JP7348082B2 - liquid lead acid battery - Google Patents
liquid lead acid battery Download PDFInfo
- Publication number
- JP7348082B2 JP7348082B2 JP2020001738A JP2020001738A JP7348082B2 JP 7348082 B2 JP7348082 B2 JP 7348082B2 JP 2020001738 A JP2020001738 A JP 2020001738A JP 2020001738 A JP2020001738 A JP 2020001738A JP 7348082 B2 JP7348082 B2 JP 7348082B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- current collector
- electrode current
- upper bone
- center point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
Description
本発明は、液式鉛蓄電池に関する。 The present invention relates to a liquid lead acid battery.
近年の環境問題の深刻化に伴い、自動車等の排出ガス規制は世界的に厳しくなっている。この規制に対応するため、自動車メーカーは様々な環境技術を開発してきた。その環境技術としては、停車時に一時的にエンジンを停止させるアイドリングストップシステム(Idling Stop System、以下、「ISS」と表記する。)が知られている。ISSを搭載した内燃自動車(以下、「ISS車」と表記する。)は、信号待ち等で停車した際のアイドリングによる燃料の消費を抑制できるため、燃費が向上し更に排出ガス量も低減できる。 As environmental problems have become more serious in recent years, exhaust gas regulations for automobiles and the like have become stricter worldwide. In order to comply with this regulation, automobile manufacturers have developed various environmental technologies. A known environmental technology is an idling stop system (hereinafter referred to as "ISS") that temporarily stops the engine when the vehicle is stopped. Internal combustion vehicles equipped with an ISS (hereinafter referred to as "ISS vehicles") can reduce fuel consumption due to idling when stopped at traffic lights, etc., thereby improving fuel efficiency and reducing exhaust emissions.
ISS車用の鉛蓄電池は、エンジンが頻繁に停止と始動を繰り返すため、完全な充電状態ではない部分充電状態(Partial State of Charge、「PSOC」とも称される。)で充電と放電とが繰り返される。ISS車の鉛蓄電池は、充電率が90%より高いと、充電受入性が低くなって回生エネルギーの利用効率が低下するため、充電率が80%~90%の部分充電状態で使用されることが望ましいとされている。 Lead-acid batteries for ISS vehicles are repeatedly charged and discharged in a partial state of charge (also called "PSOC"), which is not a fully charged state, because the engine frequently repeats stopping and starting. It will be done. Lead-acid batteries in ISS vehicles should be used in a partially charged state with a charging rate of 80% to 90%, because if the charging rate is higher than 90%, the receptivity to charging will decrease and the efficiency of using regenerative energy will decrease. is considered desirable.
液式鉛蓄電池の劣化要因の一つである電解液の成層化は、電槽内の上部と下部とで電解液の濃度差が生じる現象であり、80%~90%の部分充電状態を維持する様に制御して鉛蓄電池を使用する際に発生し易い。電解液の濃度が小さい上部では、負極板表面に金属鉛の樹枝状結晶(デンドライト)が析出・成長して、内部短絡が生じやすくなる。一方、電解液の濃度が大きい下部では、高濃度の電解液により、負極板表面で不導体の硫酸鉛が肥大化するサルフェーションが生じやすくなる。 Stratification of the electrolyte, which is one of the causes of deterioration of liquid lead-acid batteries, is a phenomenon in which there is a difference in the concentration of the electrolyte between the upper and lower parts of the battery container, and a partially charged state of 80% to 90% can be maintained. This is likely to occur when using lead-acid batteries that are controlled to In the upper part where the electrolyte concentration is low, metallic lead dendrites precipitate and grow on the surface of the negative electrode plate, making it easy for internal short circuits to occur. On the other hand, in the lower part where the concentration of the electrolytic solution is high, the high concentration of the electrolytic solution tends to cause sulfation, in which the nonconducting lead sulfate enlarges on the surface of the negative electrode plate.
サルフェーションが生じると、負極活物質からの硫酸の放出が抑制されるため、負極板下部の充電受け入れ性が低下する。負極板下部の充電受け入れ性が低下すると、主に負極板上部で充放電反応が進行する様になるため、負極板上部と対向する正極板上部の正極活物質の軟化や、集電体である鉛合金からなる基板の腐食が進行し、鉛蓄電池が早期に寿命を迎えることになる。 When sulfation occurs, the release of sulfuric acid from the negative electrode active material is suppressed, thereby reducing the charge acceptance of the lower part of the negative electrode plate. When the charge acceptance of the lower part of the negative electrode plate decreases, charging and discharging reactions mainly proceed in the upper part of the negative electrode plate, resulting in the softening of the positive electrode active material on the upper part of the positive electrode plate, which is opposite to the upper part of the negative electrode plate, and the current collector. Corrosion of the lead alloy substrate progresses, leading to the premature end of the lead-acid battery's life.
電解液の成層化を抑制する技術に関しては、例えば特許文献1に記載された技術が挙げられる。
特許文献1には、充電時に発生する気体による電解液の攪拌作用をより有効に利用して、成層化を抑制するために、極板群を収容する収容空間とは別に、収容空間の上部及び下部に連通する連通流路を設けることが記載されている。これにより、充電時に、極板群により発生する気体の上昇に伴う電解液の上方向への流れが収容空間内で発生し、これに対応する下方向への流れが連通流路内で発生するため、電槽内で電解液の対流が効果的に発生することで、電解液の攪拌作用を高めて成層化を抑制することができると記載されている。
As for the technology for suppressing stratification of the electrolytic solution, for example, the technology described in Patent Document 1 can be mentioned.
Patent Document 1 discloses that in order to suppress stratification by more effectively utilizing the stirring action of the electrolyte caused by the gas generated during charging, an upper part of the housing space and a It is described that a communication channel communicating with the lower part is provided. As a result, during charging, an upward flow of electrolyte occurs in the storage space as the gas generated by the electrode plate group rises, and a corresponding downward flow occurs in the communication channel. Therefore, it is stated that by effectively generating convection of the electrolytic solution within the container, the stirring action of the electrolytic solution can be enhanced and stratification can be suppressed.
一方、液式鉛蓄電池は、正極集電体に正極合剤が保持された正極板と、負極集電体に負極合剤が保持された負極板を備えている。正極集電体および負極集電体は、例えば特許文献2の図1に示すように、長方形の格子状基板と格子状基板に連続する耳とを有する。格子状基板は、格子状基板を成す長方形の一辺に沿う上部骨と、上部骨に接続されて上部骨より下方に存在する複数本の中骨と、を有する。耳は、上部骨の一辺の中心から一方にずれた位置から上側に突出している。
しかし、特許文献1および2には、充放電時の極板の電位分布と電解液の攪拌作用との関係についての記載はない。
On the other hand, a liquid lead-acid battery includes a positive electrode plate in which a positive electrode mixture is held on a positive electrode current collector, and a negative electrode plate in which a negative electrode mixture is held in a negative electrode current collector. The positive electrode current collector and the negative electrode current collector have a rectangular lattice-shaped substrate and ears continuous with the lattice-shaped substrate, as shown in FIG. 1 of Patent Document 2, for example. The lattice-shaped substrate has an upper bone along one side of the rectangle forming the lattice-shaped substrate, and a plurality of middle bones connected to the upper bone and existing below the upper bone. The ears protrude upward from a position offset from the center of one side of the upper bone.
However, Patent Documents 1 and 2 do not describe the relationship between the potential distribution of the electrode plate during charging and discharging and the stirring action of the electrolytic solution.
本発明の課題は、部分充電状態で使用される場合であっても、充電時に生じるガスによる攪拌作用で電解液の成層化が抑制される、新規な液式鉛蓄電池を提供することである。 An object of the present invention is to provide a novel liquid lead-acid battery in which stratification of the electrolyte is suppressed due to the stirring action of gas generated during charging even when used in a partially charged state.
上記課題を解決するために、本発明の第一態様の液式鉛蓄電池は下記の構成(1)~(4)を要旨とする。
(1)正極集電体と正極合剤とを有する正極板と、負極集電体と負極合剤とを有する負極板とが、セパレータを介して交互に積層された極板群と、電解液である希硫酸を備えた液式鉛蓄電池である。正極集電体は、長方形の格子状基板と前記格子状基板に連続する耳とを有し、格子状基板に正極合剤が保持されている。格子状基板は、格子状基板を成す長方形の一辺に沿う上部骨と、上部骨に接続されて上部骨より下方に存在する複数本の中骨と、を有する。耳は、上部骨の一辺の中心から一方にずれた位置から上側に突出する。
In order to solve the above problems, the liquid lead-acid battery according to the first embodiment of the present invention has the following configurations (1) to (4).
(1) An electrode plate group in which a positive electrode plate having a positive electrode current collector and a positive electrode mixture, and a negative electrode plate having a negative electrode current collector and a negative electrode mixture are alternately stacked with separators interposed therebetween, and an electrolyte solution. It is a liquid lead acid battery equipped with dilute sulfuric acid. The positive electrode current collector has a rectangular lattice-shaped substrate and ears continuous with the lattice-shaped substrate, and a positive electrode mixture is held on the lattice-shaped substrate. The lattice-shaped substrate has an upper bone along one side of the rectangle forming the lattice-shaped substrate, and a plurality of middle bones connected to the upper bone and existing below the upper bone. The ears protrude upward from a position offset from the center of one side of the upper bone.
(2)正極集電体を、格子状基板を成す長方形の上記一方の側の角を通る対角線に沿って切断して生じる分割体のうち、耳が存在する分割体は、耳の上部骨との境界線上の中心点Pを通り上部骨に垂直な基準線Kにより、第一の部分と第二の部分に区分され、第一の部分は第二の部分よりも面積が大きい。 (2) Among the divided bodies produced by cutting the positive electrode current collector along the diagonal line passing through the corner of one side of the rectangle forming the grid-like substrate, the divided body in which the ears are present is connected to the upper bone of the ear. It is divided into a first part and a second part by a reference line K passing through the center point P on the boundary line and perpendicular to the upper bone, and the first part has a larger area than the second part.
(3)x軸およびy軸が共に線形目盛である座標平面に、第一の部分における、複数本の中骨の各切断面Cnと中心点Pとの間の各抵抗値Rnをy座標、各切断面Cnの中心点と中心点Pとの各距離Xnをx座標としてなされた全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似でき、x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下である。
なお、上述の「直線に近似でき」とは、複数のプロットを最小二乗法で直線回帰した場合の相関係数ρの絶対値|ρ|が0.90以上であることを意味する。また、「傾きが異なる二本の直線」とは、二本の直線の傾きa1,a2(a1>a2)の比(a1/a2)が1.3以上であることを意味する。
(3) On a coordinate plane where both the x-axis and the y-axis are linear scales, each resistance value Rn between each cutting surface Cn of the plurality of backbones in the first part and the center point P is expressed as the y-coordinate, All the plots made with each distance Xn between the center point of each cut plane Cn and the center point P as the x coordinate can be approximated to two straight lines with different slopes with x=H as the intersection point, and each of the plots where x<H The ratio A/B between the average value A of each resistance value Rn at distance Xn and the average value B of each resistance value Rn at each distance Xn where x≧H is 0.35 or more and 0.55 or less. be.
In addition, the above-mentioned "can be approximated to a straight line" means that the absolute value |ρ| of the correlation coefficient ρ is 0.90 or more when a plurality of plots are subjected to linear regression using the least squares method. Moreover, "two straight lines with different slopes" means that the ratio (a1/a2) of the slopes a1 and a2 (a1>a2) of the two straight lines is 1.3 or more.
(4)電解液中には、アルミニウムイオンおよびリチウムイオンの少なくとも一方と、高分子界面活性剤と、を含み、アルミニウムイオンおよびリチウムイオンの合計含有率が0.01mol/L以上0.30mol/L以下であり、高分子界面活性剤の含有率が電解液に対して0.002wt%以上である。 (4) The electrolytic solution contains at least one of aluminum ions and lithium ions and a polymer surfactant, and the total content of aluminum ions and lithium ions is 0.01 mol/L or more and 0.30 mol/L. or less, and the content of the polymer surfactant is 0.002 wt% or more with respect to the electrolytic solution.
本発明によれば、部分充電状態で使用される場合であっても、充電時に生じるガスによる攪拌作用で電解液の成層化が抑制される、新規な液式鉛蓄電池を提供できる。 According to the present invention, it is possible to provide a novel liquid lead-acid battery in which stratification of the electrolytic solution is suppressed by the stirring action of gas generated during charging even when used in a partially charged state.
以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。 Embodiments of the present invention will be described below, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential to the present invention.
[第一実施形態および第二実施形態の液式鉛蓄電池の構成]
第一実施形態および第二実施形態の液式鉛蓄電池は、モノブロックタイプの電槽と、蓋と、六個の極板群とを有する。電槽は、隔壁により六個のセル室に区画されている。六個のセル室は電槽の長手方向に沿って配列されている。各セル室に一つの極板群が配置されている。各セル室に電解液が注入されている。
各極板群は、交互に配置された複数枚の正極板および負極板と、正極板および負極板との間に配置されたセパレータと、からなる積層体を有する。
[Configuration of liquid lead acid battery of first embodiment and second embodiment]
The liquid lead-acid batteries of the first embodiment and the second embodiment have a monoblock type battery case, a lid, and six electrode plate groups. The battery case is divided into six cell chambers by partition walls. The six cell chambers are arranged along the longitudinal direction of the battery case. One electrode plate group is arranged in each cell chamber. Electrolyte is injected into each cell chamber.
Each electrode plate group has a laminate including a plurality of positive electrode plates and negative electrode plates arranged alternately, and a separator arranged between the positive electrode plates and the negative electrode plates.
正極板は、正極集電体と正極合剤(正極活物質を含む合剤)とを有する。正極集電体は、長方形の格子状基板と、格子状基板に連続する耳とを有し、格子状基板に正極合剤が保持されている。負極板は、負極集電体と負極合剤(負極活物質を含む合剤)とを有する。負極集電体は、長方形の格子状基板と、格子状基板に連続する耳とを有し、格子状基板に負極合剤が保持されている。複数枚の正極板および負極板は、セパレータを介して交互に配置されている。積層体を構成する負極板の枚数Mnは正極板の枚数Mpよりも一枚多い。 The positive electrode plate has a positive electrode current collector and a positive electrode mixture (a mixture containing a positive electrode active material). The positive electrode current collector has a rectangular lattice-shaped substrate and ears continuous with the lattice-shaped substrate, and a positive electrode mixture is held on the lattice-shaped substrate. The negative electrode plate includes a negative electrode current collector and a negative electrode mixture (a mixture containing a negative electrode active material). The negative electrode current collector has a rectangular lattice-shaped substrate and ears continuous with the lattice-shaped substrate, and a negative electrode mixture is held on the lattice-shaped substrate. The plurality of positive electrode plates and negative electrode plates are arranged alternately with separators interposed therebetween. The number M n of negative electrode plates constituting the laminate is one more than the number M p of positive electrode plates.
負極板は袋状セパレータ内に収納されている。そして、負極板が入った袋状セパレータと正極板とを交互に重ねることで、正極板と負極板との間にセパレータが配置された状態となっている。なお、正極板を袋状セパレータ内に収納して、負極板と交互に重ねてもよい。
また、各極板群は、積層体を構成する複数の正極板および負極板をそれぞれ幅方向の別の位置で連結する正極ストラップおよび負極ストラップと、正極ストラップおよび負極ストラップからそれぞれ立ち上がる正極中間極柱および負極中間極柱と、外部端子となる正極極柱および負極極柱を有する。
The negative electrode plate is housed within a bag-shaped separator. Then, by alternately stacking the bag-shaped separators containing the negative electrode plates and the positive electrode plates, the separator is placed between the positive electrode plate and the negative electrode plate. Note that the positive electrode plates may be housed in a bag-like separator and stacked alternately with the negative electrode plates.
In addition, each electrode plate group includes a positive electrode strap and a negative electrode strap that connect the plurality of positive electrode plates and negative electrode plates that constitute the laminate at different positions in the width direction, and a positive electrode intermediate pole that rises from the positive electrode strap and the negative electrode strap, respectively. and a negative intermediate pole, and a positive pole and a negative pole serving as external terminals.
正極ストラップおよび負極ストラップは、複数の正極板および負極板の耳部をそれぞれ連結して固定している。隣接するセル室の正極中間極柱同士および負極中間極柱同士が抵抗溶接されて、隣接するセル間が電気的に直列に接続されている。
正極極柱および負極極柱は、セル配列方向の両端のセル室に配置された正極ストラップおよび負極ストラップに、小片部を介して形成されている。
The positive electrode strap and the negative electrode strap connect and fix the ears of a plurality of positive electrode plates and negative electrode plates, respectively. The positive intermediate poles and the negative intermediate poles of adjacent cell chambers are resistance welded to electrically connect the adjacent cells in series.
The positive pole pole and the negative pole pole are formed on the positive pole strap and the negative pole strap, which are arranged in the cell chambers at both ends in the cell arrangement direction, with small pieces interposed therebetween.
電解液は、所定の比重の希硫酸を使用する。電解液中には、アルミニウムイオンおよびリチウムイオンの少なくとも一方と、高分子界面活性剤が含まれる。アルミニウムイオンおよびリチウムイオンの合計含有率は、電解液に対して0.01mol/L以上0.30mol/L以下である。高分子界面活性剤は、電解液に対して0.002wt%以上となる含有率で含まれる。使用可能な高分子界面活性剤は、パーフルオロスルホン酸塩、リグニンスルホン酸塩、ラウリル硫酸塩などのアニオン性界面活性剤、ポリアスパラギン酸塩などの両性界面活性剤、アルキルトリメチルアンモニウムクロライドなどのカチオン性界面活性剤で、イオン性の界面活性剤である。 As the electrolyte, dilute sulfuric acid with a predetermined specific gravity is used. The electrolytic solution contains at least one of aluminum ions and lithium ions, and a polymer surfactant. The total content of aluminum ions and lithium ions is 0.01 mol/L or more and 0.30 mol/L or less relative to the electrolytic solution. The polymer surfactant is contained at a content of 0.002 wt% or more based on the electrolyte solution. Usable polymeric surfactants include anionic surfactants such as perfluorosulfonate, lignosulfonate, and lauryl sulfate, amphoteric surfactants such as polyaspartate, and cationic surfactants such as alkyltrimethylammonium chloride. It is an ionic surfactant.
[第一実施形態の正極集電体]
図1に示すように、第一実施形態の正極集電体1は、長方形の格子状基板11と格子状基板11に連続する耳12とを有し、格子状基板11に正極合剤が保持されている。格子状基板11は、格子状基板11を成す長方形の一辺に沿う上部骨111と、上部骨111に接続されて上部骨111より下方に存在する複数本の中骨112と、を有する。耳12は、上部骨111の一辺の中心から一方(図1の右側)にずれた位置から上側に突出している。
[Positive electrode current collector of first embodiment]
As shown in FIG. 1, the positive electrode current collector 1 of the first embodiment has a rectangular grid-
正極集電体1を、格子状基板11を成す長方形の右側(一方の側)の角を通る対角線Tに沿って切断して生じる分割体のうち、耳が存在する分割体を、図2に示す。この分割体2は、耳12の上部骨111との境界線L上の中心点Pを通り上部骨111に垂直な基準線Kにより、第一の部分21と第二の部分22に区分され、第一の部分21は第二の部分22よりも面積が大きい。
Among the divided bodies produced by cutting the positive electrode current collector 1 along the diagonal line T passing through the right (one side) corner of the rectangle forming the grid-
第一の部分21は、13本の中骨112の切断面を有する。x軸およびy軸が共に線形目盛である座標平面に、13本の各切断面C1~C13と中心点Pとの間の各抵抗値R1~R13をy座標、各切断面C1~C13の中心点と中心点Pとの各距離X1~X13をx座標としてプロットすると、全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似できる。x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下になっている。
The
例えば、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mmの場合、中骨112の太さ(長手方向に垂直な断面積)は全体で同じであって、0.85mm以上1.00mm以下になっている。
正極集電体1は、打ち抜き法、エキスパンド法、重力鋳造法などの通常の方法で得ることができる。
For example, if the dimension S1 = 115.0 mm, the dimension S2 = 110.0 mm, the dimension S3 = 100.0 mm, and the dimension S4 = 45.0 mm, the thickness (cross-sectional area perpendicular to the longitudinal direction) of the
The positive electrode current collector 1 can be obtained by a conventional method such as a punching method, an expanding method, or a gravity casting method.
[第二実施形態の正極集電体]
図3に示すように、第二実施形態の正極集電体1Aは、長方形の格子状基板11Aと格子状基板11Aに連続する耳12とを有し、格子状基板11Aに正極合剤が保持されている。格子状基板11Aは、格子状基板11Aを成す長方形の一辺に沿う上部骨111と、上部骨111に接続されて上部骨111より下方に存在する複数本の中骨と、を有する。中骨の太さは上下方向の中間位置で変化し、中間位置よりも上側(上部骨111側)の中骨112aは、中間位置よりも下側の中骨112bの太さよりも細い。
耳12は、上部骨111の一辺の中心から一方(図3の右側)にずれた位置から上側に突出している。
[Positive electrode current collector of second embodiment]
As shown in FIG. 3, the positive electrode
The
正極集電体1Aを、格子状基板11Aを成す長方形の右側(一方の側)の角を通る対角線Tに沿って切断して生じる分割体のうち、耳が存在する分割体を、図4に示す。この分割体2Aは、耳12の上部骨111との境界線L上の中心点Pを通り上部骨111に垂直な基準線Kにより、第一の部分21Aと第二の部分22Aに区分され、第一の部分21Aは第二の部分22Aよりも面積が大きい。
Among the divided bodies produced by cutting the positive electrode
第一の部分21Aは、13本の中骨の切断面を有する。切断面C1~C5は中骨112aの切断面であり、切断面C6~C13は中骨112bの切断面である。x軸およびy軸が共に線形目盛である座標平面に、13本の各切断面C1~C13と中心点Pとの間の各抵抗値R1~R13をy座標、各切断面C1~C13の中心点と中心点Pとの各距離X1~X13をx座標としてプロットすると、全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似できる。x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下になっている。
The
例えば、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mmの場合、中骨112aの太さ(長手方向に垂直な断面積)が0.75mm以上0.85mm以下、中骨112bの太さが1.15mm以上1.25mm以下になっている。
正極集電体1Aは、打ち抜き法、エキスパンド法、重力鋳造法などの通常の方法で得ることができる。
For example, when the dimension S1=115.0 mm, the dimension S2=110.0 mm, the dimension S3=100.0 mm, and the dimension S4=45.0 mm, the thickness (cross-sectional area perpendicular to the longitudinal direction) of the
The positive electrode
[作用、効果]
液式鉛蓄電池が有する正極集電体の比A/Bが小さいほど、充電時に正極板の下部が上部よりも分極しやすくなるため、下部からのガス発生が促進されることで、部分充電状態であっても電解液の攪拌作用が得られる。しかし、比A/Bが0.35未満の場合、正極集電体の下部から耳に至る経路の抵抗値が上部から耳に至る経路の抵抗値よりも著しく大きいため、正極板の下部での充放電反応が進行しにくくなる。よって、下部から発生するガスの量が、部分充電状態での電解液攪拌作用を得るためには不十分となる。
正極集電体の比A/Bが0.55よりも大きい液式鉛蓄電池では、正極板全体で充放電反応が進行しにくくなるため、ガスの発生量が部分充電状態での電解液攪拌作用を得るためには不十分となる。
[action, effect]
The smaller the ratio A/B of the positive electrode current collector of a liquid lead-acid battery, the more easily the lower part of the positive electrode plate is polarized than the upper part during charging, which promotes gas generation from the lower part, resulting in a partially charged state. Even in this case, the stirring action of the electrolyte solution can be obtained. However, when the ratio A/B is less than 0.35, the resistance value of the path from the bottom of the positive electrode current collector to the ear is significantly higher than the resistance value of the path from the top to the ear, so that The charge/discharge reaction becomes difficult to proceed. Therefore, the amount of gas generated from the lower part is insufficient to obtain an electrolyte stirring action in a partially charged state.
In liquid lead-acid batteries where the ratio A/B of the positive electrode current collector is greater than 0.55, the charging/discharging reaction is difficult to proceed on the entire positive electrode plate, so the amount of gas generated is due to the electrolyte stirring action in the partially charged state. It will be insufficient to obtain.
第一実施形態の正極集電体1および第二実施形態の正極集電体1Aの比A/Bが0.35以上0.55以下の範囲にあることにより、第一実施形態および第二実施形態の液式鉛蓄電池は、充放電反応が正極板全体で均一に行われるため、下部から発生するガスの量が、部分充電状態での電解液の攪拌作用を得るために十分な量となる。よって、第一実施形態および第二実施形態の液式鉛蓄電池によれば、部分充電状態で使用される場合に電解液の成層化が抑制されて、寿命を長くすることができる。
Since the ratio A/B of the positive electrode current collector 1 of the first embodiment and the positive electrode
さらに、本発明者らが検討した結果、第一実施形態の正極集電体1を使用した液式鉛蓄電池及び第二実施形態の正極集電体1Aを使用した液式鉛蓄電池において、高分子界面活性剤の含有率が0.002wt%以上であると、電解液中にアルミニウムイオンおよびリチウムイオンが合計0.01mol/L以上0.30mol/L以下含まれていても、金属鉛のデンドライトが成長してセパレータを貫通し、内部短絡を生じる現象(以下、「デンドライトショート」とも呼ぶ)が抑制されることが分かった。 Furthermore, as a result of studies conducted by the present inventors, polymer When the surfactant content is 0.002 wt% or more, even if the electrolyte contains aluminum ions and lithium ions in a total amount of 0.01 mol/L or more and 0.30 mol/L or less, metallic lead dendrites will not form. It was found that the phenomenon in which dendrites grow and penetrate through the separator, causing internal short circuits (hereinafter also referred to as "dendritic shorts"), can be suppressed.
電解液中のアルミニウムイオンおよびリチウムイオンは、部分充電状態で使用される鉛蓄電池の充電受入性の向上に好適である反面、長期放置後にデンドライトショートが起き易い。加えて、電解液の成層化が生じた液式鉛蓄電池の場合、電解液濃度の低い極板群上部では、極板群下部と比較してデンドライトが成長しやすいため、より一層デンドライトショートの防止が求められる。
高分子界面活性剤がデンドライトの成長を抑制する理由は定かではないが、高分子界面活性剤が負極板表面のデンドライトの成長点に吸着し、デンドライトの成長を阻害するものと考えられる。
Aluminum ions and lithium ions in the electrolyte are suitable for improving charge acceptance of lead-acid batteries used in a partially charged state, but dendrite short-circuits are likely to occur after long-term storage. In addition, in the case of liquid lead-acid batteries where the electrolyte is stratified, dendrites grow more easily in the upper part of the electrode group where the electrolyte concentration is lower than in the lower part of the electrode group, making it even more difficult to prevent dendrite shorts. is required.
Although it is not clear why the polymeric surfactant suppresses the growth of dendrites, it is thought that the polymeric surfactant adsorbs to the growth points of dendrites on the surface of the negative electrode plate and inhibits the growth of dendrites.
使用可能な高分子界面活性剤は、パーフルオロスルホン酸塩、リグニンスルホン酸塩、ラウリル硫酸塩などのアニオン性界面活性剤、ポリアスパラギン酸塩などの両性界面活性剤、アルキルトリメチルアンモニウムクロライドなどのカチオン性界面活性剤で、イオン性の界面活性剤である。
デンドライトショートを防止する効果を得るための、電解液中の高分子界面活性剤の含有率は0.002質量%以上とする。0.002質量%未満の場合、効果が発現しない。上限は特に定めないが、0.5質量%を超えるとPSOC耐久性が低下するため、好ましい範囲は0.002質量%以上0.5質量%以下である。高分子界面活性剤が多すぎるとPSOC耐久性が低下する理由は、高分子界面活性剤が立体障害となり、硫酸イオンなどの移動を妨げてしまうからではないかと推測される。
Usable polymeric surfactants include anionic surfactants such as perfluorosulfonate, lignosulfonate, and lauryl sulfate, amphoteric surfactants such as polyaspartate, and cationic surfactants such as alkyltrimethylammonium chloride. It is an ionic surfactant.
In order to obtain the effect of preventing dendrite short, the content of the polymer surfactant in the electrolytic solution is 0.002% by mass or more. If it is less than 0.002% by mass, no effect will be exhibited. There is no particular upper limit, but if it exceeds 0.5% by mass, PSOC durability will decrease, so the preferred range is 0.002% by mass or more and 0.5% by mass or less. It is speculated that the reason why PSOC durability decreases when the amount of polymeric surfactant is too large is that the polymeric surfactant becomes a steric hindrance and prevents the movement of sulfate ions and the like.
[方法の態様]
本発明の第二態様としては、液式鉛蓄電池の正極板(化成後)を構成する正極集電体の設計方法が挙げられる。この設計方法は下記の構成(a)~(c)を有する。
(a)正極集電体は、長方形の格子状基板と格子状基板に連続する耳とを有し、格子状基板に正極合剤が保持され、格子状基板は、長方形の一辺に沿う上部骨と、上部骨に接続されて前記上部骨より下方に存在する複数本の中骨と、を有し、耳は、上部骨の一辺の中心から一方にずれた位置から上側に突出する。
(b)正極集電体を長方形の一方の側の角を通る対角線に沿って切断して生じる分割体のうち耳が存在する分割体を、耳の上部骨との境界線上の中心点Pを通り上部骨に垂直な基準線により、第一の部分と第二の部分に区分する。
(c)x軸およびy軸が共に線形目盛である座標平面に、第二の部分よりも面積が大きい第一の部分における、複数本の中骨の各切断面Cnと中心点Pとの間の各抵抗値Rnをy座標、各切断面Cnの中心点と中心点Pとの各距離Xnをx座標としてなされる全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似でき、x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下となるようにする。
[Aspects of the method]
A second aspect of the present invention includes a method for designing a positive electrode current collector that constitutes a positive electrode plate (after chemical formation) of a liquid lead-acid battery. This design method has the following configurations (a) to (c).
(a) The positive electrode current collector has a rectangular lattice-shaped substrate and ears continuous to the lattice-shaped substrate, a positive electrode mixture is held on the lattice-shaped substrate, and the lattice-shaped substrate has and a plurality of middle bones that are connected to the upper bone and exist below the upper bone, and the ears protrude upward from a position shifted to one side from the center of one side of the upper bone.
(b) Among the divided bodies created by cutting the positive electrode current collector along the diagonal line passing through one corner of the rectangle, the divided body where the ear exists is located at the center point P on the boundary line with the upper bone of the ear. It is divided into a first part and a second part by a reference line perpendicular to the upper bone.
(c) On a coordinate plane where both the x-axis and y-axis are linear scales, the distance between each cutting plane Cn of the plurality of midbones and the center point P in the first part having a larger area than the second part. All plots made with each resistance value Rn as the y coordinate and each distance Xn between the center point of each cut plane Cn and the center point P as the x coordinate are two straight lines with different slopes with x=H as the intersection point. The ratio A/B can be approximated by the average value A of each resistance value Rn at each distance Xn where x<H, and the average value B of each resistance value Rn at each distance Xn where x≧H, The value should be 0.35 or more and 0.55 or less.
[試験電池の作製]
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.1~No.7の鉛蓄電池を作製した。
サンプルNo.1~No.7の鉛蓄電池はD23型のアイドリングストップ用液式鉛蓄電池であって、正極集電体の格子状基板の構成が異なるものであり、それ以外の点は全て同じ構成を有する。
[Preparation of test battery]
Lead-acid batteries of samples No. 1 to No. 7 were produced as lead-acid batteries having the same structure as the lead-acid battery of the embodiment.
The lead-acid batteries of samples No. 1 to No. 7 are D23 type liquid lead-acid batteries for idling stop, and have a different configuration of the grid-like substrate of the positive electrode current collector, but otherwise have the same configuration. has.
<サンプルNo.1>
サンプルNo.1の鉛蓄電池は、図1に示す形状の正極集電体1を有し、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mm、中骨112の太さ(長手方向に垂直な断面積)が1.05mmである。
先ず、帯状の鉛合金シート(複数枚の正極集電体1に対応する大きさ)に対する打ち抜き加工工程、格子状基板11への正極活物質ペーストの充填工程、予熱乾燥工程、熟成乾燥工程、および切断工程を行うことにより、図1の正極集電体1を有する化成前の正極板を作製した。各工程は通常の方法で行った。
<Sample No.1>
The lead-acid battery of sample No. 1 has a positive electrode current collector 1 having the shape shown in FIG. The thickness of the backbone 112 (cross-sectional area perpendicular to the longitudinal direction) is 1.05 mm.
First, a step of punching out a strip-shaped lead alloy sheet (size corresponding to a plurality of positive electrode current collectors 1), a step of filling the grid-shaped
負極板は、図1に示す正極集電体1と同じ形状の負極集電体を有するが、負極集電体では、寸法S1=114.0mm、寸法S2=108.0mm、寸法S3=100.0mm、寸法S4=45.0mm、中骨112の太さ(長手方向に垂直な断面積)が0.75mmである。化成前の負極板の作製も、正極板と同様の各工程を通常の方法で行うことにより行った。
次に、得られた化成前の負極板をポリエチレン製の袋状セパレータに入れたものを7枚と、得られた化成前の正極板6枚を、交互に積層して積層体を得た。次に、COS(キャストオンストラップ)方式の鋳造装置を用いて、各積層体の正極板および負極板にストラップと中間極柱と端子極柱を形成することで、極板群を得た。
The negative electrode plate has a negative electrode current collector having the same shape as the positive electrode current collector 1 shown in FIG. 0 mm, dimension S4=45.0 mm, and the thickness (cross-sectional area perpendicular to the longitudinal direction) of the
Next, seven of the obtained unformed negative electrode plates placed in a polyethylene bag-like separator and six obtained unformed positive electrode plates were alternately laminated to obtain a laminate. Next, using a COS (cast-on-strap) type casting device, a strap, an intermediate pole, and a terminal pole were formed on the positive and negative plates of each laminate to obtain a plate group.
この極板群を六個用意し、電槽の各セル室に入れて、隣接するセル室間の中間極柱の抵抗溶接、電槽と蓋の熱溶着、注液孔から各セル室内への電解液の注入、および注液孔を塞ぐことなどの通常の工程を行うことにより、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた。
電解液は、硫酸アルミニウムと硫酸リチウムの添加量を調整し、電解液に対してアルミニウムイオンが0.05mol/L、リチウムイオンが0.05mol/L含まれるようにした。高分子界面活性剤としてリグニンスルホン酸ナトリウムを、電解液に対し0.005wt%添加した。
その後、通常の方法で電槽化成を行うことで、電槽化成後の比重を1.285(20℃換算値)とした。このようにしてNo.1の鉛蓄電池を得た。
Prepare six of these electrode plate groups, put them into each cell chamber of the battery case, resistance weld the intermediate pole between adjacent cell chambers, heat weld the battery case and the lid, and insert them into each cell chamber from the injection hole. A D23 type liquid lead-acid battery for idling stop was assembled by performing normal steps such as injecting an electrolyte and closing the injection hole.
The amounts of aluminum sulfate and lithium sulfate added to the electrolytic solution were adjusted so that the electrolytic solution contained 0.05 mol/L of aluminum ions and 0.05 mol/L of lithium ions. As a polymeric surfactant, 0.005 wt% of sodium ligninsulfonate was added to the electrolytic solution.
Thereafter, the specific gravity after the container formation was made to be 1.285 (20° C. equivalent value) by performing the container formation in a usual manner. In this way, the No. 1 lead-acid battery was obtained.
<サンプルNo.2>
サンプルNo.2の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が1.00mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.2の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.2の鉛蓄電池を得た。
<Sample No.2>
The lead-acid battery of sample No. 2 has a positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. After assembling a D23 type idling stop liquid lead-acid battery using the same method as sample No. 1 except that the positive electrode current collector 1 of sample No. I got a storage battery.
<サンプルNo.3>
サンプルNo.3の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.95mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.3の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.3の鉛蓄電池を得た。
<Sample No.3>
The lead-acid battery of sample No. 3 has a positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. A D23 type idling stop liquid lead-acid battery was assembled using the same method as sample No. 1, except that the positive electrode current collector 1 of sample No. 3 was used, and then battery cell formation was performed and the lead I got a storage battery.
<サンプルNo.4>
サンプルNo.4の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.90mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.4の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.4の鉛蓄電池を得た。
<Sample No.4>
The lead-acid battery of sample No. 4 has a positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. A D23 type idling stop liquid lead-acid battery was assembled using the same method as sample No. 1, except that the positive electrode current collector 1 of sample No. 4 was used, and then battery cell formation was performed to form the lead-acid battery of No. 4. I got a storage battery.
<サンプルNo.5>
サンプルNo.5の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.85mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.5の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.5の鉛蓄電池を得た。
<Sample No.5>
The lead-acid battery of sample No. 5 has a positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. A D23 type idling stop liquid lead-acid battery was assembled using the same method as sample No. 1 except that the positive electrode current collector 1 of sample No. I got a storage battery.
<サンプルNo.6>
サンプルNo.6の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.75mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.6の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.6の鉛蓄電池を得た。
<Sample No.6>
The lead-acid battery of sample No. 6 has a positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. A D23 type idling stop liquid lead-acid battery was assembled using the same method as sample No. 1 except that the positive electrode current collector 1 of sample No. 6 was used, and then a battery cell formation was performed and the lead-acid battery of No. 6 was used. I got a storage battery.
<サンプルNo.7>
サンプルNo.7の鉛蓄電池は、図3に示す形状の正極集電体1Aを有し、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mm、中骨112aの太さ(長手方向に垂直な断面積)が0.80mm、中骨112bの太さが1.20mmである。サンプルNo.7の正極集電体1Aを用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.7の鉛蓄電池を得た。
<Sample No.7>
The lead acid battery of sample No. 7 has a positive electrode
[分割体の切断面の各抵抗値測定]
先ず、得られたサンプルNo.1~No.7の鉛蓄電池を分解して、正極板を取り出し、正極板から正極活物質を除去して洗浄することにより、No.1~No.7の各正極集電体1,1Aを得た。次に、正極集電体1,1Aを、それぞれ図1および図3に示す対角線Tに沿って鋏で切断することにより、図2および図4に示す、耳が存在する分割体2,2Aを得た。耳が存在する分割体2において、基準線Kにより区分された第一の部分21は、中骨112の切断面を13個有する。耳が存在する分割体2Aにおいて、基準線Kにより区分された第一の部分21Aは、中骨112a,112bの切断面を合計で13個有する。
[Measurement of each resistance value of the cut surface of the divided body]
First, the lead-acid batteries of samples No. 1 to No. 7 obtained were disassembled, the positive electrode plate was taken out, and the positive electrode active material was removed from the positive electrode plate and washed. A positive electrode current collector 1.1A was obtained. Next, by cutting the positive electrode
次に、耳12の中心点Pと各中骨の切断面C1~C13との間の各抵抗値Rn(R1~R13)を、抵抗計(HIOKI社製 3554 BATTERY HiTESTER)を用いて三回ずつ測定し、平均値を算出した。また、中心点Pと各切断面C1~C13の中心点との各距離Xn(X1~X13)を、定規で測定した。これらの測定結果(各抵抗値Rnは三回測定の平均値)を表1~表7に示す。
Next, each resistance value Rn (R1 to R13) between the center point P of the
次に、サンプル毎に、x軸およびy軸が共に線形目盛である座標平面に、抵抗値Rn(三回測定の平均値)をy座標、距離Xnをx座標として、測定結果をプロットした。これにより、図5~図11に示すグラフを得た。図5はNo.1の結果を、図6はNo.2の結果を、図7はNo.3の結果を、図8はNo.4の結果を、図9はNo.5の結果を、図10はNo.6の結果を、図11はNo.7の結果を、それぞれ示す。 Next, for each sample, the measurement results were plotted on a coordinate plane in which both the x-axis and the y-axis were linear scales, with the resistance value Rn (average value of three measurements) as the y-coordinate and the distance Xn as the x-coordinate. As a result, graphs shown in FIGS. 5 to 11 were obtained. Figure 5 shows the results of No. 1, Figure 6 shows the results of No. 2, Figure 7 shows the results of No. 3, Figure 8 shows the results of No. 4, Figure 9 shows the results of No. 5, FIG. 10 shows the results of No. 6, and FIG. 11 shows the results of No. 7.
図5に示すように、サンプルNo.1では、全てのプロットが、x=H(X8とX9との間の値)を交点として傾きが異なる二本の直線T1,T2に近似できた。次に、x<Hとなる各距離X1~X8での各抵抗値(三回測定の平均値)R1~R8の平均値Aと、x≧Hとなる各距離X9~X13での各抵抗値(三回測定の平均値)Rnの平均値Bを算出し、これらの算出値から比A/Bを算出した。その結果を表8に示す。 As shown in FIG. 5, in sample No. 1, all plots could be approximated to two straight lines T1 and T2 having different slopes with x=H (value between X8 and X9) as the intersection point. Next, each resistance value (average value of three measurements) at each distance X1 to X8 where x<H, the average value A of R1 to R8, and each resistance value at each distance X9 to X13 where x≧H (Average value of three measurements) The average value B of Rn was calculated, and the ratio A/B was calculated from these calculated values. The results are shown in Table 8.
表8に示すように、サンプルNo.1の比A/Bは0.31であった。
また、図6~図10に示すように、サンプルNo.2~No.6では、それぞれ全てのプロットが、x=H(X9とX10との間の値)を交点として傾きが異なる二本の直線T1,T2に近似できた。次に、x<Hとなる各距離X1~X9での各抵抗値(三回測定の平均値)R1~R9の平均値Aと、x≧Hとなる各距離X10~X13での各抵抗値(三回測定の平均値)Rnの平均値Bを算出し、これらの算出値から比A/Bを算出した。その結果を表9~表13に示す。
As shown in Table 8, the ratio A/B of sample No. 1 was 0.31.
In addition, as shown in Figures 6 to 10, in samples No. 2 to No. 6, all plots have two lines with different slopes with x = H (value between X9 and X10) as the intersection point. It was possible to approximate the straight lines T1 and T2. Next, each resistance value (average value of three measurements) at each distance X1 to X9 where x<H, the average value A of R1 to R9, and each resistance value at each distance X10 to X13 where x≧H (Average value of three measurements) The average value B of Rn was calculated, and the ratio A/B was calculated from these calculated values. The results are shown in Tables 9 to 13.
表9~表13に示すように、サンプルNo.2の比A/Bは0.35、サンプルNo.3の比A/Bは0.45、サンプルNo.4の比A/Bは0.50、サンプルNo.5の比A/Bは0.55、サンプルNo.6の比A/Bは0.65であった。
さらに図11に示すように、サンプルNo.7では、全てのプロットが、x=H(X10の値)を交点として傾きが異なる二本の直線T1,T2に近似できた。次に、x<Hとなる各距離X1~X9での各抵抗値(三回測定の平均値)R1~R9の平均値Aと、x≧Hとなる各距離X10~X13での各抵抗値(三回測定の平均値)Rnの平均値Bを算出し、これらの算出値から比A/Bを算出した。その結果を表14に示す。
As shown in Tables 9 to 13, the ratio A/B of sample No. 2 is 0.35, the ratio A/B of sample No. 3 is 0.45, and the ratio A/B of sample No. 4 is 0.35. 50, the ratio A/B of sample No. 5 was 0.55, and the ratio A/B of sample No. 6 was 0.65.
Further, as shown in FIG. 11, in sample No. 7, all plots could be approximated to two straight lines T1 and T2 having different slopes with x=H (value of X10) as the intersection point. Next, each resistance value (average value of three measurements) at each distance X1 to X9 where x<H, the average value A of R1 to R9, and each resistance value at each distance X10 to X13 where x≧H (Average value of three measurements) The average value B of Rn was calculated, and the ratio A/B was calculated from these calculated values. The results are shown in Table 14.
表14に示すように、サンプルNo.7の比A/Bは0.55であった。 As shown in Table 14, the ratio A/B of sample No. 7 was 0.55.
[試験および評価]
得られたNo.1~No.7の鉛蓄電池について、EUCARパワーアシストプロファイルによる寿命試験を実施した。この試験の1サイクルの充放電パターンを図12に示す。C2は2時間率容量である。この充放電パターンでは部分充電状態での深い放電がある。
また、この寿命試験を100サイクル行った後に、電解液の比重を電槽の上部と下部で光学比重計を用いて測定し、これらの測定値から上下の比重差を算出した。
これらの結果を各サンプルの格子状基板の構成とともに表15に示す。
[Test and evaluation]
The obtained lead-acid batteries No. 1 to No. 7 were subjected to a life test using the EUCAR power assist profile. FIG. 12 shows a charging/discharging pattern for one cycle of this test. C 2 is the 2 hour rate capacity. In this charge/discharge pattern, there is a deep discharge in a partially charged state.
After 100 cycles of this life test, the specific gravity of the electrolytic solution was measured at the upper and lower parts of the container using an optical hydrometer, and the difference in specific gravity between the upper and lower parts was calculated from these measured values.
These results are shown in Table 15 together with the structure of the grid-like substrate of each sample.
表15から分かるように、0.35≦A/B≦0.55を満たさないNo.1とNo.6の鉛蓄電池は、電解液の上下比重差が0.070と0.040であったのに対し、0.35≦A/B≦0.55を満たすNo.2~No.5とNo.7の鉛蓄電池は、電解液の上下比重差が0.005~0.015と小さかった。また、0.35≦A/B≦0.55を満たさないNo.1とNo.6の鉛蓄電池の寿命は、8000~8500サイクルであったのに対し、0.35≦A/B≦0.55を満たすNo.2~No.5とNo.7の鉛蓄電池の寿命は、17000~22000サイクルと長かった。 As can be seen from Table 15, lead-acid batteries No. 1 and No. 6 that did not satisfy 0.35≦A/B≦0.55 had a difference in upper and lower specific gravity of the electrolyte of 0.070 and 0.040. On the other hand, lead-acid batteries No. 2 to No. 5 and No. 7, which satisfy 0.35≦A/B≦0.55, had a small difference in the upper and lower specific gravity of the electrolyte at 0.005 to 0.015. . In addition, the lifespan of No. 1 and No. 6 lead-acid batteries that do not satisfy 0.35≦A/B≦0.55 was 8000 to 8500 cycles, whereas 0.35≦A/B≦0 The lifespan of No. 2 to No. 5 and No. 7 lead-acid batteries satisfying .55 was long at 17,000 to 22,000 cycles.
以上の結果から、0.35≦A/B≦0.55を満たす正極集電体を備え、高分子界面活性剤の含有率が0.005wt%である液式鉛蓄電池は、部分充電状態で使用される場合に、電解液中にアルミニウムイオンおよびリチウムイオンが合計0.10mol/L含まれていても、電解液の成層化が抑制されて、寿命を長くできることが確認できた。なお、高分子界面活性剤の含有率が0.002wt%以上であると、電解液中にアルミニウムイオンおよびリチウムイオンが合計0.01mol/L以上0.30mol/L以下含まれていても、金属鉛のデンドライトが成長してセパレータを貫通し、内部短絡を生じる現象(以下、「デンドライトショート」とも呼ぶ)が抑制される。 From the above results, it can be seen that a liquid lead-acid battery equipped with a positive electrode current collector satisfying 0.35≦A/B≦0.55 and with a polymer surfactant content of 0.005 wt% is in a partially charged state. When used, it was confirmed that even if the electrolytic solution contained a total of 0.10 mol/L of aluminum ions and lithium ions, the stratification of the electrolytic solution was suppressed and the lifespan could be extended. Note that if the content of the polymeric surfactant is 0.002 wt% or more, even if the electrolyte contains aluminum ions and lithium ions in a total amount of 0.01 mol/L or more and 0.30 mol/L or less, the metal The phenomenon of lead dendrites growing and penetrating the separator and causing an internal short circuit (hereinafter also referred to as "dendritic short") is suppressed.
1 正極集電体
1A 正極集電体
11 格子状基板
11A 格子状基板
12 耳
111 上部骨
112 中骨
112a 中骨
112b 中骨
2 耳が存在する分割体
2A 耳が存在する分割体
21 第一の部分
21A 第一の部分
22 第二の部分
22A 第二の部分
1 Positive electrode
Claims (2)
前記正極集電体は、長方形の格子状基板と前記格子状基板に連続する耳とを有し、
前記格子状基板に前記正極合剤が保持され、
前記格子状基板は、前記長方形の一辺に沿う上部骨と、前記上部骨に接続されて前記上部骨より下方に存在する複数本の中骨と、を有し、
前記耳は、前記上部骨の前記一辺の中心から一方にずれた位置から上側に突出し、
前記正極集電体を前記長方形の前記一方の側の角を通る対角線に沿って切断して生じる分割体のうち前記耳が存在する分割体は、前記耳の前記上部骨との境界線上の中心点Pを通り前記上部骨に垂直な基準線により、第一の部分と第二の部分に区分され、前記第一の部分は前記第二の部分よりも面積が大きく、
x軸およびy軸が共に線形目盛である座標平面に、前記第一の部分における、前記複数本の中骨の各切断面Cnと前記中心点Pとの間の各抵抗値Rnをy座標、前記各切断面Cnの中心点と前記中心点Pとの各距離Xnをx座標としてなされた全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似でき、
x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下であって、
前記電解液中には、アルミニウムイオンおよびリチウムイオンの少なくとも一方と、高分子界面活性剤と、を含み、前記アルミニウムイオンおよび前記リチウムイオンの合計含有率が0.01mol/L以上0.30mol/L以下であり、前記高分子界面活性剤の含有率が前記電解液に対して0.002wt%以上である液式鉛蓄電池。 A positive electrode plate having a positive electrode current collector and a positive electrode mixture, and a negative electrode plate having a negative electrode current collector and a negative electrode mixture are alternately stacked with separators interposed therebetween, and a dilute electrolyte solution. A liquid lead acid battery with sulfuric acid,
The positive electrode current collector has a rectangular grid-like substrate and ears continuous with the grid-like substrate,
The positive electrode mixture is held on the grid-like substrate,
The lattice-shaped substrate has an upper bone along one side of the rectangle, and a plurality of middle bones connected to the upper bone and existing below the upper bone,
The ear protrudes upward from a position shifted to one side from the center of the one side of the upper bone,
Among the divided bodies produced by cutting the positive electrode current collector along a diagonal line passing through the corner of one side of the rectangle, the divided body where the ear exists is located at the center on the boundary line between the ear and the upper bone. It is divided into a first part and a second part by a reference line passing through point P and perpendicular to the upper bone, the first part having a larger area than the second part,
On a coordinate plane where both the x-axis and the y-axis are linear scales, each resistance value Rn between each cutting surface Cn of the plurality of backbones in the first part and the center point P is expressed as a y-coordinate, All the plots made with each distance Xn between the center point of each cut plane Cn and the center point P as the x coordinate can be approximated to two straight lines with different slopes with x = H as the intersection,
The ratio A/B of the average value A of each resistance value Rn at each distance Xn where x<H and the average value B of each resistance value Rn at each distance Xn where x≧H is 0.35. or more and 0.55 or less,
The electrolytic solution contains at least one of aluminum ions and lithium ions and a polymer surfactant, and the total content of the aluminum ions and the lithium ions is 0.01 mol/L or more and 0.30 mol/L. or less, and the content of the polymer surfactant is 0.002 wt% or more based on the electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020001738A JP7348082B2 (en) | 2020-01-08 | 2020-01-08 | liquid lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020001738A JP7348082B2 (en) | 2020-01-08 | 2020-01-08 | liquid lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021111492A JP2021111492A (en) | 2021-08-02 |
JP7348082B2 true JP7348082B2 (en) | 2023-09-20 |
Family
ID=77060076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020001738A Active JP7348082B2 (en) | 2020-01-08 | 2020-01-08 | liquid lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7348082B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013058058A1 (en) | 2011-10-18 | 2013-04-25 | 新神戸電機株式会社 | Lead storage battery |
JP2013196828A (en) | 2012-03-16 | 2013-09-30 | Toyota Industries Corp | Cast grid body of lead-acid storage battery |
JP2014235844A (en) | 2013-05-31 | 2014-12-15 | 株式会社Gsユアサ | Lattice for storage battery and storage battery using the same |
JP2015144144A (en) | 2015-05-12 | 2015-08-06 | 株式会社Gsユアサ | Lead acid battery |
JP2016115396A (en) | 2013-04-05 | 2016-06-23 | パナソニック株式会社 | Lead power storage battery |
JP6637225B1 (en) | 2019-09-30 | 2020-01-29 | 古河電池株式会社 | Liquid lead storage battery |
JP6726349B1 (en) | 2019-11-01 | 2020-07-22 | 古河電池株式会社 | Lead acid battery |
JP7079831B2 (en) | 2020-01-08 | 2022-06-02 | 古河電池株式会社 | Liquid lead-acid battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2814524B2 (en) * | 1989-03-10 | 1998-10-22 | 松下電器産業株式会社 | Lead storage battery |
JPH097630A (en) * | 1995-06-26 | 1997-01-10 | Shin Kobe Electric Mach Co Ltd | Lignin compound to be added to lead-acid battery, its manufacture, and lead-acid battery |
JP3725965B2 (en) * | 1997-05-28 | 2005-12-14 | 松下電器産業株式会社 | Sealed lead-acid battery and method for manufacturing the same |
-
2020
- 2020-01-08 JP JP2020001738A patent/JP7348082B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013058058A1 (en) | 2011-10-18 | 2013-04-25 | 新神戸電機株式会社 | Lead storage battery |
JP2013196828A (en) | 2012-03-16 | 2013-09-30 | Toyota Industries Corp | Cast grid body of lead-acid storage battery |
JP2016115396A (en) | 2013-04-05 | 2016-06-23 | パナソニック株式会社 | Lead power storage battery |
JP2014235844A (en) | 2013-05-31 | 2014-12-15 | 株式会社Gsユアサ | Lattice for storage battery and storage battery using the same |
JP2015144144A (en) | 2015-05-12 | 2015-08-06 | 株式会社Gsユアサ | Lead acid battery |
JP6637225B1 (en) | 2019-09-30 | 2020-01-29 | 古河電池株式会社 | Liquid lead storage battery |
JP6726349B1 (en) | 2019-11-01 | 2020-07-22 | 古河電池株式会社 | Lead acid battery |
JP7079831B2 (en) | 2020-01-08 | 2022-06-02 | 古河電池株式会社 | Liquid lead-acid battery |
Also Published As
Publication number | Publication date |
---|---|
JP2021111492A (en) | 2021-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6637225B1 (en) | Liquid lead storage battery | |
JP7348081B2 (en) | liquid lead acid battery | |
JP6726349B1 (en) | Lead acid battery | |
JP7079831B2 (en) | Liquid lead-acid battery | |
JP7105258B2 (en) | liquid lead acid battery | |
JP7348082B2 (en) | liquid lead acid battery | |
JP7065127B2 (en) | Liquid lead-acid battery | |
JP7348089B2 (en) | liquid lead acid battery | |
JP7348080B2 (en) | liquid lead acid battery | |
JP7026753B2 (en) | Liquid lead-acid battery | |
JP7065126B2 (en) | Liquid lead-acid battery | |
JP7113037B2 (en) | liquid lead acid battery | |
JP7090395B2 (en) | Liquid lead-acid battery | |
JP7011024B2 (en) | Liquid lead-acid battery | |
JP7011023B2 (en) | Liquid lead-acid battery | |
JP6982671B2 (en) | Liquid lead-acid battery | |
JP7011025B2 (en) | Liquid lead-acid battery | |
JP7079832B2 (en) | Liquid lead-acid battery | |
JP7079830B2 (en) | Liquid lead-acid battery | |
JP6998442B2 (en) | Liquid lead-acid battery | |
JP7011026B2 (en) | Liquid lead-acid battery | |
JP6998441B2 (en) | Liquid lead-acid battery | |
JP2021163610A (en) | Lead-acid battery | |
JP2021163611A (en) | Lead-acid battery | |
JP2021163609A (en) | Lead-acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7348082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |