JP2013196828A - Cast grid body of lead-acid storage battery - Google Patents

Cast grid body of lead-acid storage battery Download PDF

Info

Publication number
JP2013196828A
JP2013196828A JP2012060265A JP2012060265A JP2013196828A JP 2013196828 A JP2013196828 A JP 2013196828A JP 2012060265 A JP2012060265 A JP 2012060265A JP 2012060265 A JP2012060265 A JP 2012060265A JP 2013196828 A JP2013196828 A JP 2013196828A
Authority
JP
Japan
Prior art keywords
lattice
horizontal
electrode plate
cast
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012060265A
Other languages
Japanese (ja)
Inventor
Atsushi Minamigata
厚志 南形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012060265A priority Critical patent/JP2013196828A/en
Publication of JP2013196828A publication Critical patent/JP2013196828A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To equalize a current flowing in a region surrounded by a frame member during charge and discharge.SOLUTION: Lateral grids 13, 23 of each cast grid body 11, 21 of a positive electrode plate and a negative electrode plate are configured so that the distance of adjoining lateral grids 13, 23 is shorter as separating from ear parts 16, 26. When configuring each lateral grid 13, 23 in such a manner, the total cross-sectional area in each divided region, obtained by dividing a region surrounded by frame members 12, 22 at regular intervals in the extension direction of longitudinal grids 14, 24, becomes larger as separating from the ear part 26.

Description

本発明は、鉛蓄電池の鋳造格子体に関する。   The present invention relates to a cast grid of a lead storage battery.

従来、鉛蓄電池に用いられている極板は、耳部と称される突起及び格子状のます目を有する格子体が活物質を保持することにより構成されている(例えば、特許文献1)。
格子体は、四角枠状の枠部材と、横格子と、縦格子と、耳部からなる。耳部は、枠部材の一辺に形成されている。また、横格子は、枠部材に囲まれた領域において、耳部が形成される一辺と平行をなすように設けられるとともに、縦格子は枠部材に囲まれた領域において横格子と直交するように設けられている。
2. Description of the Related Art Conventionally, an electrode plate used for a lead-acid battery is configured by holding an active material by a lattice body having protrusions called lattice portions and lattice-shaped cells (for example, Patent Document 1).
The lattice body includes a rectangular frame-shaped frame member, a horizontal lattice, a vertical lattice, and ears. The ear portion is formed on one side of the frame member. Further, the horizontal lattice is provided so as to be parallel to one side where the ear portion is formed in the region surrounded by the frame member, and the vertical lattice is orthogonal to the horizontal lattice in the region surrounded by the frame member. Is provided.

このような極板を用いた鉛蓄電池は、端子と耳部が電気的に接続され、端子を介して充放電可能に構成されている。鉛蓄電池の充電時においては、耳部から電流が流れ、格子体に流れる電流により活物質に化学反応が生じ、鉛蓄電池が充電される。この際、格子体に流れる電流は、耳部から各横格子に流れる。そして、横格子に電流が流れることにより、横格子の周辺に配置される活物質に化学反応が生じる。   A lead-acid battery using such an electrode plate is configured such that terminals and ears are electrically connected, and charging and discharging are possible via the terminals. When the lead storage battery is charged, a current flows from the ears, and a chemical reaction occurs in the active material due to the current flowing through the lattice body, so that the lead storage battery is charged. At this time, the current flowing through the lattice flows from the ear portion to each horizontal lattice. Then, when a current flows through the horizontal lattice, a chemical reaction occurs in the active material arranged around the horizontal lattice.

特開2007−184114号公報JP 2007-184114 A

ところで、充電時に格子体を流れる電流は、耳部に近い部分ほど大きく、耳部から離間するにつれ小さくなる。これは、縦格子の内部抵抗による電圧降下により、耳部から離間するにしたがい縦格子における耳部に近い部分と耳部から遠い部分との電圧差が生じるからである。よって、正極板及び負極板の格子体においては、耳部に近い部分の活物質は耳部から遠い部分の活物質と比べて化学反応が生じやすい。一方、耳部から遠い部分の活物質は耳部に近い部分の活物質と比べて化学反応が生じにくい。このため、正極板の格子体においては、耳部に近い部分は過充電され腐食が進行しやすい。一方、負極板の格子体においては、耳部から遠い部分は充電されにくいので、硫酸鉛を蓄積し、いわゆるサルフェーションが生じやすい。   By the way, the current flowing through the lattice during charging is larger in the portion closer to the ear portion and becomes smaller as the portion is separated from the ear portion. This is because, due to a voltage drop due to the internal resistance of the vertical grid, a voltage difference occurs between a portion close to the ear portion and a portion far from the ear portion in the vertical grid as the distance from the ear portion increases. Therefore, in the grid of the positive electrode plate and the negative electrode plate, a chemical reaction is more likely to occur in the active material near the ear than in the active material far from the ear. On the other hand, the active material in the part far from the ear part is less likely to cause a chemical reaction than the active material in the part near the ear part. For this reason, in the grid of the positive electrode plate, the portion close to the ear is overcharged and corrosion tends to proceed. On the other hand, in the lattice of the negative electrode plate, the portion far from the ear portion is difficult to be charged, so lead sulfate is accumulated and so-called sulfation is likely to occur.

本発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、充放電時に枠部材に囲まれた領域において流れる電流の均等化を図ることができる鋳造格子体を提供することにある。   The present invention has been made paying attention to such problems existing in the prior art, and the object thereof is to equalize the current flowing in the region surrounded by the frame member during charging and discharging. The object is to provide a cast grid.

上記課題を解決するため、請求項1に記載の発明は、四角枠状の枠部材と、前記枠部材の一辺に形成される耳部と、前記枠部材に囲まれた領域において前記耳部が形成される前記枠部材の一辺と平行に延設された複数の横格子と、前記枠部材に囲まれた領域において前記横格子と交差するように延設され、前記横格子とともに前記枠部材に囲まれた領域において格子を形成する縦格子と、を備え、前記枠部材に囲まれた領域を前記縦格子の延設方向に対して一定間隔で分割した各分割領域における前記横格子の延設方向に直交する方向での断面積の合計を前記耳部から離間するほど大きくしたことを要旨とする。   In order to solve the above problems, the invention according to claim 1 is characterized in that the ear part is formed in a square frame-shaped frame member, an ear part formed on one side of the frame member, and an area surrounded by the frame member. A plurality of horizontal lattices extending in parallel with one side of the frame member to be formed, and extending so as to intersect the horizontal lattice in a region surrounded by the frame member, and the frame member together with the horizontal lattice A vertical lattice forming a lattice in the enclosed region, and extending the horizontal lattice in each divided region obtained by dividing the region surrounded by the frame member at a constant interval with respect to the extending direction of the vertical lattice The gist is that the total cross-sectional area in the direction orthogonal to the direction is increased as the distance from the ear portion increases.

請求項1に記載の発明によれば、枠部材に囲まれた領域を縦格子の延設方向に対して一定間隔で分割した各分割領域における横格子の延設方向に直交する方向での断面積の合計を、耳部から離間するほど大きくしたので、充放電時において鋳造格子体に電流が流れる際に耳部から離間する分割領域における横格子ほど延設方向における抵抗値が低くなる。そのため、縦格子の延設方向における電圧は耳部から離間するに従い低くなるが、横格子の延設方向における抵抗は耳部から離間するにしたがい低くなる。その結果、充放電時に枠部材に囲まれた領域において流れる電流の均等化を図ることができる。   According to the first aspect of the present invention, the region surrounded by the frame member is divided at a predetermined interval with respect to the extending direction of the vertical lattice, and the cutting in the direction orthogonal to the extending direction of the horizontal lattice is performed in each divided region. Since the total area is increased as the distance from the ear portion increases, the resistance value in the extending direction decreases as the horizontal lattice in the divided region that separates from the ear portion when a current flows through the cast lattice during charging / discharging. For this reason, the voltage in the extending direction of the vertical lattice decreases as the distance from the ear portion increases, but the resistance in the extending direction of the horizontal lattice decreases as the distance from the ear portion increases. As a result, it is possible to equalize the current flowing in the region surrounded by the frame member during charging and discharging.

請求項2に記載のように、請求項1に記載の鋳造格子体において、複数の横格子は、延設方向に直交する方向での断面積が同一であるとともに、各分割領域における隣接する横格子の数が耳部から離間する領域ほど多くなることにより、枠部材に囲まれた領域を縦格子の延設方向に対して一定間隔で分割した各分割領域における横格子の延設方向に直交する方向での断面積の合計を耳部から離間するほど大きくしてもよい。   As described in claim 2, in the cast lattice body according to claim 1, the plurality of horizontal lattices have the same cross-sectional area in a direction orthogonal to the extending direction and adjacent horizontal regions in each divided region. By increasing the number of grids as the distance from the ears increases, the area surrounded by the frame member is divided at a fixed interval with respect to the vertical grid extension direction, and is orthogonal to the horizontal grid extension direction. The sum of the cross-sectional areas in the direction of making may be increased as the distance from the ear portion increases.

請求項3に記載のように、請求項1に記載の鋳造格子体において、複数の横格子は、隣接する横格子の距離が同一であるとともに、各分割領域における横格子の延設方向に直交する方向での断面積が耳部から離間する領域ほど大きくなることにより、枠部材に囲まれた領域を縦格子の延設方向に対して一定間隔で分割した各分割領域における横格子の延設方向に直交する方向での断面積の合計を耳部から離間するほど大きくしてもよい。   According to a third aspect of the present invention, in the cast lattice body according to the first aspect, the plurality of horizontal lattices have the same distance between adjacent horizontal lattices and are orthogonal to the extending direction of the horizontal lattice in each divided region. As the cross-sectional area in the direction to be separated becomes larger as the region is separated from the ear part, the horizontal lattice is extended in each divided region obtained by dividing the region surrounded by the frame member at a constant interval with respect to the vertical lattice extending direction. You may enlarge so that the sum total of the cross-sectional area in the direction orthogonal to a direction is spaced apart from an ear | edge part.

請求項4に記載のように、請求項3に記載の鋳造格子体において、複数の横格子は、隣接する横格子の距離が同一であるとともに、各分割領域には、複数の横格子が設けられ、各分割領域に設けられる複数の横格子のうちの一部の横格子の延設方向に直交する方向での断面積が耳部から離間する領域ほど大きくなることにより、隣接する前記横格子の距離が同一であるとともに、前記各分割領域における前記横格子の延設方向に直交する方向での断面積が前記耳部から離間する領域ほど大きくしてもよい。   As described in claim 4, in the cast lattice body according to claim 3, the plurality of horizontal lattices have the same distance between adjacent horizontal lattices, and each divided region is provided with a plurality of horizontal lattices. The cross-sectional area in the direction orthogonal to the extending direction of some of the plurality of horizontal lattices provided in each divided region increases as the region is separated from the ear portion, thereby adjacent the horizontal lattices. And the cross-sectional area in the direction perpendicular to the extending direction of the horizontal lattice in each of the divided regions may be increased as the region is separated from the ear portion.

請求項5に記載の発明は、請求項1〜請求項4のうちいずれか1項に記載の鋳造格子体において、鋳造格子体は、正極板用と、負極板用とを一対備え、前記正極板用の鋳造格子体の枠部材と前記負極板用の鋳造格子体の枠部材を重ねた際に、前記正極板用の鋳造格子体における前記縦格子と前記横格子の交差部と、前記負極板用の鋳造格子体における前記縦格子と前記横格子の交差部とを、ずらして配置したことを要旨とする。   According to a fifth aspect of the present invention, in the cast grid body according to any one of the first to fourth aspects, the cast grid body includes a pair of a positive electrode plate and a negative electrode plate, and the positive electrode When the frame member of the casting grid body for the plate and the frame member of the casting grid body for the negative electrode plate are overlapped, the intersection of the vertical lattice and the horizontal lattice in the casting grid body for the positive electrode plate, and the negative electrode The gist is that the intersecting portion of the vertical lattice and the horizontal lattice in the cast lattice body for plates is shifted.

請求項5に記載の発明によれば、正極板用の鋳造格子体における縦格子と横格子の交差部と、負極板用の鋳造格子体における縦格子と横格子の交差部とが、ずらして配置される。このため、正極板用の鋳造格子体と負極板用も鋳造格子体との間に活物質を安定して保持させることができる。   According to the invention described in claim 5, the intersecting portion of the vertical lattice and the horizontal lattice in the casting grid for the positive electrode plate is shifted from the intersecting portion of the vertical lattice and the horizontal lattice in the cast lattice for the negative electrode plate. Be placed. For this reason, the active material can be stably held between the cast grid for the positive electrode plate and the negative grid for the negative plate.

本発明によれば、充放電時に枠部材に囲まれた領域において流れる電流の均等化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the equalization of the electric current which flows in the area | region enclosed by the frame member at the time of charging / discharging can be achieved.

実施形態における活物質を省略した状態での正負の極板を示す分解斜視図。The disassembled perspective view which shows the positive / negative electrode plate in the state which abbreviate | omitted the active material in embodiment. (a)は実施形態における正負の極板の正面図、(b)は(a)のA−A線断面図。(A) is a front view of the positive / negative electrode plate in embodiment, (b) is the sectional view on the AA line of (a). (a)は実施形態における正極板の鋳造格子体を示す正面図、(b)は実施形態における負極板の鋳造格子体を示す正面図。(A) is a front view which shows the casting grid body of the positive electrode plate in embodiment, (b) is a front view which shows the casting grid body of the negative electrode plate in embodiment. (a)〜(d)は隣接する横格子の距離の導出方法を説明するための図。(A)-(d) is a figure for demonstrating the derivation | leading-out method of the distance of an adjacent horizontal lattice. (a)は実施形態における鋳造格子体の正面図、(b)は各分割領域におけるI/A値を表すグラフ。(A) is a front view of the cast lattice body in embodiment, (b) is a graph showing the I t / A value in each divided region. 別例の鋳造格子体を示す正面図。The front view which shows the casting grid body of another example. 別例の鋳造格子体を示す正面図。The front view which shows the casting grid body of another example. 別例の鋳造格子体を示す正面図。The front view which shows the casting grid body of another example.

以下、本発明を具体化した一実施形態について図1〜図5にしたがって説明する。
図1に示すように、正極板1と負極板2は、リテーナ3を挟持することにより正負の極板4を構成している。そして、鉛蓄電池は、図示しないケースに複数の極板4を収容することにより構成される。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, the positive electrode plate 1 and the negative electrode plate 2 constitute a positive and negative electrode plate 4 by sandwiching a retainer 3. And a lead acid battery is comprised by accommodating the some electrode plate 4 in the case which is not shown in figure.

図2(a),(b)に示すように、正極板1は、鋳造格子体11と、鋳造格子体11に保持される活物質51から構成されている。したがって、本実施形態では、鋳造格子体11が正極板1用の鋳造格子体となる。負極板2は、鋳造格子体21と、鋳造格子体21に保持される活物質52から構成されている。したがって、本実施形態では、鋳造格子体21が負極板2用の鋳造格子体となる。正極板1の鋳造格子体11及び負極板2の鋳造格子体21は、ともに鉛製の鋳造格子体である。   As shown in FIGS. 2A and 2B, the positive electrode plate 1 includes a cast grid body 11 and an active material 51 held by the cast grid body 11. Therefore, in the present embodiment, the cast grid 11 is a cast grid for the positive electrode plate 1. The negative electrode plate 2 includes a cast grid body 21 and an active material 52 held by the cast grid body 21. Therefore, in this embodiment, the cast grid body 21 is a cast grid body for the negative electrode plate 2. The cast grid body 11 of the positive electrode plate 1 and the cast grid body 21 of the negative electrode plate 2 are both lead cast grid bodies.

図3(a)に示すように、正極板1の鋳造格子体11は、四角枠状の枠部材12と、横格子13と、縦格子14と、耳部16から構成されている。
枠部材12は、互いに対向する第1の辺12aおよび第2の辺12bと、互いに対向する第3の辺12cおよび第4の辺12dから形成されている。第1の辺12a及び第2の辺12bは水平方向に延設されているとともに、第3の辺12c及び第4の辺12dは、垂直方向に延設されている。上側に第1の辺12aが下側に第2の辺12bが位置するとともに、左側に第3の辺12cが右側に第4の辺12dが位置している。各辺12a〜12dは延設方向に直交する方向での断面が六角形状をなしている。第1の辺12aにおける左側には、四角板状の耳部16が形成されている。したがって、本実施形態において、耳部16が形成される一辺は、第1の辺12aとなる。
As shown in FIG. 3A, the casting grid 11 of the positive electrode plate 1 is composed of a frame member 12 having a square frame shape, a horizontal grid 13, a vertical grid 14, and ears 16.
The frame member 12 is formed of a first side 12a and a second side 12b facing each other, and a third side 12c and a fourth side 12d facing each other. The first side 12a and the second side 12b extend in the horizontal direction, and the third side 12c and the fourth side 12d extend in the vertical direction. The first side 12a is positioned on the upper side, the second side 12b is positioned on the lower side, the third side 12c is positioned on the left side, and the fourth side 12d is positioned on the right side. Each of the sides 12a to 12d has a hexagonal cross section in a direction orthogonal to the extending direction. A square plate-like ear 16 is formed on the left side of the first side 12a. Therefore, in the present embodiment, one side where the ear portion 16 is formed is the first side 12a.

横格子13は、枠部材12に囲まれた領域において第1の辺12aと平行に複数延設されている。なお、ここでいう「平行」とは、厳密な意味での平行を示すものではなく、枠部材12の第1の辺12aに対して多少傾くように横格子13が延設されていてもよい。すなわち、横格子13は、耳部16が形成されている第1の辺12aと略平行に延設されていればよい。   A plurality of horizontal lattices 13 are extended in parallel with the first side 12 a in the region surrounded by the frame member 12. Here, “parallel” does not indicate parallelism in a strict sense, and the horizontal lattice 13 may be extended so as to be slightly inclined with respect to the first side 12 a of the frame member 12. . That is, the horizontal lattice 13 only needs to extend substantially parallel to the first side 12a where the ears 16 are formed.

縦格子14は、枠部材12に囲まれた領域において横格子13と交差(本実施形態では直交)するように延設されている。縦格子14は、第1の辺12aから第3の辺12cまで延びている。そして、縦格子14は、横格子13とともに枠部材12に囲まれた領域において格子を形成する。横格子13及び縦格子14の形状は、枠部材12の各辺12a〜12dと同様に延設方向に直交する方向での断面が六角形状をなしている。   The vertical lattice 14 extends so as to intersect with the horizontal lattice 13 (orthogonal in the present embodiment) in a region surrounded by the frame member 12. The vertical lattice 14 extends from the first side 12a to the third side 12c. The vertical lattice 14 forms a lattice in a region surrounded by the frame member 12 together with the horizontal lattice 13. As for the shape of the horizontal lattice 13 and the vertical lattice 14, the cross section in the direction orthogonal to the extending direction is hexagonal like the sides 12a to 12d of the frame member 12.

そして、本実施形態では、各横格子13は、延設方向に直交する方向での断面積が同一であるとともに、枠部材12に囲まれた領域を縦格子14の延設方向に対して一定間隔で分割した各分割領域における隣接する横格子13の数が耳部16から離間する領域ほど多くなっている。すなわち、隣接する横格子13の間の距離を、耳部16から離間するにつれ狭くすることにより、耳部16から離間している領域ほど多くの横格子13が形成されている。これにより、枠部材12に囲まれた領域を縦格子14の延設方向に対して一定間隔で分割した各分割領域における横格子13の延設方向に直交する方向での断面積の合計は耳部16から離間するほど大きくなっている。   In this embodiment, each horizontal lattice 13 has the same cross-sectional area in the direction orthogonal to the extending direction, and the area surrounded by the frame member 12 is constant with respect to the extending direction of the vertical lattice 14. The number of adjacent horizontal lattices 13 in each divided region divided at intervals increases as the region is separated from the ear portion 16. That is, by narrowing the distance between adjacent horizontal grids 13 as they are separated from the ears 16, more horizontal grids 13 are formed in regions that are farther from the ears 16. As a result, the sum of the cross-sectional areas in the direction perpendicular to the extending direction of the horizontal lattice 13 in each divided region obtained by dividing the region surrounded by the frame member 12 at a constant interval with respect to the extending direction of the vertical lattice 14 is the ear. The distance from the portion 16 increases.

図3(b)に示すように、負極板2の鋳造格子体21は、四角枠状の枠部材22と、横格子23と、縦格子24と、耳部26から構成されている。
枠部材22は、互いに対向する第1の辺22aおよび第2の辺22bと、互いに対向する第3の辺22cおよび第4の辺22dから形成されている。第1の辺22a及び第2の辺22bは水平方向に延設されているとともに、第3の辺22c及び第4の辺22dは、垂直方向に延設されている。上側に第1の辺22aが下側に第2の辺22bが位置するとともに、右側に第3の辺22cが左側に第4の辺22dが位置している。各辺22a〜22dは延設方向に直交する方向での断面が六角形状をなしている。第1の辺22aにおける右側には、四角板状の耳部26が形成されている。したがって、本実施形態において、耳部26が形成される一辺は、第1の辺22aとなる。
As shown in FIG. 3B, the cast grid body 21 of the negative electrode plate 2 is composed of a frame member 22 having a square frame shape, a horizontal grid 23, a vertical grid 24, and ears 26.
The frame member 22 is formed of a first side 22a and a second side 22b that face each other, and a third side 22c and a fourth side 22d that face each other. The first side 22a and the second side 22b extend in the horizontal direction, and the third side 22c and the fourth side 22d extend in the vertical direction. The first side 22a is positioned on the upper side, the second side 22b is positioned on the lower side, the third side 22c is positioned on the right side, and the fourth side 22d is positioned on the left side. Each of the sides 22a to 22d has a hexagonal cross section in a direction orthogonal to the extending direction. A square plate-like ear 26 is formed on the right side of the first side 22a. Therefore, in the present embodiment, the one side on which the ear part 26 is formed is the first side 22a.

横格子23は、枠部材22に囲まれた領域において第1の辺22aと平行に複数延設されている。なお、ここでいう「平行」とは、厳密な意味での平行を示すものではなく、枠部材22の第1の辺22aに対して多少傾くように横格子23が延設されていてもよい。すなわち、横格子23は、耳部26が形成されている第1の辺22aと略平行に延設されていればよい。   A plurality of horizontal lattices 23 are extended in parallel with the first side 22 a in the region surrounded by the frame member 22. Note that “parallel” here does not indicate parallelism in a strict sense, and the horizontal lattice 23 may be extended so as to be slightly inclined with respect to the first side 22 a of the frame member 22. . That is, the horizontal lattice 23 only needs to extend substantially parallel to the first side 22a where the ears 26 are formed.

縦格子24は、枠部材22に囲まれた領域において横格子23と交差(本実施形態では直交)するように延設されている。縦格子24は、第1の辺22aから第3の辺22cまで延びている。そして、縦格子24は、横格子23とともに枠部材22に囲まれた領域において格子を形成する。横格子23及び縦格子24の形状は、枠部材22の各辺22a〜22dと同様に延設方向に直交する方向での断面が六角形状をなしている。   The vertical lattice 24 extends so as to intersect with the horizontal lattice 23 (orthogonal in the present embodiment) in a region surrounded by the frame member 22. The vertical lattice 24 extends from the first side 22a to the third side 22c. The vertical lattice 24 forms a lattice in the region surrounded by the frame member 22 together with the horizontal lattice 23. As for the shape of the horizontal lattice 23 and the vertical lattice 24, the cross section in the direction orthogonal to the extending direction is hexagonal like the sides 22a to 22d of the frame member 22.

そして、本実施形態では、各横格子23は、延設方向に直交する方向での断面積が同一であるとともに、枠部材22に囲まれた領域を縦格子24の延設方向に対して一定間隔で分割した各分割領域における隣接する横格子23の数が耳部26から離間する領域ほど多くなっている。すなわち、隣接する横格子23の間の距離を、耳部26から離間するにつれ狭くすることにより、耳部26から離間している領域ほど多くの横格子23が形成されている。これにより、枠部材22に囲まれた領域を縦格子24の延設方向に対して一定間隔で分割した各分割領域における横格子23の延設方向に直交する方向での断面積の合計は耳部26から離間するほど大きくなっている。   In the present embodiment, each horizontal lattice 23 has the same cross-sectional area in the direction orthogonal to the extending direction, and the region surrounded by the frame member 22 is constant with respect to the extending direction of the vertical lattice 24. The number of adjacent horizontal lattices 23 in each divided region divided by the interval increases as the region is separated from the ear portion 26. That is, by narrowing the distance between adjacent horizontal grids 23 as they are separated from the ears 26, more horizontal grids 23 are formed in regions that are separated from the ears 26. As a result, the sum of the cross-sectional areas in the direction perpendicular to the extending direction of the horizontal grid 23 in each divided area obtained by dividing the area surrounded by the frame member 22 at a constant interval with respect to the extending direction of the vertical grid 24 is The distance from the portion 26 increases.

正極板1の鋳造格子体11と負極板2の鋳造格子体21は、横格子13,23及び縦格子14,24の形成位置が異なっている。詳しくは、図2(a)に示すように、各鋳造格子体11,21は、正極板1の鋳造格子体11の枠部材12と負極板2の鋳造格子体21の枠部材22が重なった際に、正極板1の鋳造格子体11における縦格子14と横格子13の交差部15と、負極板2の鋳造格子体21における縦格子24と横格子23の交差部25とが、ずれて配置されることになる。本実施形態では、正極板1の横格子13と正極板1の縦格子14の交差部15は、負極板2の横格子23と負極板2の縦格子24に囲まれる領域内の中央に、位置するように配置されている。すなわち、正極板1の鋳造格子体11の横格子13と負極板2の鋳造格子体21の横格子23とは、半ピッチずらして配置されているとともに、正極板1の鋳造格子体11の縦格子14と負極板2の鋳造格子体21の縦格子24とは、半ピッチずらして配置されている。   The casting grid body 11 of the positive electrode plate 1 and the casting grid body 21 of the negative electrode plate 2 are different in the formation positions of the horizontal grids 13 and 23 and the vertical grids 14 and 24. Specifically, as shown in FIG. 2A, in each of the cast grid bodies 11 and 21, the frame member 12 of the cast grid body 11 of the positive electrode plate 1 and the frame member 22 of the cast grid body 21 of the negative electrode plate 2 overlap each other. At this time, the crossing portion 15 of the vertical lattice 14 and the horizontal lattice 13 in the cast lattice body 11 of the positive electrode plate 1 and the crossing portion 25 of the vertical lattice 24 and the horizontal lattice 23 in the cast lattice body 21 of the negative electrode plate 2 are shifted. Will be placed. In the present embodiment, the intersection 15 of the horizontal lattice 13 of the positive electrode plate 1 and the vertical lattice 14 of the positive electrode plate 1 is at the center in the region surrounded by the horizontal lattice 23 of the negative electrode plate 2 and the vertical lattice 24 of the negative electrode plate 2. It is arranged to be located. That is, the horizontal grid 13 of the cast grid 11 of the positive electrode plate 1 and the horizontal grid 23 of the cast grid 21 of the negative electrode plate 2 are arranged with a half pitch shift, and the vertical grid of the cast grid 11 of the positive electrode plate 1. The grid 14 and the vertical grid 24 of the cast grid 21 of the negative electrode plate 2 are arranged with a half-pitch shift.

本実施形態では、縦格子14,24の延設方向における耳部16,26からの離間距離に関わらず、鋳造格子体11,21に保持される活物質51,52に均等に化学反応が生じるように隣接する横格子13,23の距離を設定する。具体的には、以下の方法にしたがって、縦格子14の延設方向における隣接する横格子13,23の距離を決定する。   In this embodiment, regardless of the distance from the ears 16 and 26 in the extending direction of the vertical grids 14 and 24, chemical reactions are equally generated in the active materials 51 and 52 held by the cast grid bodies 11 and 21. Thus, the distance between adjacent horizontal grids 13 and 23 is set. Specifically, the distance between the adjacent horizontal grids 13 and 23 in the extending direction of the vertical grid 14 is determined according to the following method.

以下、隣接する横格子13の距離の導出方法について図4(a)〜(d)にしたがって説明する。なお、以下の説明において正極板1の鋳造格子体11における隣接する横格子13の距離の導出方法について説明するが、負極板2の鋳造格子体21における隣接する横格子23の距離の導出についても同様な方法で行うことができる。   Hereinafter, a method for deriving the distance between the adjacent horizontal lattices 13 will be described with reference to FIGS. In the following description, a method for deriving the distance between adjacent horizontal grids 13 in the cast grid body 11 of the positive electrode plate 1 will be described. A similar method can be used.

前提条件として、横格子13は延設方向に直交する方向での断面積が全て同一であり、縦格子14については延設方向における抵抗値を無視するものとし、各横格子13について第4の辺12d側の終端の電位は同電位となる。また、耳部16が形成されている第1の辺12aから最も離間して形成される横格子13を1番目の横格子yとし、耳部16に近づくにつれ、2番目の横格子y、3番目の横格子y…n番目の横格子yと定義する。また、枠部材12の第2の辺12bの中心軸から1番目の横格子yの中心軸までの距離を最小離間距離lと定義する。 As preconditions, the horizontal lattice 13 has the same cross-sectional area in the direction perpendicular to the extending direction, and the vertical lattice 14 ignores the resistance value in the extending direction. The terminal potential on the side 12d side is the same potential. Also, as the horizontal grid 13 ears 16 are most apart from forming the first side 12a which is formed as a first horizontal grid y 1, closer to the ear portion 16, the second horizontal grid y 2 The third horizontal lattice y 3 ... Is defined as the nth horizontal lattice yn. Also, define the distance from the central axis of the second side 12b of the frame member 12 to the first central axis of the horizontal grid y 1 and the minimum distance l 1.

そして、n番目の横格子y(nは任意の数)に電流が流れたときに、n番目の横格子yに流れる電流iに起因して活物質51に化学反応が生じる領域は、n番目の横格子yの中心軸から隣接する横格子yn−1,yn+1に向かって拡がる距離lで規定する。すなわち、n番目の横格子yを中心として隣接する横格子yn−1,yn+1に向かって拡がる距離l(=2・l)が、n番目の横格子yに電流が流れたときに活物質51に化学反応が生じる反応範囲となる。そして、反応範囲(2・l)に応じた、電流が流れるように隣接する横格子yn+1,yn−1との離間距離の設定を行う。 Then, when a current flows in the n-th horizontal grid y n (n is an arbitrary number), region where chemical reaction occurs in the active material 51 due to the current i n flowing through the n-th horizontal grid y n is , defined by the n-th horizontal grid adjacent the center axis of the horizontal grid y n of y n-1, y n spreads toward the + 1 distance l n. That is, the horizontal grid y n-1, y n spreads toward the + 1 distance l n (= 2 · l n ) is the current n-th horizontal grid y n flow adjacent around the n-th horizontal grid y n It becomes the reaction range where a chemical reaction occurs in the active material 51 at the time. Then, according to the reaction range (2 · l n ), the separation distance between the adjacent horizontal lattices y n + 1 and y n−1 is set so that a current flows.

鋳造格子体11は、図4(a)の正面図に対し、図4(d)に示す等価回路で表すことができる。
具体的には、横格子y(nは任意の数)の抵抗rは、次の式(1)より求めることができる。また、第3の辺12cにおけるn番目の横格子yの端部と、n+1番目の横格子yn+1の端部との間の抵抗Rは次の式(2)より求めることができる。
The cast lattice body 11 can be represented by an equivalent circuit shown in FIG. 4D with respect to the front view of FIG.
Specifically, the resistance r of the horizontal lattice y n (n is an arbitrary number) can be obtained from the following equation (1). Further, the end portion of the n-th horizontal grid y n in the third side 12c, the resistance R n between the n + 1 th end of the horizontal grid y n + 1 can be obtained by the following formula (2).

ただし、ρは鉛(鋳造格子体11の材料)の抵抗率、Wは横格子yの延設方向の長さ、S2は図4(c)に示す横格子yの延設方向に直交する方向での断面積である。(1)式において、各横格子yのW値、S2値、ρ値が等しいので、r値も等しくなり、その結果、各横格子y〜yn+1の抵抗rは全て同一となる。また、l+ln+1は第3の辺12cにおけるn番目の横格子yと、n+1番目の横格子yn+1の間の長さ(n番目の横格子yの中心軸からn+1番目の横格子yn+1の中心軸までの距離)である。また、S1は、図4(b)に示す第3の辺12cの延設方向に直交する方向での断面積である。 However, [rho is the resistivity of the lead (material of the cast grid 11), W is the lateral lattice y n extending direction of the length of, S2 are perpendicular to the extending direction of the horizontal grid y n shown in FIG. 4 (c) It is a cross-sectional area in the direction to do. (1) In the formula, W values of the horizontal grid y n, S2 value, since ρ values are equal, r value is also equal, so that the resistance r of the lateral grid y 1 ~y n + 1 are all the same. Further, l n + l n + 1 is a horizontal grid y n n-th in the third side 12c, n + 1-th horizontal grid y n + length between 1 (n-th horizontal from the center axis (n + 1) th of the lateral lattice y n Distance to the central axis of the lattice yn + 1 ). S1 is a cross-sectional area in a direction orthogonal to the extending direction of the third side 12c shown in FIG.

そして、図4(d)の等価回路から、隣接する横格子yn−1,yn+1の距離を導出する。
n番目の横格子y(抵抗r)を流れる電流をi、n+1番目の横格子yn+1(抵抗r)を流れる電流をin+1、抵抗R(第3の辺12cにおいてn番目の横格子yとn+1番目の横格子yn+1に挟まれる部分)を流れる電流をiRnとする。ここで、iRnは、次の式(3)で表すことができる。
Then, the distance between the adjacent horizontal lattices y n−1 and y n + 1 is derived from the equivalent circuit of FIG.
The current flowing through the nth lateral lattice y n (resistor r) is i n , the current flowing through the (n + 1) th lateral lattice y n + 1 (resistor r) is i n + 1 , and the resistor R n (the nth lateral in the third side 12c). the current flowing through the portion) sandwiched between the lattice y n and n + 1 th horizontal grid y n + 1 and i Rn. Here, i Rn can be expressed by the following formula (3).

また、各横格子y〜yn+1における第4の辺12d側の終端の電位が同電位であるという条件及び上式(3)から、次の式(4)が成り立つ。 Further, the following equation (4) is established from the condition that the terminal potential on the fourth side 12d side in each of the horizontal lattices y 1 to yn + 1 is the same potential and the above equation (3).

ここで、n番目の横格子yの反応範囲(2・l)に比例して、n番目の横格子yに流れる電流iが大きくなるように隣接する横格子yn+1,yn−1の距離を設定すべく、n番目の横格子yに流れる電流は、次の式(5)で表すことができる。 Here, in proportion to n-th reaction range horizontal grid y n (2 · l n) , the horizontal grid y n + 1 adjacent to the current i n increases through the n-th horizontal grid y n, y n In order to set the distance of −1 , the current flowing in the nth horizontal lattice yn can be expressed by the following equation (5).

ここで、Iは鋳造格子体11に流れる全電流、Lは枠部材12における第3の辺12c(第4の辺12d)の延設方向の長さである。すなわち、単位長さ当りの電流(=I/L)と、n番目の横格子yの反応範囲(2・l)を乗算した電流iが各横格子y〜yn+1を流れるように隣接する横格子yn+1,yn−1の距離を設定する。これにより、n番目の横格子yの反応範囲(2・l)に比例して流れる電流が大きくなる。 Here, I is the total current flowing through the cast grid 11, and L is the length of the third side 12c (fourth side 12d) of the frame member 12 in the extending direction. That is, to flow and per unit length of the current (= I / L), n-th horizontal grid y n current i n obtained by multiplying the reaction range (2 · l n) of the respective horizontal grid y 1 ~y n + 1 Is set to the distance between the horizontal lattices y n + 1 and y n−1 adjacent to. As a result, the current flowing in proportion to the reaction range (2 · l n ) of the nth horizontal lattice yn increases.

以上の条件から、n番目の横格子yに電流が流れたときに、横格子yを中心として隣接する横格子yn−1,yn+1に向かって拡がる距離lを導出する。
(4)式に(2)式と(5)式を代入すると、次の式(6)を導出することができる。
From the above conditions, when a current flows through the n-th horizontal grid y n, to derive the distance l n extending toward the lateral lattice y n-1, y n + 1 adjacent around a horizontal grid y n.
By substituting the equations (2) and (5) into the equation (4), the following equation (6) can be derived.

(6)式からわかるように、距離ln+1は、距離lから導出することができる。したがって、最小離間距離lを決定することにより、全ての隣接する横格子y〜yn+1の距離lを決定することができる。なお、最小離間距離lは、n番目の横格子yとn+1番目の横格子yn+1が重ならない範囲であれば任意に設定することが可能である。 As can be seen from equation (6), the distance l n + 1 can be derived from the distance l n . Therefore, by determining the minimum distance l 1, it is possible to determine the lateral lattice y 1 ~y n + 1 of the distance l n for all adjacent. The minimum separation distance l 1 can be arbitrarily set as long as the nth lateral lattice yn and the (n + 1) th lateral lattice yn + 1 do not overlap.

n番目の横格子yに電流が流れたときに、横格子yを中心として隣接する横格子yn−1,yn+1に向かって拡がる距離lを導出することにより、n−1番目の横格子yn−1とn番目の横格子yの離間距離dは次の式(7)で定義することができる。 when a current flows through the n-th horizontal grid y n, by deriving the distance l n extending toward the lateral lattice y n-1, y n + 1 adjacent around a horizontal grid y n, n-1 th the distance d of the horizontal grid y n-1 and n-th horizontal grid y n of can be defined by the following equation (7).

このように隣接する横格子yn−1,yn+1の距離を設定すると、前提条件から次の式(8)が成り立つ。 When the distance between the adjacent horizontal lattices y n−1 and y n + 1 is set in this way, the following equation (8) is established from the preconditions.

すなわち、n番目の横格子y(nは任意)の反応範囲(2・l)の電流密度は全て同一となる。 Ie, n-th horizontal grid y n (n is arbitrary) All current density is the same reaction range (2 · l n).

次に、本実施形態における鋳造格子体11,21の作用について図5(a),(b)にしたがって説明する。
本実施形態における極板4を用いた鉛蓄電池の充電時には、負極板2から正極板1に電流が流れることにより活物質51,52に化学反応が生じ、鉛蓄電池が充電される。この際、正極板1の鋳造格子体11においては、耳部16から電流が流れる。耳部16から流れた電流は、縦格子14を介して横格子13に流れる。このように、耳部16から流れた電流は鋳造格子体11全体を流れる。しかし、縦格子14における電圧は、縦格子14の内部抵抗により耳部16から離間するにつれ低くなる。そして、縦格子14の電圧の低下に基づいて、横格子13を流れる電流は、耳部16から離間している横格子13ほど(底部の横格子13ほど)小さくなる。このため、鋳造格子体21に流れる電流も、耳部26から離間している横格子23ほど小さくなる。
Next, the operation of the cast grid bodies 11 and 21 in the present embodiment will be described with reference to FIGS.
At the time of charging the lead storage battery using the electrode plate 4 in the present embodiment, a chemical reaction occurs in the active materials 51 and 52 due to a current flowing from the negative electrode plate 2 to the positive electrode plate 1, and the lead storage battery is charged. At this time, current flows from the ear portion 16 in the cast grid 11 of the positive electrode plate 1. The current flowing from the ear 16 flows to the horizontal grid 13 via the vertical grid 14. In this way, the current flowing from the ear portion 16 flows through the entire cast grid 11. However, the voltage in the vertical grid 14 decreases as the distance from the ear portion 16 increases due to the internal resistance of the vertical grid 14. Then, based on the voltage drop of the vertical grid 14, the current flowing through the horizontal grid 13 becomes smaller as the horizontal grid 13 is farther from the ear portion 16 (as the bottom horizontal grid 13). For this reason, the current flowing through the cast lattice body 21 also decreases as the lateral lattice 23 is separated from the ear portion 26.

一方、本実施形態における極板4を用いた鉛蓄電池の放電時には、正極板1から負極板2に電流が流れる。この際、正極板1の鋳造格子体11においては、耳部16に向かって電流が流れる。耳部16に向かって流れる電流は、横格子13を介して縦格子14に流れる。しかし、縦格子14の電圧は、縦格子14の内部抵抗により耳部16に近づくにつれ低くなる。すなわち、正極板1の鋳造格子体11および負極板2の鋳造格子体21において、耳部16,26に近い部分と耳部16,26から遠い部分で流れる電流の差が生じる。   On the other hand, current flows from the positive electrode plate 1 to the negative electrode plate 2 when discharging the lead storage battery using the electrode plate 4 in the present embodiment. At this time, in the cast lattice body 11 of the positive electrode plate 1, a current flows toward the ear portion 16. The current flowing toward the ear portion 16 flows to the vertical lattice 14 via the horizontal lattice 13. However, the voltage of the vertical grid 14 becomes lower as it approaches the ear 16 due to the internal resistance of the vertical grid 14. That is, in the cast grid body 11 of the positive electrode plate 1 and the cast grid body 21 of the negative electrode plate 2, there is a difference in current flowing between a portion near the ear portions 16 and 26 and a portion far from the ear portions 16 and 26.

本実施形態では、各鋳造格子体11,21の横格子13,23は、耳部16,26から離間するにつれ隣接する横格子13,23の距離が短くなるように構成されている。このため、図5(a)に示すように、本実施形態の鋳造格子体11における枠部材12に囲まれた領域を縦格子14の延設方向に対して一定間隔で4分割した各分割領域A1〜A4における横格子13の延設方向に直交する方向での断面積の合計は、耳部16から離間するほど大きくなっている。すなわち、各分割領域A1〜A4の横格子13の合成抵抗は、耳部から離間している領域ほど小さくなっている。図5(b)には、本実施形態と比較対象について、各分割領域A1〜A4での電流密度(I/A)の分布を示す。比較対象は、隣接する横格子間の距離が同一の鋳造格子体を用いている。 In this embodiment, the horizontal grids 13 and 23 of the cast grid bodies 11 and 21 are configured such that the distance between the adjacent horizontal grids 13 and 23 decreases as the distance from the ear portions 16 and 26 increases. For this reason, as shown in FIG. 5A, each divided region obtained by dividing the region surrounded by the frame member 12 in the cast lattice body 11 of the present embodiment into four at regular intervals in the extending direction of the vertical lattice 14. The total cross-sectional area in the direction orthogonal to the extending direction of the horizontal lattice 13 in A1 to A4 increases as the distance from the ear portion 16 increases. That is, the combined resistance of the horizontal lattice 13 in each of the divided regions A1 to A4 is smaller as the region is farther from the ear. FIG. 5B shows the distribution of current density (I t / A) in each of the divided regions A1 to A4 for the present embodiment and the comparison target. As a comparison object, a cast grid having the same distance between adjacent horizontal grids is used.

図5(b)は、縦軸に電流密度I/Aをとっており、横軸は、各分割領域A1〜A4に対応している。ここで、Iは、各分割領域A1〜A4における横格子13を流れる電流の総和であり、Aは、各分割領域A1〜A4の横格子13の延設方向に直交する方向での断面積である。したがって、I/Aは、単位面積当たりに流れる電流(=電流密度)を示している。そして、図5(b)から明らかなように、本実施形態における鋳造格子体11は、各分割領域A1〜A4間における電流密度の偏りが、比較対象の鋳造格子体に比べて少なくなっていることがわかる。 In FIG. 5B, the vertical axis represents the current density I t / A, and the horizontal axis corresponds to each of the divided regions A1 to A4. Here, I t is the sum of the currents flowing in the horizontal grid 13 in each of the divided areas Al to A4, A is the cross-sectional area in a direction orthogonal to the extending direction of the transverse grating 13 in each divided region Al to A4 It is. Therefore, I t / A indicates a current flowing per unit area (= current density). As is apparent from FIG. 5B, the cast grid body 11 in the present embodiment has a smaller current density deviation between the divided regions A1 to A4 than the cast grid body to be compared. I understand that.

したがって、耳部16,26に近い部分の活物質51,52と耳部16,26から遠い部分の活物質51,52の化学反応の生じやすさの差が少なくなる。すなわち、正極板1及び負極板2の一部が局所的に充電されることが防止される。同様に、鉛蓄電池の放電時にも、正極板1及び負極板2の一部が局所的に放電されることが防止される。   Therefore, the difference in the likelihood of a chemical reaction between the active materials 51 and 52 near the ears 16 and 26 and the active materials 51 and 52 far from the ears 16 and 26 is reduced. That is, the positive electrode plate 1 and a part of the negative electrode plate 2 are prevented from being locally charged. Similarly, part of the positive electrode plate 1 and the negative electrode plate 2 is prevented from being locally discharged even when the lead storage battery is discharged.

また、本実施形態の正極板1及び負極板2を横置き、すなわち、鋳造格子体11,21の厚み方向一面が水平となる(地面と対向する)ように配置する場合、活物質51,52は重力により横格子13,23と縦格子14,24に囲まれた領域から下方に脱落しやすくなる。しかし、本実施形態では、正極板1の鋳造格子体11の交差部15と負極板2の鋳造格子体21の交差部25をずらして配置している。詳しくは、正極板1の鋳造格子体11の交差部15と負極板2の鋳造格子体21の交差部25を半ピッチずらして配置している。このため、交差部15,25が横格子13,23と縦格子14,24に囲まれる領域の下方に配置され、活物質51,52を下方の交差部15,25で支持している。さらに、正極板1の鋳造格子体11と負極板2の鋳造格子体21をずらして形成しているため、活物質51,52の使われ方にむらが生じにくい。   In addition, when the positive electrode plate 1 and the negative electrode plate 2 of the present embodiment are placed sideways, that is, arranged so that one surface in the thickness direction of the cast grid bodies 11 and 21 is horizontal (opposed to the ground), the active materials 51 and 52 Tends to drop downward from the region surrounded by the horizontal grids 13 and 23 and the vertical grids 14 and 24 due to gravity. However, in the present embodiment, the intersecting portion 15 of the cast grid body 11 of the positive electrode plate 1 and the intersecting portion 25 of the cast grid body 21 of the negative electrode plate 2 are shifted from each other. Specifically, the intersecting portion 15 of the cast grid body 11 of the positive electrode plate 1 and the intersecting portion 25 of the cast grid body 21 of the negative electrode plate 2 are arranged so as to be shifted by a half pitch. For this reason, the intersecting portions 15 and 25 are arranged below the region surrounded by the horizontal lattices 13 and 23 and the vertical lattices 14 and 24, and the active materials 51 and 52 are supported by the lower intersecting portions 15 and 25. Further, since the cast grid body 11 of the positive electrode plate 1 and the cast grid body 21 of the negative electrode plate 2 are formed so as to be shifted, unevenness is hardly caused in the way the active materials 51 and 52 are used.

上記実施形態によれば、以下のような効果を得ることができる。
(1)耳部16,26からの離間距離に関わらず、各横格子13,23に流れる電流に基づいて、活物質51,52に均等に化学反応が生じるように横格子13,23の離間距離を設定している。したがって、耳部16,26から遠い部分の活物質51,52にも化学反応が生じやすく、正極板1及び負極板2の一部が局所的に充放電されることが防止される。すなわち、充放電時に枠部材12に囲まれた領域において流れる電流の均等化が図られる。
According to the above embodiment, the following effects can be obtained.
(1) Regardless of the distance from the ears 16 and 26, the horizontal grids 13 and 23 are separated so that the chemical reaction occurs evenly in the active materials 51 and 52 based on the current flowing through the horizontal grids 13 and 23. The distance is set. Therefore, a chemical reaction is likely to occur also in the active materials 51 and 52 in the portions far from the ears 16 and 26, and it is possible to prevent a part of the positive electrode plate 1 and the negative electrode plate 2 from being locally charged and discharged. That is, the current flowing in the region surrounded by the frame member 12 during charge / discharge is equalized.

(2)本実施形態の鋳造格子体11,21は、鋳造格子体11,21の厚みを薄くする場合に特にその効果を発揮する。鋳造格子体11,21の厚みを薄く形成する場合、耳部16,26から遠い部分の横格子13,23を流れる電流と、耳部16,26に近い部分の横格子13,23を流れる電流の差は大きくなる。本実施形態における鋳造格子体11,21は、各分割領域A1〜A4における電流密度の偏りが少なくなるため、各横格子13,23間の電流の差があったとしても、活物質51,52に均等に化学反応が生じやすい。   (2) The cast grid bodies 11 and 21 of the present embodiment exhibit the effect particularly when the cast grid bodies 11 and 21 are thinned. When the cast grid bodies 11 and 21 are formed to be thin, the current flowing through the horizontal grids 13 and 23 in the portions far from the ear portions 16 and 26 and the current flowing through the horizontal grids 13 and 23 in the portions close to the ear portions 16 and 26. The difference between Since the cast grid bodies 11 and 21 in the present embodiment have less current density unevenness in each of the divided regions A1 to A4, the active materials 51 and 52 even if there is a difference in current between the horizontal grids 13 and 23. Chemical reactions are likely to occur evenly.

(3)正極板1の鋳造格子体11の交差部15と負極板2の鋳造格子体21の交差部25をずらして配置している。このため、活物質51,52の使われ方に偏りが生じにくい。したがって、活物質51,52の一部が局所的に使用されることが防止され、活物質51,52の劣化が抑制される。   (3) The intersection 15 of the casting grid 11 of the positive electrode plate 1 and the intersection 25 of the casting grid 21 of the negative electrode 2 are shifted from each other. For this reason, the usage of the active materials 51 and 52 is less likely to be biased. Therefore, a part of the active materials 51 and 52 is prevented from being used locally, and deterioration of the active materials 51 and 52 is suppressed.

(4)また、本実施形態の極板4を、横置きする場合、活物質51,52は重力にしたがって、横格子13,23と縦格子14,24に囲まれた領域から地面に向かって脱落しやすくなる。しかし、本実施形態の鋳造格子体11,21では、正極板1の鋳造格子体11の交差部15と負極板2の鋳造格子体21の交差部25をずらして配置しているため、交差部15,25が横格子13,23と縦格子14,24に囲まれる領域の下方(地面方向)に配置される。このため、活物質51,52が脱落しようとすると、交差部15,25が活物質51,52を支持する。したがって、活物質51,52が脱落しにくい。   (4) Further, when the electrode plate 4 of this embodiment is placed horizontally, the active materials 51 and 52 are directed toward the ground from the region surrounded by the horizontal grids 13 and 23 and the vertical grids 14 and 24 according to gravity. It becomes easy to drop off. However, in the cast grid bodies 11 and 21 of the present embodiment, the intersecting portion 15 of the cast grid body 11 of the positive electrode plate 1 and the intersecting portion 25 of the cast grid body 21 of the negative electrode plate 2 are shifted from each other. 15 and 25 are arranged below the area surrounded by the horizontal grids 13 and 23 and the vertical grids 14 and 24 (in the ground direction). For this reason, when the active materials 51 and 52 try to drop off, the intersections 15 and 25 support the active materials 51 and 52. Therefore, the active materials 51 and 52 are difficult to drop off.

(5)また、正極板1と負極板2の活物質51,52がそれぞれ膨張した場合に、交差部15,25がずれているため、鋳造格子体11,21に応力がかかりにくい。
(6)さらに、リテーナ3を均一に両側から支持できるため、リテーナ3がへたりにくい。
(5) Further, when the active materials 51 and 52 of the positive electrode plate 1 and the negative electrode plate 2 expand, respectively, the intersections 15 and 25 are displaced, so that stress is not easily applied to the cast lattice bodies 11 and 21.
(6) Further, since the retainer 3 can be supported uniformly from both sides, the retainer 3 is difficult to sag.

なお、実施形態は以下のように変更しても良い。
○ 図6に示すように、隣接する横格子13の距離を一定間隔おきに変更してもよい。図6に示す鋳造格子体11では、範囲H1〜範囲H4のそれぞれに配置される横格子の離間距離は同一である。また、範囲H1に配置される横格子13の離間距離が最も長く、範囲H4に配置される横格子の離間距離が最も短くされている。この場合も、各分割領域における電流密度の差が少なくなる。なお、図6には正極板1の鋳造格子体11のみ示したが、負極板2の鋳造格子体21をこのように構成してもよい。
In addition, you may change embodiment as follows.
As shown in FIG. 6, the distance between adjacent horizontal grids 13 may be changed at regular intervals. In the cast lattice body 11 shown in FIG. 6, the separation distance of the horizontal lattices arranged in each of the ranges H1 to H4 is the same. Further, the separation distance of the horizontal lattice 13 arranged in the range H1 is the longest, and the separation distance of the horizontal lattice arranged in the range H4 is the shortest. Also in this case, the difference in current density in each divided region is reduced. In FIG. 6, only the cast grid body 11 of the positive electrode plate 1 is shown, but the cast grid body 21 of the negative electrode plate 2 may be configured in this way.

○ 図7に示すように、隣接する横格子13a〜13dの距離を同一にするとともに、各分割領域に設けられる複数の横格子13a〜13dのうちの一部の横格子13b〜13dの延設方向に直交する方向での断面積を耳部16から離間する領域ほど大きくしてもよい。最も細い多数本の横格子13aに対して、それよりも太い横格子13bが1本あり、その下方において更に太い横格子13cが1本あり、更にその下方に、更に太い横格子13dが1本ある。つまり、図7に示す鋳造格子体11では、横格子13aの延設方向に直交する方向での断面積が最も小さく、横格子13bの延設方向に直交する方向での断面積は、横格子13aよりも大きく形成されている。更に、横格子13cの延設方向に直交する方向での断面積は、横格子13bよりも大きく形成されており、横格子13dの延設方向に直交する方向での断面積は、横格子13cよりも大きく形成されている。鋳造格子体11をこのように構成することにより、枠部材12に囲まれた領域を縦格子14の延設方向に対して一定間隔で分割した各分割領域における横格子13の延設方向に直交する方向での断面積の合計は耳部16から離間するほど大きくなる。なお、図7には、正極板1の鋳造格子体11のみ示したが、負極板2の鋳造格子体21をこのように構成してもよい。   As shown in FIG. 7, the distances between adjacent horizontal lattices 13 a to 13 d are made the same, and a part of the horizontal lattices 13 b to 13 d out of the plurality of horizontal lattices 13 a to 13 d provided in each divided region is extended. The cross-sectional area in the direction orthogonal to the direction may be increased as the region is separated from the ear portion 16. There is one thicker horizontal lattice 13b for the thinnest horizontal lattice 13a, one thicker horizontal lattice 13c below it, and one thicker horizontal lattice 13d below that. is there. That is, in the cast grid body 11 shown in FIG. 7, the cross-sectional area in the direction orthogonal to the extending direction of the horizontal grid 13a is the smallest, and the cross-sectional area in the direction orthogonal to the extending direction of the horizontal grid 13b is It is formed larger than 13a. Further, the cross-sectional area in the direction orthogonal to the extending direction of the horizontal lattice 13c is formed larger than that of the horizontal lattice 13b, and the cross-sectional area in the direction orthogonal to the extending direction of the horizontal lattice 13d is It is formed larger than. By constructing the cast lattice 11 in this way, the region surrounded by the frame member 12 is orthogonal to the extending direction of the horizontal lattice 13 in each divided region obtained by dividing the region surrounded by the frame member 12 at a constant interval. The sum of the cross-sectional areas in the direction to be increased increases as the distance from the ear portion 16 increases. In FIG. 7, only the cast grid body 11 of the positive electrode plate 1 is shown, but the cast grid body 21 of the negative electrode plate 2 may be configured in this way.

○ 図8に示すように、隣接する横格子13の距離を同一にするとともに、各分割領域における横格子13の延設方向に直交する方向での断面積を耳部16から離間する領域ほど大きくしてもよい。鋳造格子体11をこのように構成することにより、枠部材12に囲まれた領域を縦格子14の延設方向に対して一定間隔で分割した各分割領域における横格子13の延設方向に直交する方向での断面積の合計は耳部16から離間するほど大きくなる。なお、図8には、正極板1の鋳造格子体11のみ示したが、負極板2の鋳造格子体21をこのように構成してもよい。   As shown in FIG. 8, the distance between adjacent horizontal lattices 13 is the same, and the cross-sectional area in the direction orthogonal to the extending direction of the horizontal lattice 13 in each divided region is larger as the region is separated from the ear portion 16. May be. By constructing the cast lattice 11 in this way, the region surrounded by the frame member 12 is orthogonal to the extending direction of the horizontal lattice 13 in each divided region obtained by dividing the region surrounded by the frame member 12 at a constant interval. The sum of the cross-sectional areas in the direction to be increased increases as the distance from the ear portion 16 increases. In FIG. 8, only the cast grid body 11 of the positive electrode plate 1 is shown, but the cast grid body 21 of the negative electrode plate 2 may be configured in this way.

○ 実施形態において、枠部材12の各辺12a〜12d、縦格子14,24及び横格子13は六角形状以外の形状をなしていてもよい。例えば、四角形状や五角形状などの多角形状や、円形状などでもよい。   In the embodiment, each side 12a to 12d of the frame member 12, the vertical lattices 14 and 24, and the horizontal lattice 13 may have a shape other than a hexagonal shape. For example, a polygonal shape such as a quadrangular shape or a pentagonal shape, or a circular shape may be used.

○ 縦格子14は、横格子13と直交するように延設されていなくてもよい。すなわち、縦格子14は、横格子13と交差していればよく、斜状に交差していてもよい。   The vertical lattice 14 does not need to extend so as to be orthogonal to the horizontal lattice 13. In other words, the vertical lattice 14 may intersect with the horizontal lattice 13 and may intersect obliquely.

A1,A2,A3,A4…分割領域、1…正極板、2…負極板、11,21…鋳造格子体、12,22…枠部材、12a,22a…第1の辺、13,13a,13b,13c,13d,23…横格子、14,24…縦格子、15,25…交差部、16,26…耳部、51,52…活物質。   A1, A2, A3, A4 ... divided areas, 1 ... positive electrode plate, 2 ... negative electrode plate, 11, 21 ... cast lattice body, 12, 22 ... frame member, 12a, 22a ... first side, 13, 13a, 13b , 13c, 13d, 23 ... horizontal lattice, 14, 24 ... vertical lattice, 15, 25 ... crossing portion, 16, 26 ... ear portion, 51, 52 ... active material.

Claims (5)

四角枠状の枠部材と、
前記枠部材の一辺に形成される耳部と、
前記枠部材に囲まれた領域において前記耳部が形成される前記枠部材の一辺と平行に延設された複数の横格子と、
前記枠部材に囲まれた領域において前記横格子と交差するように延設され、前記横格子とともに前記枠部材に囲まれた領域において格子を形成する縦格子と、を備え、
前記枠部材に囲まれた領域を前記縦格子の延設方向に対して一定間隔で分割した各分割領域における前記横格子の延設方向に直交する方向での断面積の合計を前記耳部から離間するほど大きくしたことを特徴とする鋳造格子体。
A square frame-shaped frame member;
Ears formed on one side of the frame member;
A plurality of horizontal lattices extending in parallel with one side of the frame member in which the ear portion is formed in a region surrounded by the frame member;
A vertical lattice that extends so as to intersect the horizontal lattice in a region surrounded by the frame member, and that forms a lattice in the region surrounded by the frame member together with the horizontal lattice,
The sum of the cross-sectional areas in the direction perpendicular to the extending direction of the horizontal lattice in each divided region obtained by dividing the region surrounded by the frame member at a constant interval with respect to the extending direction of the vertical lattice from the ear portion. A cast lattice body which is enlarged as it is separated.
前記複数の横格子は、延設方向に直交する方向での断面積が同一であるとともに、前記各分割領域における隣接する前記横格子の数が前記耳部から離間する領域ほど多くなることにより、前記枠部材に囲まれた領域を前記縦格子の延設方向に対して一定間隔で分割した各分割領域における前記横格子の延設方向に直交する方向での断面積の合計を前記耳部から離間するほど大きくしたことを特徴とする請求項1に記載の鋳造格子体。   The plurality of horizontal lattices have the same cross-sectional area in the direction orthogonal to the extending direction, and the number of the adjacent horizontal lattices in each divided region increases as the region is separated from the ear portion. The sum of the cross-sectional areas in the direction perpendicular to the extending direction of the horizontal lattice in each divided region obtained by dividing the region surrounded by the frame member at a constant interval with respect to the extending direction of the vertical lattice from the ear portion. The cast lattice body according to claim 1, wherein the cast lattice body is made larger as the distance increases. 前記複数の横格子は、隣接する前記横格子の距離が同一であるとともに、前記各分割領域における前記横格子の延設方向に直交する方向での断面積が前記耳部から離間する領域ほど大きくなることにより、前記枠部材に囲まれた領域を前記縦格子の延設方向に対して一定間隔で分割した各分割領域における前記横格子の延設方向に直交する方向での断面積の合計を前記耳部から離間するほど大きくしたことを特徴とする請求項1に記載の鋳造格子体。   The plurality of lateral lattices have the same distance between adjacent lateral lattices, and the cross-sectional area in the direction perpendicular to the extending direction of the lateral lattice in each divided region is larger as the region is separated from the ear portion. Thus, the sum of the cross-sectional areas in the direction perpendicular to the extending direction of the horizontal lattice in each divided region obtained by dividing the region surrounded by the frame member at a constant interval with respect to the extending direction of the vertical lattice. The cast lattice body according to claim 1, wherein the cast lattice body is made larger as the distance from the ear portion increases. 前記各分割領域には、複数の横格子が設けられ、前記各分割領域に設けられる複数の横格子のうちの一部の横格子の延設方向に直交する方向での断面積が前記耳部から離間する領域ほど大きくなることにより、隣接する前記横格子の距離が同一であるとともに、前記各分割領域における前記横格子の延設方向に直交する方向での断面積が前記耳部から離間する領域ほど大きくしたことを特徴とする請求項3に記載の鋳造格子体。   Each divided region is provided with a plurality of horizontal lattices, and a cross-sectional area in a direction orthogonal to the extending direction of some of the plurality of horizontal lattices provided in each divided region is the ear portion. The distance between adjacent horizontal lattices is the same, and the cross-sectional area in the direction perpendicular to the extending direction of the horizontal lattice in each of the divided regions is separated from the ear portion. The cast lattice body according to claim 3, wherein the cast lattice body is made larger in size. 鋳造格子体は、正極板用と、負極板用とを一対備え、前記正極板用の鋳造格子体の枠部材と前記負極板用の鋳造格子体の枠部材を重ねた際に、前記正極板用の鋳造格子体における前記縦格子と前記横格子の交差部と、前記負極板用の鋳造格子体における前記縦格子と前記横格子の交差部とを、ずらして配置したことを特徴とする請求項1〜請求項4のうちいずれか1項に記載の鋳造格子体。   The cast lattice body includes a pair of positive electrode plate and negative electrode plate, and the positive electrode plate when the frame member of the cast lattice body for the positive electrode plate and the frame member of the cast lattice body for the negative electrode plate are stacked. The crossing portion of the vertical lattice and the horizontal lattice in the casting lattice body for use, and the crossing portion of the vertical lattice and the horizontal lattice in the casting lattice body for the negative electrode plate are arranged so as to be shifted. The cast lattice body according to any one of claims 1 to 4.
JP2012060265A 2012-03-16 2012-03-16 Cast grid body of lead-acid storage battery Pending JP2013196828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060265A JP2013196828A (en) 2012-03-16 2012-03-16 Cast grid body of lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060265A JP2013196828A (en) 2012-03-16 2012-03-16 Cast grid body of lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2013196828A true JP2013196828A (en) 2013-09-30

Family

ID=49395548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060265A Pending JP2013196828A (en) 2012-03-16 2012-03-16 Cast grid body of lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2013196828A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732252A (en) * 2017-09-30 2018-02-23 浙江天能电池(江苏)有限公司 The electric conductor of battery
JP2021111625A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111556A (en) * 2020-01-14 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111627A (en) * 2020-01-09 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111626A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111616A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111628A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7348089B2 (en) 2020-01-23 2023-09-20 古河電池株式会社 liquid lead acid battery
JP7348081B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery
JP7348082B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery
JP7348080B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732252A (en) * 2017-09-30 2018-02-23 浙江天能电池(江苏)有限公司 The electric conductor of battery
JP7011026B2 (en) 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP7026753B2 (en) 2020-01-07 2022-02-28 古河電池株式会社 Liquid lead-acid battery
JP2021111625A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111626A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7011023B2 (en) 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP2021111628A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7011024B2 (en) 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP2021111616A (en) * 2020-01-07 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7348081B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery
JP7348082B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery
JP7348080B2 (en) 2020-01-08 2023-09-20 古河電池株式会社 liquid lead acid battery
JP7011025B2 (en) 2020-01-09 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP2021111627A (en) * 2020-01-09 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP2021111556A (en) * 2020-01-14 2021-08-02 古河電池株式会社 Liquid type lead storage battery
JP7105258B2 (en) 2020-01-14 2022-07-22 古河電池株式会社 liquid lead acid battery
JP7348089B2 (en) 2020-01-23 2023-09-20 古河電池株式会社 liquid lead acid battery

Similar Documents

Publication Publication Date Title
JP2013196828A (en) Cast grid body of lead-acid storage battery
US10847773B2 (en) Battery pack
US9825303B2 (en) Storage battery grid, method of manufacturing storage battery grid, and storage battery using storage battery grid
KR20180129115A (en) Cylindrical cell connection separated bus bar and battery module using the same and manufacturing method
JP5729518B2 (en) Storage battery grid, storage battery grid manufacturing method, and storage battery using storage battery grid
US10991973B2 (en) Lithium ion secondary battery
US20190190091A1 (en) Method and apparatus estimating a state of battery
US20170077025A1 (en) Semiconductor memory device
KR101219233B1 (en) Battery array and battery pack having the same
US10170768B2 (en) Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
JP6810886B2 (en) Batteries
US10177355B2 (en) Battery pack
JP2004071394A (en) Battery type power supply device
Alagheband et al. Optimization of grid configuration by investigating its effect on positive plate of lead-acid batteries via numerical modeling
JP5532136B2 (en) Stacked battery
Nakhaie et al. The effect of grid configurations on potential and current density distributions in positive plate of lead–acid battery via numerical modeling
JP6079445B2 (en) Storage battery grid and storage battery using the same
CN106532064A (en) Low lead-acid storage battery
JP2016139476A (en) Battery module
US20100216011A1 (en) Battery pack
JP2016225166A (en) Power storage device module
JP2014022217A (en) Secondary battery manufacturing method
US20200067132A1 (en) Battery
KR102320115B1 (en) A connecting plate for electrically connecting the cylindrical cells
KR101322474B1 (en) Lug-joint-device for increasing cross-sectional area on anode of secondary battery