdischarge, which can be applied to an idling stop vehicle used in the “choi ride” mode.
アイドリングストップ車における鉛蓄電池の放電と充電を繰り返したときの充電状態(SOC)を模式的に示したグラフである。It is the graph which showed typically the charge condition (SOC) when discharge and charge of a lead storage battery in an idling stop vehicle are repeated. 本発明の一実施形態における鉛蓄電池の構成を模式的に示した概観図である。1 is an overview diagram schematically showing a configuration of a lead storage battery in an embodiment of the present invention. 本発明の他の実施形態における鉛蓄電池の要部を示した概観図である。It is the general-view figure which showed the principal part of the lead acid battery in other embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention. Furthermore, combinations with other embodiments are possible. *
 (第1の実施形態)
 図2は、本発明の第1の実施形態における鉛蓄電池1の構成を模式的に示した概観図である。
(First embodiment)
FIG. 2 is an overview diagram schematically showing the configuration of the lead-acid battery 1 in the first embodiment of the present invention.
 図2に示すように、鉛蓄電池1は、複数の正極板2及び負極板3がセパレータ4を介して積層された極板群5が、電解液と共にセル室6に収容されている。 As shown in FIG. 2, in the lead storage battery 1, an electrode plate group 5 in which a plurality of positive electrode plates 2 and negative electrode plates 3 are laminated via a separator 4 is accommodated in a cell chamber 6 together with an electrolytic solution.
 ここで、正極板2は、正極格子と、正極格子に充填された正極活物質とを備え、負極板3は、負極格子と、負極格子に充填された負極活物質とを備えている。なお、本実施形態における正極格子及び負極格子は、共に、アンチモン(Sb)を含有しない鉛または鉛合金からなり、例えば、Pb-Ca合金、Pb-Sn合金、Pb-Sn-Ca合金からなる。 Here, the positive electrode plate 2 includes a positive electrode lattice and a positive electrode active material filled in the positive electrode lattice, and the negative electrode plate 3 includes a negative electrode lattice and a negative electrode active material filled in the negative electrode lattice. Note that the positive electrode lattice and the negative electrode lattice in this embodiment are both made of lead or a lead alloy containing no antimony (Sb), for example, a Pb—Ca alloy, a Pb—Sn alloy, or a Pb—Sn—Ca alloy.
 複数の正極板2は、正極格子の耳部9同士が正極ストラップ7によって、互いに並列接続されており、複数の負極板3は、負極格子の耳部10同士が負極ストラップ8によって、互いに並列接続されている。さらに、各セル室6内に収容された複数の極板群5は、接続体11によって直列接続されている。両端のセル室6における正極ストラップ7及び負極ストラップ8には、それぞれ極柱(不図示)が溶接されており、各極柱は、蓋14に配設された正極端子12及び負極端子13に、それぞれ溶接されている。 The plurality of positive electrode plates 2 are connected in parallel with each other by the positive electrode straps 7 between the positive electrode lattice ears 9, and the plurality of negative electrode plates 3 are connected in parallel with each other through the negative electrode lattice ears 10 between the negative electrode straps 8. Has been. Further, the plurality of electrode plate groups 5 accommodated in each cell chamber 6 are connected in series by a connection body 11. Polar columns (not shown) are welded to the positive strap 7 and the negative strap 8 in the cell chambers 6 at both ends, respectively, and the respective polar columns are connected to the positive terminal 12 and the negative terminal 13 disposed on the lid 14. Each is welded.
 本実施形態において、負極格子の表面には、アンチモンを含有する鉛合金からなる表面層(不図示)が形成されている。アンチモンを含む鉛合金は、水素過電圧を下げる効果を有し、これにより、鉛蓄電池1の充電受入性を向上させることができる。なお、表面層は、アンチモンの含有量が、1.0~5.0質量%のPb-Sb系合金からなることが好ましい。アンチモンの含有量が1.0質量%よりも少ないと、鉛蓄電池1の充電受入性の向上効果が低く、また、5.0質量%より多いと、電解液中に含まれる水の電気分解が促進されるため、減液量の増加を招く。 In this embodiment, a surface layer (not shown) made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice. The lead alloy containing antimony has an effect of lowering the hydrogen overvoltage, whereby the charge acceptability of the lead storage battery 1 can be improved. The surface layer is preferably made of a Pb—Sb alloy having an antimony content of 1.0 to 5.0 mass%. When the content of antimony is less than 1.0% by mass, the effect of improving the charge acceptance of the lead storage battery 1 is low. When the content is more than 5.0% by mass, the electrolysis of water contained in the electrolytic solution is reduced. This promotes an increase in the amount of liquid reduction.
 また、本実施形態において、電解液は、0.03~0.27mol/Lの範囲のアルミニウムイオンと、0.03~0.28mol/Lの範囲のナトリウムイオンとを含有している。電解液中のアルミニウムイオンは、「チョイ乗り」モードでの僅かな充電時間にも対応できるように、充電受入性を向上させる効果を有する。一方で電解液中のナトリムイオンは、過放電後の充電回復性を向上させる効果を有する。これらにより、「チョイ乗り」モードの僅かな充電時間にSOCを押し上げやすくなる。加えて、過放電後に回復した鉛蓄電池が再び「チョイ乗り」モードで使用されて充放電が繰り返されても、放電によるSOCの低下を抑制できるため、フェールセーフ機構の作動を抑制することができる。なおアルミニウムイオンを過剰に添加するとナトリウムイオンの効果を相殺させることになり、ナトリウムイオンを過剰に添加するとアルミニウムイオンの効果を相殺させることになる。したがって、電解液に含有させるアルミニウムイオンは0.03~0.27mol/Lの範囲に、ナトリウムイオンは0.03~0.28mol/Lの範囲にすることが好ましい。 In this embodiment, the electrolytic solution contains aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L. The aluminum ions in the electrolytic solution have an effect of improving charge acceptance so as to be able to cope with a short charging time in the “choi riding” mode. On the other hand, sodium ions in the electrolyte have an effect of improving charge recovery after overdischarge. As a result, the SOC is easily pushed up during a short charging time in the “choi riding” mode. In addition, even if the lead storage battery recovered after overdischarge is used again in the “choi riding” mode and the charge and discharge are repeated, the decrease in SOC due to discharge can be suppressed, and therefore the operation of the failsafe mechanism can be suppressed. . If an excessive amount of aluminum ions is added, the effect of sodium ions is offset, and if an excessive amount of sodium ions is added, the effect of aluminum ions is canceled. Therefore, it is preferable that the aluminum ions contained in the electrolytic solution be in the range of 0.03 to 0.27 mol / L and the sodium ions be in the range of 0.03 to 0.28 mol / L.
 また、負極板3は、極板群5の両側に配置されており、かつ、負極板3は、袋状のセパレータ4に収容されている。これにより、極板群5の両側に配置された負極板3にも、電解液が回り込むことができるため、鉛蓄電池1の充電受入性がさらに向上する。これにより、「チョイ乗り」モードで使用するアイドリングストップ車に適用しても、フェールセーフ機構の作動をより効果的に抑制することができる。 The negative electrode plate 3 is disposed on both sides of the electrode plate group 5, and the negative electrode plate 3 is accommodated in a bag-like separator 4. Thereby, since electrolyte solution can also circulate also into the negative electrode plate 3 arrange | positioned at the both sides of the electrode group 5, the charge acceptance property of the lead storage battery 1 further improves. Thereby, even if it applies to the idling stop vehicle used in "choi riding" mode, the action | operation of a fail safe mechanism can be suppressed more effectively.
 (第2の実施形態)
 図3は、本発明の第2の実施形態における鉛蓄電池1の要部を示した概観図である。本実施形態において、負極板3の耳部10は上端よりも下端の方が幅広であり、負極板3の耳部10の上端は正極板2の耳部9の上端よりも幅広である。
(Second Embodiment)
FIG. 3 is an overview diagram showing a main part of the lead-acid battery 1 in the second embodiment of the present invention. In the present embodiment, the ear 10 of the negative electrode plate 3 is wider at the lower end than the upper end, and the upper end of the ear 10 of the negative electrode 3 is wider than the upper end of the ear 9 of the positive electrode 2.
 充放電を繰り返す中で、電解液と接触する負極板3の耳部10は、一部が活物質化し、本来の機械強度を失う。この現象は、従来の車載用鉛蓄電池においても僅かに発生していたが、アイドリングストップ車に使用される鉛蓄電池は、より深い充放電に晒されるので、耳部10の活物質化がより顕著になる。 During repeated charging and discharging, the ear 10 of the negative electrode plate 3 that comes into contact with the electrolytic solution partially becomes an active material and loses its original mechanical strength. Although this phenomenon occurred slightly in conventional lead-acid batteries for vehicles, lead-acid batteries used for idling stop vehicles are exposed to deeper charge / discharge, and thus the active material of the ear 10 is more prominent. become.
 従って、充放電を繰り返すと、負極板3の耳部10の活物質化による強度の低下は進むため、最終的に、耳部10が振動により断線し、鉛蓄電池が突然機能しなくなる。この不具合を、以降は「耳細り」と称する。 Therefore, when charging / discharging is repeated, the strength decreases due to the active material of the ear portion 10 of the negative electrode plate 3, so that the ear portion 10 is finally disconnected due to vibration, and the lead storage battery suddenly stops functioning. This defect is hereinafter referred to as “ear narrowing”.
 このような耳細りは、負極板3の耳部10において顕著であり、正極2の耳部9ではほとんど発生しない。従って、充放電を繰り返す中で、負極板3の耳部10の耳細りを防止するためには、負極板3の耳部10の機械強度を高めればよい。すなわち、図3(a)、(b)に示すように、負極板3の耳部10を、その上端よりも下端の方を幅広にすればよい。ここで、「上端よりも下端の方が幅広である」形状は、例えば、図3(a)に示すように、耳部10の幅が上端から下端にかけて徐々に広くなる形状や、図3(b)に示すように、に耳部10の幅が上端から下端にかけて段階的に広くなる形状を含む。 Such ear thinning is remarkable in the ear portion 10 of the negative electrode plate 3 and hardly occurs in the ear portion 9 of the positive electrode 2. Therefore, the mechanical strength of the ear 10 of the negative electrode plate 3 may be increased in order to prevent the ear 10 of the negative electrode 3 from becoming thin during repeated charging and discharging. That is, as shown in FIGS. 3A and 3B, the ear 10 of the negative electrode plate 3 may be wider at the lower end than at the upper end. Here, the shape “the lower end is wider than the upper end” is, for example, a shape in which the width of the ear portion 10 is gradually increased from the upper end to the lower end, as shown in FIG. As shown in b), it includes a shape in which the width of the ear portion 10 gradually increases from the upper end to the lower end.
 ところで、鉛蓄電池の充放電を繰り返すと、正極活物質の劣化が生じ、やがて、鉛蓄電池の寿命を迎える。通常、正極活物質の劣化が進むと、徐々に、容量の低下や、パワーの低下が生じ、使用者は、これらの低下を、何らかの手段で認知することできれば、鉛蓄電池の交換時期を予測することが可能となる。 By the way, if charging / discharging of the lead storage battery is repeated, the positive electrode active material is deteriorated, and eventually the life of the lead storage battery is reached. Usually, as the deterioration of the positive electrode active material progresses, the capacity and the power decrease gradually. If the user can recognize these decreases by some means, the replacement timing of the lead storage battery is predicted. It becomes possible.
 一方、負極板3の耳部10の耳細りは、正極活物質の劣化とともに進行するが、耳細りの防止対策は、鉛蓄電池の交換時期までに、耳部10の断線が生じない程度に行えば十分である。正極板2は、負極板3のように耳細りは起こらない代わりに、鉛蓄電池の充放電を繰り返すと、活物質が劣化して反応面積が減ることで内部抵抗が上昇する。その結果、エンジン始動に必要となる電流が漸次的に低下する。このような機能低下は、正極板2の耳部9の上端を、負極板3の耳部10の上端よりも幅狭にすれば、電流の通り道が細くなって内部抵抗が上昇しやすくなるので、顕著化させることができる。これにより、使用者は、内部抵抗の上昇によるエンジン始動性の漸次的な低下を容易に認知することができ、その結果、鉛蓄電池の交換時期を予測することが可能となる。なお、このような内部抵抗の上昇によるエンジン始動性の漸次的な低下は、使用者に、不便を感じさせない程度の機能低下である。 On the other hand, the thinning of the ear portion 10 of the negative electrode plate 3 proceeds with the deterioration of the positive electrode active material. That's enough. When the positive electrode plate 2 is not charged like the negative electrode plate 3 and the charge / discharge of the lead-acid battery is repeated, the active material deteriorates and the reaction area decreases, so that the internal resistance increases. As a result, the current required for starting the engine gradually decreases. Such functional deterioration is because if the upper end of the ear portion 9 of the positive electrode plate 2 is made narrower than the upper end of the ear portion 10 of the negative electrode plate 3, the current path becomes narrower and the internal resistance tends to increase. , Can be noticeable. Thereby, the user can easily recognize the gradual decrease in engine startability due to the increase in internal resistance, and as a result, it is possible to predict the replacement time of the lead storage battery. Note that such a gradual decrease in engine startability due to an increase in internal resistance is a functional decrease that does not cause the user to feel inconvenience.
 すなわち、負極板3の耳部10の上端より下端の方を幅広にし、かつ、正極板2の耳部9の上端を、負極板3の耳部10の上端より幅狭にすることによって、鉛蓄電池の交換時期が来るまでに、負極板3の耳部10の耳細りによる断線が生じるのを防止するとともに、 内部抵抗の上昇によるエンジン始動性の漸次的な低下を認知することによって、鉛蓄電池の交換時期を予測することがきる。 That is, by making the lower end wider than the upper end of the ear portion 10 of the negative electrode plate 3 and making the upper end of the ear portion 9 of the positive electrode plate 2 narrower than the upper end of the ear portion 10 of the negative electrode plate 3, Lead-acid batteries are recognized by preventing the disconnection due to the narrowing of the ears 10 of the negative electrode plate 3 before the replacement time of the storage battery and recognizing a gradual decrease in engine startability due to an increase in internal resistance. It is possible to predict the replacement period.
 さらに、振動によって負極ストラップ8が破損しないようにするために、正極ストラップ7のみならず負極ストラップ8にもアンチモンを含有させることが好ましい。 Furthermore, it is preferable that not only the positive strap 7 but also the negative strap 8 contain antimony so that the negative strap 8 is not damaged by vibration.
 以下、本発明の実施例を挙げて、本発明の構成及び効果をさらに説明する。なお、本発明は、これら実施例に限定されるものではない。 Hereinafter, the configuration and effects of the present invention will be further described with reference to examples of the present invention. The present invention is not limited to these examples.
 (1)鉛蓄電池の作製
 本実施例で作製した鉛蓄電池1は、JISD5301に規定するD23Lタイプの大きさの液式鉛蓄電池である。各セル室6には、7枚の正極板2と8枚の負極板3とが収容され、負極板3は、袋状のポリエチレン製のセパレータ4に収容されている。
(1) Production of lead acid battery The lead acid battery 1 produced in the present example is a liquid lead acid battery having a D23L type size defined in JIS D5301. Each cell chamber 6 accommodates seven positive electrode plates 2 and eight negative electrode plates 3, and the negative electrode plate 3 is accommodated in a bag-like polyethylene separator 4.
 正極板2は、酸化鉛粉を硫酸と精製水とで混練してペーストを作製し、これをカルシウム系鉛合金の組成からなるエキスパンド格子に充填して作製した。 The positive electrode plate 2 was prepared by kneading lead oxide powder with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice made of a calcium-based lead alloy composition.
 負極板3は、酸化鉛粉に対し、有機添加剤等を添加して、硫酸と精製水とで混練してペーストを作成し、これをカルシウム系鉛合金の組成からなるエキスパンド格子に充填して作製した。 The negative electrode plate 3 is prepared by adding an organic additive to lead oxide powder, kneading with sulfuric acid and purified water to prepare a paste, and filling this into an expanded lattice composed of a calcium-based lead alloy composition. Produced.
 作製した正極板2及び負極板3を熟成乾燥した後、負極板3をポリエチレンの袋状のセパレータ4に収容し、正極板2と交互に重ね、7枚の正極板2と8枚の負極板3とがセパレータ4を介して積層された極板群5を作製した。この極板群5を、6つに仕切られたセル室6にそれぞれ収容し、6つのセルを直接接続した鉛蓄電池1を作製した。 After the produced positive electrode plate 2 and negative electrode plate 3 are aged and dried, the negative electrode plate 3 is accommodated in a polyethylene bag-like separator 4 and is alternately stacked with the positive electrode plates 2 to form seven positive electrode plates 2 and eight negative electrode plates. An electrode plate group 5 in which 3 and 3 were laminated via a separator 4 was produced. Each of the electrode plate groups 5 was accommodated in a cell chamber 6 partitioned into six, and a lead storage battery 1 in which six cells were directly connected was produced.
 この鉛蓄電池1に、密度が1.28g/cm3の希硫酸からなる電解液を入れ、電槽化成を行って、12V48Ahの鉛蓄電池1を得た。 An electrolytic solution made of dilute sulfuric acid having a density of 1.28 g / cm 3 was put into the lead storage battery 1 and a battery case was formed to obtain a lead storage battery 1 of 12V48Ah.
 (2)鉛蓄電池の評価
(2-1)「チョイ乗り」モードの特性評価
 作製した鉛蓄電池1に対して、「チョイ乗り」モードを想定した充放電を繰り返して、鉛蓄電池の「チョイ乗り」モードの特性評価を行った。なお、環境温度は、25℃±2℃で行った。
(A)9.6Aにて2.5時間放電し24時間放置する。
(B)放電電流20Aで、40秒間放電する。
(C)14.2Vの充電電圧(制限電流50A)で、60秒間充電する。
(D)(B)、(C)の充放電を18回繰り返した後、放電電流20mAで、83.5時間放電する。
(E)(B)~(D)の充放電を1サイクルとして、20サイクル繰り返す。
(2) Evaluation of lead-acid battery (2-1) Characteristic evaluation of “cho-riding” mode The lead-acid battery 1 is “cho-riding” by repeatedly charging and discharging assuming the “cho-riding” mode. The mode characteristics were evaluated. The ambient temperature was 25 ° C. ± 2 ° C.
(A) Discharge at 9.6 A for 2.5 hours and leave for 24 hours.
(B) Discharge at a discharge current of 20 A for 40 seconds.
(C) Charge for 60 seconds at a charge voltage of 14.2 V (limit current 50 A).
(D) Charge / discharge of (B) and (C) is repeated 18 times, and then discharged at a discharge current of 20 mA for 83.5 hours.
(E) Charging / discharging of (B) to (D) is set as one cycle and repeated 20 cycles.
 上記の20サイクル後の鉛蓄電池の充電状態(SOC)を測定して、この値を、「チョイ乗り」モードの特性とした。 The state of charge (SOC) of the lead storage battery after the above 20 cycles was measured, and this value was taken as the “choy ride” mode characteristic.
 (2-2)過放電後の充電回復性
 作製した鉛蓄電池1に対して、過放電後に回復した鉛蓄電池1が、再び「チョイ乗り」モードで使用される場合を想定して、充放電を繰り返したときの充電回復性を、以下の方法で評価した。
(A)5時間率電流(放電電流9.8A)で、10.5Vまで放電する。
(B)その後、10W相当の負荷を付けて、40℃±2℃の温度下で、14日間放電した後、開路状態で14日間放置する。
(C)その後、25℃±3℃の温度下で、15.0Vの充電電圧(制限電流25A)で、4時間充電する。
(D)その後、-15℃±1℃の大気中に16時間以上放置した後、300Aで、6.0 Vまで放電する。
(2-2) Charge recovery after overdischarge Assuming the case where the lead storage battery 1 recovered after overdischarge is used again in the “choy ride” mode with respect to the prepared lead storage battery 1. The charge recovery property when repeated was evaluated by the following method.
(A) Discharge to 10.5 V with a 5-hour rate current (discharge current 9.8 A).
(B) Then, after applying a load corresponding to 10 W and discharging at a temperature of 40 ° C. ± 2 ° C. for 14 days, it is left in an open circuit state for 14 days.
(C) Thereafter, the battery is charged for 4 hours at a charging voltage of 15.0 V (limit current 25 A) at a temperature of 25 ° C. ± 3 ° C.
(D) After that, after being left in the atmosphere at −15 ° C. ± 1 ° C. for 16 hours or more, the battery is discharged at 300 A to 6.0 V.
 鉛蓄電池の電圧が6.0Vに至るまでの持続時間を、過放電後の充電回復性として評価した。 The duration until the lead-acid battery voltage reached 6.0 V was evaluated as charge recovery after overdischarge.
 (2-3)耐振動性の評価
 バッテリが満充電の状態から、5時間率電流で放電させながら、上下の単振動を行う(加速度29.4m/s2、複振幅2.4mm)。10分ごとに電圧を確認し、電圧が10.5Vになるまでの時間を測定し、耐振動性を評価した。その後、分解を行い、劣化モードを確認する。
(2-3) Evaluation of vibration resistance While the battery is fully charged, a single vibration in the upper and lower directions is performed (discharge 29.4 m / s 2 , double amplitude 2.4 mm) while discharging at a current of 5 hours. The voltage was checked every 10 minutes, the time until the voltage reached 10.5 V was measured, and vibration resistance was evaluated. Then, disassembly is performed and the deterioration mode is confirmed.
 (2-4)寿命特性の評価
 作製した鉛蓄電池に対して、アイドリングストップを想定した充放電を繰り返して、鉛蓄電池の寿命特性の評価を行った。
(2-4) Evaluation of life characteristics The life characteristics of the lead storage battery were evaluated by repeatedly charging and discharging the prepared lead storage battery assuming idling stop.
 寿命特性の試験は、電池工業会規格(SBA S 0101)にほぼ準拠した、下記に示す条件で行った。なお、環境温度は、25℃±2℃で行った。
(A)放電電流45Aで、59秒間放電した後、300Aで、1秒放電する。
(B)その後、14.2Vの充電電圧(制限電流100A)で、60秒間充電する。
(C)(A)、(B)の充放電を1サイクルとして、3600サイクル毎に46時間放置した後、JIS D5301に示す、耐振動試験(上下の単振動、加速度29.4m/s2、複振幅2.4mm)を2時間行い(但し5時間率電流での放電は行わない)、再びサイクルを開始する。
The test of the life characteristic was performed under the conditions shown below, which almost conformed to the battery industry association standard (SBA S 0101). The ambient temperature was 25 ° C. ± 2 ° C.
(A) After discharging at a discharge current of 45 A for 59 seconds, discharge at 300 A for 1 second.
(B) Thereafter, the battery is charged for 60 seconds at a charge voltage of 14.2 V (limit current 100 A).
(C) After charging and discharging in (A) and (B) as one cycle and leaving it to stand for 46 hours every 3600 cycles, a vibration resistance test (upper and lower single vibration, acceleration 29.4 m / s 2 , shown in JIS D5301) (Double amplitude 2.4 mm) is performed for 2 hours (however, discharge at a 5-hour rate current is not performed), and the cycle is started again.
 上記のサイクルを繰り返し、放電電圧が7.2V未満になったときのサイクル数を、寿命特性とした。そして寿命に達した電池を分解し、劣化モードを確認した。なお、上記試験において、補水は、30000サイクルまで行わなかった。 The above cycle was repeated and the number of cycles when the discharge voltage was less than 7.2 V was defined as the life characteristic. And the battery which reached the end of life was disassembled and the deterioration mode was confirmed. In the above test, water replenishment was not performed until 30000 cycles.
 (実施例1)
 負極格子の表面に、アンチモンを含有する鉛合金からなる表面層を形成するとともに、電解液に含有させるアルミニウムイオンを0.01~0.30mol/Lの範囲に変えた電池1~5、及びナトリウムイオンを0.01~0.45mol/Lの範囲に変えた電池6~10を作製し、各電池の「チョイ乗り」モードの特性、及び過放電後の充電回復性を評価した。なお、負極板は、極板群の両側に配置し、かつ、袋状のセパレータに収容した。
(Example 1)
Batteries 1 to 5 in which a surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice, and aluminum ions contained in the electrolytic solution are changed to a range of 0.01 to 0.30 mol / L, and sodium Batteries 6 to 10 in which the ions were changed in the range of 0.01 to 0.45 mol / L were prepared, and the characteristics of the “choy ride” mode of each battery and the charge recovery after overdischarge were evaluated. The negative electrode plate was disposed on both sides of the electrode plate group and housed in a bag-shaped separator.
 ここで、負極格子は、Pb-1.2Sn-0.1Caのエキスパンド格子からなり、表面層は、Pb-3質量%Sb箔からなる。また、正極格子は、Pb-1.6Sn-0.1Caのエキスパンド格子からなり、表面層は設けていない。 Here, the negative electrode lattice is composed of an expanded lattice of Pb-1.2Sn-0.1Ca, and the surface layer is composed of Pb-3 mass% Sb foil. Further, the positive electrode lattice is an expanded lattice of Pb-1.6Sn-0.1Ca, and no surface layer is provided.
 なお、負極板3の耳部10の形状は矩形とし、負極板3の耳部10の上端の幅は、正極板2の耳部9の上端の幅と同じにした。 In addition, the shape of the ear | edge part 10 of the negative electrode plate 3 was made into the rectangle, and the width | variety of the upper end of the ear | edge part 10 of the negative electrode plate 3 was made the same as the width | variety of the upper end of the ear | edge part 9 of the positive electrode plate 2.
 (表1)は、各特性の評価結果を示した表である。なお、比較例として、負極格子の表面に表面層を設けていない電池11、及び、袋状のセパレータに負極板でなく正極板を収容した電池12を作製した。 (Table 1) is a table showing the evaluation results of each characteristic. As comparative examples, a battery 11 in which a surface layer was not provided on the surface of the negative electrode grid, and a battery 12 in which a positive electrode plate instead of the negative electrode plate was accommodated in a bag-like separator were produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (表1)に示すように、電解液に、0.03~0.27mol/Lの範囲のアルミニウムイオンと、0.03~0.28mol/Lの範囲のナトリウムイオンの双方を含有している電池2~4、7~9では、「チョイ乗り」モード特性を示すSOCが78%以上であり、かつ、過放電の回復性を示す持続時間が2.9分以上で、どれも共に優れ、「チョイ乗り」モードでアイドリングストップ車を使用する場合に、好適な性能を有する。 As shown in Table 1, the electrolytic solution contains both aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L. In the batteries 2 to 4 and 7 to 9, the SOC indicating “choi riding” mode characteristics is 78% or more, and the duration indicating the overdischarge recovery is 2.9 minutes or more. When the idling stop vehicle is used in the “choi riding” mode, it has a suitable performance.
 これに対して、電解液中のナトリウムイオンの含有量が0.01mol/Lの電池1では、過放電の回復性を示す持続時間が2.5分と短くなっている。これは、電解液中のナトリウムイオンが不足しているためと考えられる。一方で、電解液中のナトリウムイオンの含有量が0.45mol/Lの電池5では、「チョイ乗り」モード特性を示すSOCが75%とやや低くなっている。これは、電解液中のナトリウムイオンが充電反応を阻害しているためと考えられる。 On the other hand, in the battery 1 having a sodium ion content of 0.01 mol / L in the electrolytic solution, the duration indicating the overdischarge recoverability is as short as 2.5 minutes. This is thought to be due to the lack of sodium ions in the electrolyte. On the other hand, in the battery 5 having a sodium ion content of 0.45 mol / L in the electrolytic solution, the SOC showing the “choy ride” mode characteristic is slightly low at 75%. This is thought to be because sodium ions in the electrolytic solution inhibit the charging reaction.
 また、電解液中のアルミニウムイオンの含有量が0.01mol/Lの電池6では、「チョイ乗り」モード特性を示すSOCが75%とやや低くなっている。これは、電解液中のアルミニウムイオンが不足しているためと考えられる。一方で、電解液中のナトリウムイオンの含有量が0.3mol/Lの電池10では、過放電の回復性を示す持続時間が2.5分と短くなっている。これは、電解液中のアルミニウムイオンが過放電後の充電回復性を阻害しているためと考えられる。 Further, in the battery 6 in which the content of aluminum ions in the electrolytic solution is 0.01 mol / L, the SOC showing the “choy ride” mode characteristic is slightly low as 75%. This is presumably because the aluminum ions in the electrolyte are insufficient. On the other hand, in the battery 10 in which the content of sodium ions in the electrolytic solution is 0.3 mol / L, the duration indicating the overdischarge recoverability is as short as 2.5 minutes. This is considered because the aluminum ion in electrolyte solution has inhibited the charge recovery property after overdischarge.
 一方、負極格子に表面層を設けていない電池11では、「チョイ乗り」モード特性を示すSOCが75%と非常に低くなっている。これは、負極格子の表面に、Sbを含む鉛合金箔が設けられていないため、水素過電圧が下がらず、充電受入性が低かったためと考えられる。 On the other hand, in the battery 11 in which the surface layer is not provided on the negative electrode lattice, the SOC showing the “choi riding” mode characteristic is very low as 75%. This is presumably because the lead alloy foil containing Sb was not provided on the surface of the negative electrode lattice, so that the hydrogen overvoltage was not lowered and the charge acceptance was low.
 また、袋状のセパレータに正極板を収容した電池12もまた、「チョイ乗り」モード特性を示すSOCが75%と低かった。これは、極板群の両側に配置された負極板が袋状のセパレータに収容されていないため、負極板がセル室の内壁に押しつけられ、その結果、セル室側の負極板への電解液の回り込みが不足したため、充電受入性が低下したためと考えられる。 In addition, the battery 12 in which the positive electrode plate was housed in the bag-shaped separator also had a low SOC of 75% indicating “choy ride” mode characteristics. This is because the negative electrode plates arranged on both sides of the electrode plate group are not accommodated in the bag-shaped separator, so the negative electrode plate is pressed against the inner wall of the cell chamber, and as a result, the electrolyte solution to the negative electrode plate on the cell chamber side This is thought to be due to a decrease in charge acceptance due to insufficient wraparound.
 以上の結果から、アンチモンを含有しない負極格子の表面に、アンチモンを含有する鉛合金からなる表面層を形成するとともに、極板群の両側に、袋状のセパレータに収容された負極板を配置し、さらに、電解液に、0.03~0.27mol/Lの範囲のアルミニウムイオンと、0.03~0.28mol/Lの範囲のナトリウムイオンの双方を含有させることによって、フェールセーフ機構の作動を抑制した、過放電後の充電回復性まで含めて「チョイ乗り」モードで使用するアイドリングストップ車に適合した鉛蓄電池を提供することができる。 From the above results, a surface layer made of a lead alloy containing antimony is formed on the surface of the negative electrode lattice containing no antimony, and negative electrode plates contained in a bag-like separator are arranged on both sides of the electrode plate group. Furthermore, the fail-safe mechanism is activated by containing both aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L in the electrolyte. It is possible to provide a lead-acid battery suitable for an idling stop vehicle used in the “choi riding” mode, including the charge recovery after over-discharge.
 (実施例2)
 図3(a)に示すように、耳部10の下端を上端よりも幅広にするとともに、負極板3の耳部10の上端を正極板2の耳部9の上端よりも幅広とし、かつ、電解液に0.11mol/Lのナトリウムイオンと0.2mol/Lのアルミニウムイオンを含有させ、さらに正極ストラップ7・負極ストラップ8ともにアンチモンを含む鉛合金を用いて、電池Aを作製した。
(Example 2)
As shown in FIG. 3A, the lower end of the ear 10 is made wider than the upper end, the upper end of the ear 10 of the negative electrode plate 3 is wider than the upper end of the ear 9 of the positive electrode 2, and A battery A was fabricated using a lead alloy containing 0.11 mol / L sodium ion and 0.2 mol / L aluminum ion in the electrolytic solution, and both the positive strap 7 and the negative strap 8 containing antimony.
 また、耳部10を、図3(b)に示した形状にしたこと以外は、電池Aと同様の電池Bを作製した。 Further, a battery B similar to the battery A was produced except that the ear portion 10 was formed in the shape shown in FIG.
 また、負極ストラップ8としてアンチモンを含まない鉛-錫合金を用いたこと以外は、電池Aと同様の電池Cを作製した。 Further, a battery C similar to the battery A was produced except that a lead-tin alloy containing no antimony was used as the negative electrode strap 8.
 (表2)は、各特性の評価結果を示した表である。なお、比較の対象として、耳部10の上端と下端の幅を同一としたこと以外は電池Aと同様の電池D、負極板3の耳部10の上端と正極板2の耳部9の上端の幅を同一としたこと以外は電池Aと同様の電池E、及び、耳部10の上端と下端の幅を同一(矩形)とし、負極板3の耳部10の上端と正極板2の耳部9の上端の幅を同一としたこと以外は電池Aと同様の電池Fを作製した。 (Table 2) is a table showing the evaluation results of each characteristic. For comparison, the battery D is the same as the battery A except that the width of the upper end and the lower end of the ear portion 10 is the same, and the upper end of the ear portion 10 of the negative electrode plate 3 and the upper end of the ear portion 9 of the positive electrode plate 2. The battery E is the same as the battery A, except that the width of the upper end and the lower end of the ear portion 10 is the same (rectangular), and the upper end of the ear portion 10 of the negative electrode plate 3 and the ear of the positive electrode plate 2 are the same. A battery F similar to the battery A was produced except that the width of the upper end of the portion 9 was the same.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (表2)に示すように、耳部10の下端を上端よりも幅広にするとともに、正極板2の耳部9の上端を、負極板3の耳部10の上端よりも幅狭とした電池A~Cは、耐振動性を加味した寿命特性が良好であった。しかも、単に長寿命であるだけではなく、使用者が鉛蓄電池の交換時期を認知できる内部抵抗の上昇によるエンジン始動性の漸次的な低下(活物質の劣化)が認識できた。実際に、電池A~Cを寿命試験後に分解した結果、耳細りによる断線が原因で寿命を迎えた電池はなかった。 As shown in (Table 2), the lower end of the ear portion 10 is wider than the upper end, and the upper end of the ear portion 9 of the positive electrode plate 2 is narrower than the upper end of the ear portion 10 of the negative electrode plate 3. A to C had good life characteristics in consideration of vibration resistance. In addition, it was not only a long life, but also a gradual decrease in engine startability (deterioration of active material) due to an increase in internal resistance that allowed the user to recognize when to replace the lead storage battery. Actually, as a result of disassembling the batteries A to C after the life test, there was no battery that had reached the end of its life due to the disconnection due to the ear thinning.
 これに対して、耳部10の形状を矩形にした電池D、Fや、負極板3の耳部10の上端と正極板2の耳部9の上端の幅を同一とした電池D、Fは、電池A~Cに比べて、振動性を加味した寿命特性が劣っていた。これらの電池を寿命試験後に分解した結果、耳細りによる断線が原因で寿命を迎えていた。 On the other hand, the batteries D and F in which the shape of the ear portion 10 is rectangular, and the batteries D and F in which the widths of the upper end of the ear portion 10 of the negative electrode plate 3 and the upper end of the ear portion 9 of the positive electrode plate 2 are the same are Compared with the batteries A to C, the life characteristics considering vibration were inferior. As a result of disassembling these batteries after the life test, they had reached the end of their service life due to disconnection due to narrowing of the ears.
 以上の結果から、負極板の耳部を上端よりも下端の方を幅広にし、かつ、正極板の耳部の上端を、負極板の耳部の上端より幅狭にすることによって、耐振動性を加味した寿命特性を向上させることができる。 From the above results, it is possible to reduce vibration resistance by making the lower end of the negative electrode plate wider than the upper end and making the upper end of the positive electrode ear narrower than the upper end of the negative electrode ear. Can improve the life characteristics.
 また、負極ストラップ8としてアンチモンを含まない電池Cは、耳細りが起こりにいため耐振動性を加味した寿命特性がより良くなるものの、劣化モードがこれとは別(負極ストラップ8自身の破損)の、基本的な耐振動性がやや劣るようになる。このことから、耐振動性を加味した寿命特性と基本的な耐振動性の双方を高水準とするためには、負極ストラップ8にもアンチモンを含有する鉛合金を用いるのが好ましい。 Further, the battery C that does not contain antimony as the negative electrode strap 8 has a better life characteristic in consideration of vibration resistance because it is unlikely to be thinned, but the deterioration mode is different from this (breakage of the negative electrode strap 8 itself). Basic vibration resistance becomes slightly inferior. From this, it is preferable to use a lead alloy containing antimony for the negative electrode strap 8 in order to achieve both high life characteristics considering vibration resistance and basic vibration resistance.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.
 本発明は、アイドリングストップ車に使用される鉛蓄電池に有用である。 The present invention is useful for a lead storage battery used in an idling stop vehicle.
 1   鉛蓄電池
 2   正極板
 3   負極板
 4   セパレータ
 5   極板群
 6   セル室
 7   正極ストラップ
 8   負極ストラップ
 9、10  耳部
 11  接続体
 12  正極端子
 13  負極端子
 14  蓋
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Electrode plate group 6 Cell chamber 7 Positive electrode strap 8 Negative electrode strap 9, 10 Ear part 11 Connection body 12 Positive electrode terminal 13 Negative electrode terminal 14 Cover

Claims (3)

  1.  複数の正極板及び負極板がセパレータを介して積層された極板群が、電解液と共にセル室に収容された鉛蓄電池であって、
     前記正極板は、アンチモンを含有しない鉛または鉛合金からなる正極格子と、該正極格子に充填された正極活物質とを備え、
     前記負極板は、アンチモンを含有しない鉛または鉛合金からなる負極格子と、該負極格子の表面に形成されたアンチモンを含有する鉛合金からなる表面層と、前記負極格子に充填された負極活物質とを備え、
     前記電解液は、0.03~0.27mol/Lの範囲のアルミニウムイオンと、0.03~0.28mol/Lの範囲のナトリウムイオンとを含有し、
     前記極板群の両側には、袋状の前記セパレータに収容された負極板が配置されている、鉛蓄電池。
    An electrode plate group in which a plurality of positive electrode plates and negative electrode plates are laminated via a separator is a lead storage battery housed in a cell chamber together with an electrolyte solution,
    The positive electrode plate includes a positive electrode lattice made of lead or a lead alloy containing no antimony, and a positive electrode active material filled in the positive electrode lattice,
    The negative electrode plate includes a negative electrode lattice made of lead or a lead alloy not containing antimony, a surface layer made of a lead alloy containing antimony formed on a surface of the negative electrode lattice, and a negative electrode active material filled in the negative electrode lattice And
    The electrolytic solution contains aluminum ions in the range of 0.03 to 0.27 mol / L and sodium ions in the range of 0.03 to 0.28 mol / L.
    A lead storage battery in which negative electrode plates accommodated in the bag-like separator are arranged on both sides of the electrode plate group.
  2. 前記正極板および前記負極板は、その上部に耳部をそれぞれ備え、
     前記セル室に収容された前記複数の正極板は、正極ストラップによって並列に接続されており、
     前記セル室に収容された前記複数の負極板は、負極ストラップによって並列に接続されており、
     隣り合う前記セル室に収容された電極群は、直列に接続されており、
     前記負極板の耳部は上端よりも下端の方が幅広であり、かつ、前記正極板の耳部の上端は、前記負極板の耳部の上端より幅狭である、請求項1に記載の鉛蓄電池。
    The positive electrode plate and the negative electrode plate are each provided with an ear on the upper part,
    The plurality of positive plates housed in the cell chamber are connected in parallel by a positive strap,
    The plurality of negative plates accommodated in the cell chamber are connected in parallel by a negative strap,
    The electrode groups accommodated in the adjacent cell chambers are connected in series,
    The ear of the negative electrode plate is wider at the lower end than the upper end, and the upper end of the ear of the positive electrode plate is narrower than the upper end of the ear of the negative electrode plate. Lead acid battery.
  3.  前記負極ストラップはアンチモンを含有している、請求項2に記載の鉛蓄電池。 3. The lead acid battery according to claim 2, wherein the negative electrode strap contains antimony.
PCT/JP2014/001548 2013-04-05 2014-03-18 Lead acid storage battery WO2014162674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013079229A JP2016115396A (en) 2013-04-05 2013-04-05 Lead power storage battery
JP2013-079229 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014162674A1 true WO2014162674A1 (en) 2014-10-09

Family

ID=51657989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001548 WO2014162674A1 (en) 2013-04-05 2014-03-18 Lead acid storage battery

Country Status (2)

Country Link
JP (1) JP2016115396A (en)
WO (1) WO2014162674A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068741A1 (en) * 2015-10-22 2017-04-27 株式会社Gsユアサ Separator for lead storage battery and lead storage battery
EP3683886A4 (en) * 2017-10-31 2021-07-07 GS Yuasa International Ltd. Lead storage battery
CN113972407A (en) * 2021-09-29 2022-01-25 江苏同科蓄电池股份有限公司 Ultra-thin lead-acid storage battery plate cluster module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6726349B1 (en) * 2019-11-01 2020-07-22 古河電池株式会社 Lead acid battery
JP7128482B2 (en) * 2020-01-06 2022-08-31 古河電池株式会社 lead acid battery
JP7079831B2 (en) * 2020-01-08 2022-06-02 古河電池株式会社 Liquid lead-acid battery
JP7348082B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery
JP7128483B2 (en) * 2020-01-17 2022-08-31 古河電池株式会社 lead acid battery
EP4329004A1 (en) * 2021-06-08 2024-02-28 GS Yuasa International Ltd. Control valve type lead acid storage battery and power storage system provided with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646375A (en) * 1987-06-29 1989-01-10 Matsushita Electric Ind Co Ltd Grid body for lead storage battery
JPH0864226A (en) * 1994-08-18 1996-03-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2006102219A1 (en) * 2005-03-22 2006-09-28 Johnson Controls Technology Company Battery assembly having a lug profile comprising a corrugated portion
JP2008218258A (en) * 2007-03-06 2008-09-18 Gs Yuasa Corporation:Kk Lead acid battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2012084500A (en) * 2010-09-13 2012-04-26 Shin Kobe Electric Mach Co Ltd Lead storage battery and lead storage battery current collector manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646375A (en) * 1987-06-29 1989-01-10 Matsushita Electric Ind Co Ltd Grid body for lead storage battery
JPH0864226A (en) * 1994-08-18 1996-03-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2006102219A1 (en) * 2005-03-22 2006-09-28 Johnson Controls Technology Company Battery assembly having a lug profile comprising a corrugated portion
JP2008218258A (en) * 2007-03-06 2008-09-18 Gs Yuasa Corporation:Kk Lead acid battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2012084500A (en) * 2010-09-13 2012-04-26 Shin Kobe Electric Mach Co Ltd Lead storage battery and lead storage battery current collector manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068741A1 (en) * 2015-10-22 2017-04-27 株式会社Gsユアサ Separator for lead storage battery and lead storage battery
EP3683886A4 (en) * 2017-10-31 2021-07-07 GS Yuasa International Ltd. Lead storage battery
CN113972407A (en) * 2021-09-29 2022-01-25 江苏同科蓄电池股份有限公司 Ultra-thin lead-acid storage battery plate cluster module

Also Published As

Publication number Publication date
JP2016115396A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2014162674A1 (en) Lead acid storage battery
JP5596241B1 (en) Lead acid battery
JP5522444B2 (en) Lead acid battery
JP6045329B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
WO2013114822A1 (en) Lead-acid battery
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP2005302395A (en) Lead storage battery
WO2014097516A1 (en) Lead storage battery
JP5531746B2 (en) Lead acid battery
EP2381524B1 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP6255696B2 (en) Lead acid battery
JP5504383B1 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP2013145664A (en) Control valve type lead storage battery
JP5909974B2 (en) Lead acid battery
JP5754607B2 (en) Lead acid battery
JP6006429B2 (en) Lead acid battery
JP4802903B2 (en) Lead acid battery
JP2005268061A (en) Lead storage cell
JP2004207004A (en) Lead accumulator
JP2006164598A (en) Lead acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP