JP7113037B2 - liquid lead acid battery - Google Patents

liquid lead acid battery Download PDF

Info

Publication number
JP7113037B2
JP7113037B2 JP2020009364A JP2020009364A JP7113037B2 JP 7113037 B2 JP7113037 B2 JP 7113037B2 JP 2020009364 A JP2020009364 A JP 2020009364A JP 2020009364 A JP2020009364 A JP 2020009364A JP 7113037 B2 JP7113037 B2 JP 7113037B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
electrode current
substrate
ear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020009364A
Other languages
Japanese (ja)
Other versions
JP2021118059A (en
Inventor
篤志 佐藤
有一 赤阪
真也 菅
智史 柴田
洋輔 増田
一真 若梅
恭貴 齋藤
優樹 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2020009364A priority Critical patent/JP7113037B2/en
Publication of JP2021118059A publication Critical patent/JP2021118059A/en
Application granted granted Critical
Publication of JP7113037B2 publication Critical patent/JP7113037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、液式鉛蓄電池に関する。 The present invention relates to flooded lead-acid batteries.

近年の環境問題の深刻化に伴い、自動車等の排出ガス規制は世界的に厳しくなっている。この規制に対応するため、自動車メーカーは様々な環境技術を開発してきた。その環境技術としては、停車時に一時的にエンジンを停止させるアイドリングストップシステム(Idling Stop System、以下、「ISS」と表記する。)が知られている。ISSを搭載した内燃自動車(以下、「ISS車」と表記する。)は、信号待ち等で停車した際のアイドリングによる燃料の消費を抑制できるため、燃費が向上し更に排出ガス量も低減できる。 BACKGROUND ART In recent years, with the seriousness of environmental problems, exhaust gas regulations for automobiles and the like have become stricter all over the world. Automakers have developed various environmental technologies to comply with these regulations. As an environmental technology, an idling stop system (hereinafter referred to as "ISS") that temporarily stops the engine when the vehicle is stopped is known. An internal combustion vehicle equipped with an ISS (hereinafter referred to as an "ISS vehicle") can suppress fuel consumption due to idling when the vehicle is stopped at a traffic light or the like, thereby improving fuel efficiency and further reducing the amount of exhaust gas.

ISS車用の鉛蓄電池は、エンジンが頻繁に停止と始動を繰り返すため、完全な充電状態ではない部分充電状態(Partial State of Charge、「PSOC」とも称される。)で充電と放電とが繰り返される。ISS車の鉛蓄電池は、充電率が90%より高いと、充電受入性が低くなって回生エネルギーの利用効率が低下するため、充電率が80%~90%の部分充電状態で使用されることが望ましいとされている。 A lead-acid battery for an ISS vehicle is repeatedly charged and discharged in a partial state of charge (also referred to as "PSOC"), which is not a fully charged state, because the engine repeatedly stops and starts. be If the charge rate of the lead-acid battery of the ISS vehicle is higher than 90%, the charge acceptance becomes low and the utilization efficiency of regenerative energy decreases. is preferred.

液式鉛蓄電池の劣化要因の一つである電解液の成層化は、電槽内の上部と下部とで電解液の濃度差が生じる現象であり、80%~90%の部分充電状態を維持する様に制御して鉛蓄電池を使用する際に発生し易い。電解液の濃度が小さい上部では、負極板表面に金属鉛の樹枝状結晶(デンドライト)が析出・成長して、内部短絡が生じやすくなる。一方、電解液の濃度が大きい下部では、高濃度の電解液により、負極板表面で不導体の硫酸鉛が肥大化するサルフェーションが生じやすくなる。 Electrolyte stratification, which is one of the causes of deterioration of flooded lead-acid batteries, is a phenomenon in which there is a difference in the concentration of the electrolyte between the upper and lower parts of the container, maintaining a partially charged state of 80% to 90%. It is likely to occur when using a lead-acid battery that is controlled to do so. In the upper part where the concentration of the electrolyte is low, dendrites of metallic lead are deposited and grown on the surface of the negative electrode plate, and internal short circuits are likely to occur. On the other hand, in the lower portion where the concentration of the electrolyte is high, the high concentration of the electrolyte tends to cause sulfation in which the non-conductive lead sulfate enlarges on the surface of the negative electrode plate.

サルフェーションが生じると、負極活物質からの硫酸の放出が抑制されるため、負極板下部の充電受け入れ性が低下する。負極板下部の充電受け入れ性が低下すると、主に負極板上部で充放電反応が進行する様になるため、負極板上部と対向する正極板上部の正極活物質の軟化や、集電体である鉛合金からなる基板の腐食が進行し、鉛蓄電池が早期に寿命を迎えることになる。
電解液の成層化を抑制する技術に関しては、例えば特許文献1に記載された技術が挙げられる。
When sulfation occurs, the discharge of sulfuric acid from the negative electrode active material is suppressed, so that the charge acceptability of the lower portion of the negative electrode plate decreases. When the charge acceptability of the lower part of the negative plate decreases, the charge-discharge reaction proceeds mainly in the upper part of the negative plate, so the positive electrode active material on the upper part of the positive plate facing the upper part of the negative plate softens and the current collector Corrosion of the substrate made of the lead alloy progresses, and the life of the lead-acid battery comes to an early end.
As for the technology for suppressing the stratification of the electrolytic solution, for example, the technology described in Patent Literature 1 can be cited.

特許文献1には、充電時に発生する気体による電解液の攪拌作用をより有効に利用して、成層化を抑制するために、極板群を収容する収容空間とは別に、収容空間の上部及び下部に連通する連通流路を設けることが記載されている。これにより、充電時に、極板群により発生する気体の上昇に伴う電解液の上方向への流れが収容空間内で発生し、これに対応する下方向への流れが連通流路内で発生するため、電槽内で電解液の対流が効果的に発生することで、電解液の攪拌作用を高めて成層化を抑制することができると記載されている。 In Patent Document 1, in order to more effectively utilize the agitating action of the electrolyte solution by the gas generated during charging to suppress stratification, apart from the accommodation space for accommodating the electrode plate group, an upper part of the accommodation space and a It is described that a communication channel communicating with the lower portion is provided. As a result, during charging, an upward flow of the electrolytic solution is generated in the housing space as the gas generated by the electrode plate assembly rises, and a corresponding downward flow is generated in the communication channel. Therefore, it is described that the convection of the electrolytic solution is effectively generated in the container, thereby enhancing the stirring action of the electrolytic solution and suppressing stratification.

一方、液式鉛蓄電池は、正極集電体に正極合剤が保持された正極板と、負極集電体に負極合剤が保持された負極板を備えている。正極集電体および負極集電体は、例えば特許文献2の図1に示すように、長方形の格子状基板と格子状基板に連続する耳とを有する。格子状基板は、格子状基板を成す長方形の一辺に沿う上部骨と、上部骨に接続されて上部骨より下方に存在する複数本の中骨と、を有する。耳は、上部骨の一辺の中心から一方にずれた位置から上側に突出している。
しかし、特許文献1および2には、充放電時の極板の電位分布と電解液の攪拌作用との関係についての記載はない。
On the other hand, a flooded lead-acid battery includes a positive electrode plate in which a positive current collector holds a positive electrode mixture, and a negative electrode plate in which a negative electrode current collector holds a negative electrode mixture. The positive electrode current collector and the negative electrode current collector each have a rectangular grid-like substrate and ears continuous with the grid-like substrate, as shown in FIG. 1 of Patent Document 2, for example. The lattice-like substrate has upper ribs along one side of a rectangle forming the lattice-like substrate, and a plurality of middle ribs connected to the upper bones and present below the upper bones. Ears protrude upward from the center of one side of the upper bone.
However, Patent Literatures 1 and 2 do not describe the relationship between the potential distribution of the electrode plates during charging and discharging and the stirring action of the electrolytic solution.

特開2015-176659号公報JP 2015-176659 A 特許第3452171号公報Japanese Patent No. 3452171

本発明の課題は、部分充電状態で使用される場合であっても、充電時に生じるガスによる攪拌作用で電解液の成層化が抑制される、新規な液式鉛蓄電池を提供することである。 An object of the present invention is to provide a novel flooded lead-acid battery in which even when used in a partially charged state, stratification of the electrolytic solution is suppressed by the agitating action of gas generated during charging.

上記課題を解決するために、本発明の第一態様の液式鉛蓄電池は下記の構成(1)~(4)を要旨とする。
(1)正極集電体と正極合剤とを有する正極板を備えた液式鉛蓄電池である。正極集電体は、長方形の格子状基板と前記格子状基板に連続する耳とを有し、格子状基板に正極合剤が保持されている。格子状基板は、格子状基板を成す長方形の一辺に沿う上部骨と、上部骨に接続されて上部骨より下方に存在する複数本の中骨と、を有する。耳は、上部骨の一辺の中心から一方にずれた位置から上側に突出する。
In order to solve the above problems, the liquid lead-acid battery of the first aspect of the present invention has the following configurations (1) to (4).
(1) A liquid lead-acid battery comprising a positive electrode plate having a positive electrode current collector and a positive electrode mixture. The positive electrode current collector has a rectangular grid-like substrate and ears continuous with the grid-like substrate, and the grid-like substrate holds a positive electrode mixture. The lattice-like substrate has upper ribs along one side of a rectangle forming the lattice-like substrate, and a plurality of middle ribs connected to the upper bones and present below the upper bones. Ears protrude upward from the center of one side of the upper bone.

(2)正極集電体を、格子状基板を成す長方形の上記一方の側の角を通る対角線に沿って切断して生じる分割体のうち、耳が存在する分割体は、耳の上部骨との境界線上の中心点Pを通り上部骨に垂直な基準線Kにより、第一の部分と第二の部分に区分され、第一の部分は第二の部分よりも面積が大きい。 (2) Of the divided bodies produced by cutting the positive electrode current collector along the diagonal line passing through the corners on one side of the rectangle forming the grid-like substrate, the divided bodies in which the ears are present are the upper bones of the ears. It is divided into a first portion and a second portion by a reference line K passing through a center point P on the boundary of the upper bone and perpendicular to the upper bone, and the first portion has a larger area than the second portion.

(3)x軸およびy軸が共に線形目盛である座標平面に、第一の部分における、複数本の中骨の各切断面Cnと中心点Pとの間の各抵抗値Rnをy座標、各切断面Cnの中心点と中心点Pとの各距離Xnをx座標としてなされた全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似でき、x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下である。
なお、上述の「直線に近似でき」とは、複数のプロットを最小二乗法で直線回帰した場合の相関係数ρの絶対値|ρ|が0.90以上であることを意味する。また、「傾きが異なる二本の直線」とは、二本の直線の傾きa1,a2(a1>a2)の比(a1/a2)が1.3以上であることを意味する。
(3) Each resistance value Rn between each cutting plane Cn of the plurality of midribs and the center point P in the first portion is represented by the y-coordinate on a coordinate plane in which both the x-axis and the y-axis are linear scales, All the plots made by using each distance Xn between the center point of each cutting plane Cn and the center point P as the x coordinate can be approximated to two straight lines with different slopes with x=H as the intersection point, and x<H. A ratio A/B between the average value A of each resistance value Rn at the distance Xn and the average value B of each resistance value Rn at each distance Xn satisfying x≧H is 0.35 or more and 0.55 or less be.
It should be noted that the above-mentioned "can be approximated to a straight line" means that the absolute value |ρ| Also, "two straight lines with different slopes" means that the ratio (a1/a2) of the slopes a1 and a2 (a1>a2) of the two straight lines is 1.3 or more.

(4)正極集電体の耳が存在する分割体の耳が上記境界線に沿って切断されて残ったものの質量a(以下、単に「耳が存在する分割体の質量a」とも称する)と正極集電体の耳が存在しない分割体の質量bとの比a/bは1.1以上1.9以下である。
なお、耳が存在する分割体の質量aは、正極集電体の耳の質量を除いた格子状基板の質量を指す。
(4) Mass a of the segment left after cutting along the boundary line where the segmented body where the ear of the positive electrode current collector exists (hereinafter also simply referred to as "the mass a of the segmented body where the ear exists") The ratio a/b of the positive electrode current collector to the mass b of the divided body without the ears of the positive electrode current collector is 1.1 or more and 1.9 or less.
Note that the mass a of the divided body where the tabs are present refers to the mass of the grid-like substrate excluding the mass of the tabs of the positive electrode current collector.

本発明によれば、部分充電状態で使用される場合であっても、充電時に生じるガスによる攪拌作用で電解液の成層化が抑制される、新規な液式鉛蓄電池を提供できる。 According to the present invention, it is possible to provide a novel flooded lead-acid battery in which even when used in a partially charged state, stratification of the electrolytic solution is suppressed by the agitating action of gas generated during charging.

第一実施形態の液式鉛蓄電池が有する正極板を構成する正極集電体を示す正面図である。FIG. 3 is a front view showing a positive current collector that constitutes a positive electrode plate of the liquid lead-acid battery of the first embodiment; 図1の正極集電体を、格子状基板を成す長方形の一方の側の角を通る対角線に沿って切断して生じる、耳が存在する分割体を示す正面図である。FIG. 2 is a front view showing a divided body having ears, which is produced by cutting the positive electrode current collector of FIG. 1 along a diagonal line passing through one corner of a rectangular substrate forming a lattice substrate. 第二実施形態の液式鉛蓄電池が有する正極板を構成する正極集電体を示す正面図である。FIG. 4 is a front view showing a positive electrode current collector that constitutes a positive electrode plate of the liquid lead-acid battery of the second embodiment. 図2の正極集電体を、格子状基板を成す長方形の一方の側の角を通る対角線に沿って切断して生じる、耳が存在する分割体を示す正面図である。FIG. 3 is a front view showing a divided body having ears, which is produced by cutting the positive electrode current collector of FIG. 実施例で作製したサンプルNo.1について得られた、正極集電体の第一の部分における、複数本の中骨の各切断面Cnと耳の中心点Pとの間の各抵抗値Rnと、各切断面Cnの中心点と耳の中心点Pとの各距離Xnと、の関係を示すグラフである。Each resistance value Rn between each cut surface Cn of a plurality of backbones and the center point P of the ear in the first portion of the positive electrode current collector obtained for sample No. 1 prepared in the example, and , and distances Xn between the center point of each cut plane Cn and the center point P of the ear. 実施例で作製したサンプルNo.2について得られた、正極集電体の第一の部分における、複数本の中骨の各切断面Cnと耳の中心点Pとの間の各抵抗値Rnと、各切断面Cnの中心点と耳の中心点Pとの各距離Xnと、の関係を示すグラフである。Each resistance value Rn between each cut surface Cn of a plurality of backbones and the center point P of the ear in the first portion of the positive electrode current collector obtained for sample No. 2 prepared in the example, and , and distances Xn between the center point of each cut plane Cn and the center point P of the ear. 実施例で作製したサンプルNo.3について得られた、正極集電体の第一の部分における、複数本の中骨の各切断面Cnと耳の中心点Pとの間の各抵抗値Rnと、各切断面Cnの中心点と耳の中心点Pとの各距離Xnと、の関係を示すグラフである。Each resistance value Rn between each cut surface Cn of a plurality of midribs and the center point P of the ear in the first portion of the positive electrode current collector obtained for sample No. 3 prepared in the example, and , and distances Xn between the center point of each cut plane Cn and the center point P of the ear. 実施例で作製したサンプルNo.4について得られた、正極集電体の第一の部分における、複数本の中骨の各切断面Cnと耳の中心点Pとの間の各抵抗値Rnと、各切断面Cnの中心点と耳の中心点Pとの各距離Xnと、の関係を示すグラフである。Each resistance value Rn between each cut surface Cn of a plurality of backbones and the center point P of the ear in the first portion of the positive electrode current collector obtained for sample No. 4 prepared in the example, and , and distances Xn between the center point of each cut plane Cn and the center point P of the ear. 実施例で作製したサンプルNo.5について得られた、正極集電体の第一の部分における、複数本の中骨の各切断面Cnと耳の中心点Pとの間の各抵抗値Rnと、各切断面Cnの中心点と耳の中心点Pとの各距離Xnと、の関係を示すグラフである。Each resistance value Rn between each cut surface Cn of a plurality of backbones and the center point P of the ear in the first portion of the positive electrode current collector obtained for sample No. 5 prepared in the example, and , and distances Xn between the center point of each cut plane Cn and the center point P of the ear. 実施例で作製したサンプルNo.6について得られた、正極集電体の第一の部分における、複数本の中骨の各切断面Cnと耳の中心点Pとの間の各抵抗値Rnと、各切断面Cnの中心点と耳の中心点Pとの各距離Xnと、の関係を示すグラフである。Each resistance value Rn between each cut surface Cn of a plurality of midribs and the center point P of the ear in the first portion of the positive electrode current collector obtained for sample No. 6 prepared in the example, and , and distances Xn between the center point of each cut plane Cn and the center point P of the ear. 実施例で作製したサンプルNo.7について得られた、正極集電体の第一の部分における、複数本の中骨の各切断面Cnと耳の中心点Pとの間の各抵抗値Rnと、各切断面Cnの中心点と耳の中心点Pとの各距離Xnと、の関係を示すグラフである。Each resistance value Rn between each cut surface Cn of a plurality of backbones and the center point P of the ear in the first portion of the positive electrode current collector obtained for sample No. 7 prepared in the example, and , and distances Xn between the center point of each cut plane Cn and the center point P of the ear. 実施例で行った寿命試験の1サイクルの充放電パターンを示すグラフである。1 is a graph showing a charge/discharge pattern of one cycle in a life test conducted in Examples.

以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。
[第一実施形態および第二実施形態の液式鉛蓄電池の構成]
第一実施形態および第二実施形態の液式鉛蓄電池は、モノブロックタイプの電槽と、蓋と、六個の極板群とを有する。電槽は、隔壁により六個のセル室に区画されている。六個のセル室は電槽の長手方向に沿って配列されている。各セル室に一つの極板群が配置されている。各セル室に電解液が注入されている。
Embodiments of the present invention will be described below, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferred limitations are made for implementing the present invention, but the limitations are not essential to the present invention.
[Configuration of liquid lead-acid battery of first embodiment and second embodiment]
The flooded lead-acid batteries of the first embodiment and the second embodiment have a monoblock type container, a lid, and six electrode plate groups. The container is partitioned into six cell chambers by partition walls. Six cell chambers are arranged along the longitudinal direction of the container. One electrode plate group is arranged in each cell chamber. An electrolyte is injected into each cell chamber.

各極板群は、交互に配置された複数枚の正極板および負極板と、正極板および負極板との間に配置されたセパレータと、からなる積層体を有する。
正極板は、正極集電体と正極合剤(正極活物質を含む合剤)とを有する。正極集電体は、長方形の格子状基板と、格子状基板に連続する耳とを有し、格子状基板に正極合剤が保持されている。また、本発明においては、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bは1.1以上1.9以下である。負極板は、負極集電体と負極合剤(負極活物質を含む合剤)とを有する。負極集電体は、長方形の格子状基板と、格子状基板に連続する耳とを有し、格子状基板に負極合剤が保持されている。複数枚の正極板および負極板は、セパレータを介して交互に配置されている。積層体を構成する負極板の枚数Mnは正極板の枚数Mpよりも一枚多い。
Each electrode plate group has a laminate including a plurality of positive electrode plates and negative electrode plates alternately arranged, and a separator disposed between the positive electrode plates and the negative electrode plates.
The positive electrode plate has a positive electrode current collector and a positive electrode mixture (a mixture containing a positive electrode active material). The positive electrode current collector has a rectangular grid-like substrate and ears continuous with the grid-like substrate, and the grid-like substrate holds a positive electrode mixture. Further, in the present invention, the ratio a/b between the mass a of the positive electrode current collector segment having ears and the mass b of the positive electrode current collector segment having no ears is 1.1 or more and 1.9. It is below. The negative electrode plate has a negative electrode current collector and a negative electrode mixture (a mixture containing a negative electrode active material). The negative electrode current collector has a rectangular grid-like substrate and ears continuous with the grid-like substrate, and the grid-like substrate holds the negative electrode mixture. The plurality of positive electrode plates and negative electrode plates are alternately arranged with separators interposed therebetween. The number M n of the negative electrode plates constituting the laminate is one more than the number M p of the positive electrode plates.

負極板は袋状セパレータ内に収納されている。そして、負極板が入った袋状セパレータと正極板とを交互に重ねることで、正極板と負極板との間にセパレータが配置された状態となっている。なお、正極板を袋状セパレータ内に収納して、負極板と交互に重ねてもよい。
また、各極板群は、積層体を構成する複数の正極板および負極板をそれぞれ幅方向の別の位置で連結する正極ストラップおよび負極ストラップと、正極ストラップおよび負極ストラップからそれぞれ立ち上がる正極中間極柱および負極中間極柱と、外部端子となる正極極柱および負極極柱を有する。
The negative electrode plate is housed in a bag-like separator. By alternately stacking the bag-like separators containing the negative electrode plates and the positive electrode plates, the separators are arranged between the positive electrode plates and the negative electrode plates. In addition, the positive electrode plate may be accommodated in the bag-like separator and alternately stacked with the negative electrode plate.
Each electrode plate group includes a positive electrode strap and a negative electrode strap that connect the plurality of positive electrode plates and the negative electrode plates that constitute the laminate at different positions in the width direction, and positive electrode intermediate pole columns that rise from the positive electrode strap and the negative electrode strap, respectively. and an intermediate negative electrode column, and a positive electrode column and a negative electrode column that serve as external terminals.

正極ストラップおよび負極ストラップは、複数の正極板および負極板の耳部をそれぞれ連結して固定している。隣接するセル室の正極中間極柱同士および負極中間極柱同士が抵抗溶接されて、隣接するセル間が電気的に直列に接続されている。
正極極柱および負極極柱は、セル配列方向の両端のセル室に配置された正極ストラップおよび負極ストラップに、小片部を介して形成されている。
The positive strap and the negative strap connect and fix the tabs of the plurality of positive plates and negative plates, respectively. The intermediate positive poles and the intermediate negative poles of the adjacent cell chambers are resistance-welded to electrically connect the adjacent cells in series.
The positive electrode poles and the negative electrode poles are formed via the small piece portions on the positive electrode straps and the negative electrode straps arranged in the cell chambers at both ends in the cell arrangement direction.

[第一実施形態の正極集電体]
図1に示すように、第一実施形態の正極集電体1は、長方形の格子状基板11と格子状基板11に連続する耳12とを有し、格子状基板11に正極合剤が保持されている。格子状基板11は、格子状基板11を成す長方形の一辺に沿う上部骨111と、上部骨111に接続されて上部骨111より下方に存在する複数本の中骨112と、を有する。耳12は、上部骨111の一辺の中心から一方(図1の右側)にずれた位置から上側に突出している。
[Positive electrode current collector of the first embodiment]
As shown in FIG. 1, the positive electrode current collector 1 of the first embodiment has a rectangular grid-like substrate 11 and ears 12 continuous with the grid-like substrate 11, and the grid-like substrate 11 holds a positive electrode mixture. It is The lattice-like substrate 11 has an upper rib 111 along one side of a rectangle forming the lattice-like substrate 11 and a plurality of middle ribs 112 connected to the upper bone 111 and present below the upper bone 111 . The ear 12 protrudes upward from a position shifted to one side (right side in FIG. 1) from the center of one side of the upper bone 111 .

正極集電体1を、格子状基板11を成す長方形の右側(一方の側)の角を通る対角線Tに沿って切断して生じる分割体のうち、耳が存在する分割体を、図2に示す。この分割体2は、耳12の上部骨111との境界線L上の中心点Pを通り上部骨111に垂直な基準線Kにより、第一の部分21と第二の部分22に区分され、第一の部分21は第二の部分22よりも面積が大きい。 FIG. 2 shows a divided body having ears among the divided bodies obtained by cutting the positive electrode current collector 1 along the diagonal line T passing through the right (one side) corner of the rectangle forming the lattice substrate 11. show. The divided body 2 is divided into a first portion 21 and a second portion 22 by a reference line K passing through the center point P on the boundary line L between the ear 12 and the upper bone 111 and perpendicular to the upper bone 111, The first portion 21 has a larger area than the second portion 22 .

第一の部分21は、13本の中骨112の切断面を有する。x軸およびy軸が共に線形目盛である座標平面に、13本の各切断面C1~C13と中心点Pとの間の各抵抗値R1~R13をy座標、各切断面C1~C13の中心点と中心点Pとの各距離X1~X13をx座標としてプロットすると、全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似できる。x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下になっている。 The first portion 21 has cut surfaces of thirteen midribs 112 . Each resistance value R1 to R13 between each of the 13 cutting planes C1 to C13 and the center point P is represented as the y coordinate and the center of each cutting plane C1 to C13 on a coordinate plane in which both the x-axis and the y-axis are linear scales. If the respective distances X1 to X13 between the point and the center point P are plotted as x-coordinates, all plots can be approximated by two straight lines with different slopes with x=H as the intersection point. The ratio A/B between the average value A of each resistance value Rn at each distance Xn satisfying x<H and the average value B of each resistance value Rn at each distance Xn satisfying x≧H is 0.35. 0.55 or less.

例えば、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mmの場合、中骨112の太さ(長手方向に垂直な断面積)は全体で同じであって、0.85mm以上1.00mm以下になっている。
正極集電体1は、打ち抜き法、エキスパンド法、重力鋳造法などの通常の方法で得ることができる。また、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bは1.1以上1.9以下とするためには、正極集電体の幅や厚み等のバランスを変えることで適宜調整することができる。
For example, when dimension S1 = 115.0 mm, dimension S2 = 110.0 mm, dimension S3 = 100.0 mm, and dimension S4 = 45.0 mm, the thickness of the central rib 112 (cross-sectional area perpendicular to the longitudinal direction) is It is the same and is 0.85 mm or more and 1.00 mm or less.
The positive electrode current collector 1 can be obtained by an ordinary method such as a punching method, an expanding method, or a gravity casting method. In addition, the ratio a/b between the mass a of the positive electrode current collector segment having the positive electrode current collector ears and the mass b of the positive electrode current collector segment having no ears is set to 1.1 or more and 1.9 or less. can be appropriately adjusted by changing the balance of the width, thickness, etc. of the positive electrode current collector.

[第二実施形態の正極集電体]
図3に示すように、第二実施形態の正極集電体1Aは、長方形の格子状基板11Aと格子状基板11Aに連続する耳12とを有し、格子状基板11Aに正極合剤が保持されている。格子状基板11Aは、格子状基板11Aを成す長方形の一辺に沿う上部骨111と、上部骨111に接続されて上部骨111より下方に存在する複数本の中骨と、を有する。中骨の太さは上下方向の中間位置で変化し、中間位置よりも上側(上部骨111側)の中骨112aは、中間位置よりも下側の中骨112bの太さよりも細い。
[Positive electrode current collector of the second embodiment]
As shown in FIG. 3, the positive electrode current collector 1A of the second embodiment has a rectangular lattice-like substrate 11A and ears 12 continuous to the lattice-like substrate 11A. It is The lattice-like substrate 11A has an upper rib 111 along one side of a rectangle forming the lattice-like substrate 11A and a plurality of middle ribs connected to the upper bone 111 and present below the upper bone 111 . The thickness of the middle rib changes at the middle position in the vertical direction, and the middle rib 112a above the middle position (upper bone 111 side) is thinner than the middle bone 112b below the middle position.

耳12は、上部骨111の一辺の中心から一方(図3の右側)にずれた位置から上側に突出している。
正極集電体1Aを、格子状基板11Aを成す長方形の右側(一方の側)の角を通る対角線Tに沿って切断して生じる分割体のうち、耳が存在する分割体を、図4に示す。この分割体2Aは、耳12の上部骨111との境界線L上の中心点Pを通り上部骨111に垂直な基準線Kにより、第一の部分21Aと第二の部分22Aに区分され、第一の部分21Aは第二の部分22Aよりも面積が大きい。
The ear 12 protrudes upward from a position shifted to one side (right side in FIG. 3) from the center of one side of the upper bone 111 .
FIG. 4 shows a split body having ears among the split bodies produced by cutting the positive electrode current collector 1A along the diagonal line T passing through the right (one side) corner of the rectangle forming the lattice substrate 11A. show. The divided body 2A is divided into a first portion 21A and a second portion 22A by a reference line K passing through the center point P on the boundary line L between the upper bone 111 of the ear 12 and perpendicular to the upper bone 111, The first portion 21A has a larger area than the second portion 22A.

第一の部分21Aは、13本の中骨の切断面を有する。切断面C1~C5は中骨112aの切断面であり、切断面C6~C13は中骨112bの切断面である。x軸およびy軸が共に線形目盛である座標平面に、13本の各切断面C1~C13と中心点Pとの間の各抵抗値R1~R13をy座標、各切断面C1~C13の中心点と中心点Pとの各距離X1~X13をx座標としてプロットすると、全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似できる。x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下になっている。 The first portion 21A has cut surfaces of 13 mid-bones. Cutting planes C1 to C5 are cutting planes of the middle rib 112a, and cutting planes C6 to C13 are cutting planes of the middle rib 112b. Each resistance value R1 to R13 between each of the 13 cutting planes C1 to C13 and the center point P is represented as the y coordinate and the center of each cutting plane C1 to C13 on a coordinate plane in which both the x-axis and the y-axis are linear scales. If the respective distances X1 to X13 between the point and the center point P are plotted as x-coordinates, all plots can be approximated by two straight lines with different slopes with x=H as the intersection point. The ratio A/B between the average value A of each resistance value Rn at each distance Xn satisfying x<H and the average value B of each resistance value Rn at each distance Xn satisfying x≧H is 0.35. 0.55 or less.

例えば、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mmの場合、中骨112aの太さ(長手方向に垂直な断面積)が0.75mm以上0.85mm以下、中骨112bの太さが1.15mm以上1.25mm以下になっている。
正極集電体1は、打ち抜き法、エキスパンド法、重力鋳造法などの通常の方法で得ることができる。また、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bは1.1以上1.9以下とするためには、正極集電体の幅や厚み等のバランスを変えることで適宜調整することができる。
For example, when the dimension S1=115.0 mm, the dimension S2=110.0 mm, the dimension S3=100.0 mm, and the dimension S4=45.0 mm, the thickness (cross-sectional area perpendicular to the longitudinal direction) of the central rib 112a is 0.0 mm. The thickness is 75 mm or more and 0.85 mm or less, and the thickness of the middle rib 112b is 1.15 mm or more and 1.25 mm or less.
The positive electrode current collector 1 can be obtained by an ordinary method such as a punching method, an expanding method, or a gravity casting method. In addition, the ratio a/b between the mass a of the positive electrode current collector segment having the positive electrode current collector ears and the mass b of the positive electrode current collector segment having no ears is set to 1.1 or more and 1.9 or less. can be appropriately adjusted by changing the balance of the width, thickness, etc. of the positive electrode current collector.

[作用、効果]
液式鉛蓄電池が有する正極集電体の比A/Bが小さいほど、充電時に正極板の下部が上部よりも分極しやすくなるため、下部からのガス発生が促進されることで、部分充電状態であっても電解液の攪拌作用が得られる。しかし、比A/Bが0.35未満の場合、正極集電体の下部から耳に至る経路の抵抗値が上部から耳に至る経路の抵抗値よりも著しく大きいため、正極板の下部での充放電反応が進行しにくくなる。よって、下部から発生するガスの量が、部分充電状態での電解液攪拌作用を得るためには不十分となる。
[action, effect]
As the ratio A/B of the positive electrode current collector of the flooded lead-acid battery is smaller, the lower portion of the positive electrode plate is more likely to polarize than the upper portion during charging. Even if it is, the stirring effect|action of electrolyte solution is obtained. However, when the ratio A/B is less than 0.35, the resistance value of the path from the bottom of the positive electrode current collector to the ear is significantly higher than the resistance value of the path from the top to the ear. Charging and discharging reactions become difficult to progress. Therefore, the amount of gas generated from the bottom becomes insufficient to obtain the electrolyte solution stirring action in the partially charged state.

正極集電体の比A/Bが0.55よりも大きい液式鉛蓄電池では、正極板全体で充放電反応が進行しにくくなるため、ガスの発生量が部分充電状態での電解液攪拌作用を得るためには不十分となる。
第一実施形態の正極集電体1および第二実施形態の正極集電体1Aの比A/Bが0.35以上0.55以下の範囲にあることにより、第一実施形態および第二実施形態の液式鉛蓄電池は、充放電反応が正極板全体で均一に行われるため、下部から発生するガスの量が、部分充電状態での電解液の攪拌作用を得るために十分な量となる。よって、第一実施形態および第二実施形態の液式鉛蓄電池によれば、部分充電状態で使用される場合に電解液の成層化が抑制されて、寿命を長くすることができる。
In a flooded lead-acid battery in which the ratio A/B of the positive electrode current collector is greater than 0.55, the charging and discharging reaction is difficult to progress in the entire positive electrode plate, so the amount of gas generated is the electrolyte solution stirring action in the partially charged state. is insufficient to obtain
The ratio A/B of the positive electrode current collector 1 of the first embodiment and the positive electrode current collector 1A of the second embodiment is in the range of 0.35 or more and 0.55 or less. In the liquid type lead-acid battery of the above embodiment, the charging and discharging reactions occur uniformly over the entire positive electrode plate, so the amount of gas generated from the lower part is sufficient to obtain the stirring action of the electrolyte solution in the partially charged state. . Therefore, according to the flooded lead-acid batteries of the first embodiment and the second embodiment, when used in a partially charged state, stratification of the electrolytic solution is suppressed, and the service life can be lengthened.

さらに、第一実施形態の正極集電体1を使用した液式鉛蓄電池及び第二実施形態の正極集電体1Aを使用した液式鉛蓄電池において、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bは1.1以上1.9以下とすることが好適であり、本条件時に正極集電体の電位分布が改善され、電解液の成層化がより抑制されることで寿命を長くすることができる。正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bが1.1未満であると、上記の電位分布の改善により成層化が抑制される効果が得られない。また、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bが1.9を超えると、電位分布の過剰な改善により電解液の減水が多くなり、寿命性能が低下する。 Furthermore, in the liquid-type lead-acid battery using the positive electrode current collector 1 of the first embodiment and the liquid-type lead-acid battery using the positive electrode current collector 1A of the second embodiment, the divided body in which the ears of the positive electrode current collector are present The ratio a/b between the mass a of the positive electrode current collector and the mass b of the divided body without ears of the positive electrode current collector is preferably 1.1 or more and 1.9 or less, and the potential of the positive electrode current collector under this condition Lifetime can be lengthened by improved distribution and further suppression of stratification of the electrolyte. When the ratio a/b of the mass a of the segment having the positive electrode current collector ears and the mass b of the segment not having the positive electrode current collector ears is less than 1.1, the potential distribution is improved. The effect of suppressing stratification cannot be obtained. Further, when the ratio a/b of the mass a of the positive electrode current collector segment having the ears and the mass b of the positive electrode current collector segment not having the ears exceeds 1.9, the potential distribution becomes excessive. As a result of the improvement, the water loss of the electrolyte increases, and the service life performance decreases.

[方法の態様]
本発明の第二態様としては、液式鉛蓄電池の正極板(化成後)を構成する正極集電体の設計方法が挙げられる。この設計方法は下記の構成(a)~(c)を有する。
(a)正極集電体は、長方形の格子状基板と格子状基板に連続する耳とを有し、格子状基板に正極合剤が保持され、格子状基板は、長方形の一辺に沿う上部骨と、上部骨に接続されて前記上部骨より下方に存在する複数本の中骨と、を有し、耳は、上部骨の一辺の中心から一方にずれた位置から上側に突出する。
(b)正極集電体を長方形の一方の側の角を通る対角線に沿って切断して生じる分割体のうち耳が存在する分割体を、耳の上部骨との境界線上の中心点Pを通り上部骨に垂直な基準線により、第一の部分と第二の部分に区分する。
(c)x軸およびy軸が共に線形目盛である座標平面に、第二の部分よりも面積が大きい第一の部分における、複数本の中骨の各切断面Cnと中心点Pとの間の各抵抗値Rnをy座標、各切断面Cnの中心点と中心点Pとの各距離Xnをx座標としてなされる全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似でき、x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下となるようにする。
[Method Aspect]
A second aspect of the present invention includes a method of designing a positive electrode current collector that constitutes a positive electrode plate (after chemical conversion) of a flooded lead-acid battery. This design method has the following configurations (a) to (c).
(a) The positive electrode current collector has a rectangular grid-like substrate and ears continuous with the grid-like substrate, the grid-like substrate holds the positive electrode mixture, and the grid-like substrate is an upper rib along one side of the rectangle. and a plurality of middle bones that are connected to the upper bone and exist below the upper bone, and the ear protrudes upward from a position shifted to one side from the center of one side of the upper bone.
(b) Among the divided bodies produced by cutting the positive electrode current collector along the diagonal line passing through one corner of the rectangle, the divided body where the ear exists is placed at the center point P on the boundary line with the upper bone of the ear. A reference line perpendicular to the thoracic superior bone separates the first and second portions.
(c) on a coordinate plane where both the x-axis and the y-axis are linear scales, between each cutting plane Cn of the plurality of midribs and the center point P in the first portion having a larger area than the second portion; Each resistance value Rn is the y-coordinate, and each distance Xn between the center point and the center point P of each cut surface Cn is the x-coordinate. The ratio A/B between the average value A of each resistance value Rn at each distance Xn satisfying x<H and the average value B of each resistance value Rn at each distance Xn satisfying x≧H, which can be approximated, is It is made to be 0.35 or more and 0.55 or less.

[試験電池の作製]
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.1~No.7の鉛蓄電池を作製した。
サンプルNo.1~No.7の鉛蓄電池はM42型のアイドリングストップ用液式鉛蓄電池であって、正極集電体の格子状基板の構成が異なるものであり、それ以外の点は全て同じ構成を有する。
<サンプルNo.1>
サンプルNo.1の鉛蓄電池は、図1に示す形状の正極集電体1を有し、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mm、中骨112の太さ(長手方向に垂直な断面積)が1.05mmである。
[Preparation of test battery]
Lead-acid batteries of Samples No. 1 to No. 7 were produced as lead-acid batteries having the same structure as the lead-acid batteries of the embodiment.
The lead-acid batteries of Samples No. 1 to No. 7 are M42-type flooded lead-acid batteries for idling stop, and differ in the configuration of the grid-like substrate of the positive electrode current collector. have
<Sample No.1>
The lead-acid battery of sample No. 1 has a positive electrode current collector 1 having the shape shown in FIG. 0 mm, and the thickness of the middle rib 112 (cross-sectional area perpendicular to the longitudinal direction) is 1.05 mm.

先ず、帯状の鉛合金シート(複数枚の正極集電体1に対応する大きさ)に対する打ち抜き加工工程、格子状基板11への正極活物質ペーストの充填工程、予熱乾燥工程、熟成乾燥工程、および切断工程を行うことにより、図1の正極集電体1を有する化成前の正極板を作製した。各工程は通常の方法で行った。
負極板は、図1に示す正極集電体1と同じ形状の負極集電体を有するが、負極集電体では、寸法S1=114.0mm、寸法S2=108.0mm、寸法S3=100.0mm、寸法S4=45.0mm、中骨112の太さ(長手方向に垂直な断面積)が0.75mmである。化成前の負極板の作製も、正極板と同様の各工程を通常の方法で行うことにより行った。
First, a step of punching a strip-shaped lead alloy sheet (having a size corresponding to a plurality of positive electrode current collectors 1), a step of filling the grid-like substrate 11 with the positive electrode active material paste, a preheating drying step, an aging drying step, and By performing the cutting step, a positive electrode plate before anodization having the positive electrode current collector 1 of FIG. 1 was produced. Each step was performed by a normal method.
The negative electrode plate has a negative electrode current collector having the same shape as the positive electrode current collector 1 shown in FIG. 0 mm, the dimension S4=45.0 mm, and the thickness (cross-sectional area perpendicular to the longitudinal direction) of the central rib 112 is 0.75 mm. The production of the negative electrode plate before anodization was also carried out by carrying out the same steps as those of the positive electrode plate in the usual manner.

次に、得られた化成前の負極板をポリエチレン製の袋状セパレータに入れたものを7枚と、得られた化成前の正極板6枚を、交互に積層して積層体を得た。次に、COS(キャストオンストラップ)方式の鋳造装置を用いて、各積層体の正極板および負極板にストラップと中間極柱と端子極柱を形成することで、極板群を得た。
この極板群を六個用意し、電槽の各セル室に入れて、隣接するセル室間の中間極柱の抵抗溶接、電槽と蓋の熱溶着、注液孔から各セル室内への電解液の注入、および注液孔を塞ぐことなどの通常の工程を行うことにより、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた。
その後、通常の方法で電槽化成を行うことで、電槽化成後の比重を1.285(20℃換算値)とした。このようにしてNo.1の鉛蓄電池を得た。
なお、このようにして得られた鉛蓄電池を解体し、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bを算出したところ、1.5の結果が得られた。
Next, seven sheets of the obtained negative electrode plates before chemical conversion were placed in a bag-like separator made of polyethylene, and six sheets of the obtained positive electrode plates before chemical conversion were alternately laminated to obtain a laminate. Next, using a COS (cast-on-strap) casting apparatus, straps, intermediate poles, and terminal poles were formed on the positive electrode plate and the negative electrode plate of each laminate to obtain an electrode plate assembly.
Six of these electrode plate groups are prepared and placed in each cell chamber of the container, resistance welding of the intermediate pole column between adjacent cell chambers, heat welding of the container and lid, and insertion from the injection hole into each cell chamber. A D23-type flooded lead-acid battery for idling stop was assembled by performing normal steps such as injecting the electrolyte and closing the injection hole.
After that, the specific gravity after forming the container was set to 1.285 (converted value at 20° C.) by forming the container by a normal method. Thus, No. 1 lead-acid battery was obtained.
The lead-acid battery thus obtained was disassembled, and the ratio a/b of the mass a of the positive electrode current collector segment having the positive electrode current collector lugs to the mass b of the positive electrode current collector segment not having the lugs was determined. was calculated, and a result of 1.5 was obtained.

<サンプルNo.2>
サンプルNo.2の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が1.00mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.2の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.2の鉛蓄電池を得た。
<サンプルNo.3>
サンプルNo.3の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.95mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.3の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.3の鉛蓄電池を得た。
<サンプルNo.4>
サンプルNo.4の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.90mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.4の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.4の鉛蓄電池を得た。
<Sample No.2>
The lead-acid battery of sample No. 2 has the positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. Except for using the positive electrode current collector 1 of sample No. 2, in the same manner as sample No. 1, after assembling a D23 type liquid lead-acid battery for idling stop, the container was formed, and the lead of No. 2 was used. Got a battery.
<Sample No.3>
The lead-acid battery of sample No. 3 has the positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. Except for using the positive electrode current collector 1 of sample No. 3, in the same manner as sample No. 1, after assembling a D23 type liquid lead-acid battery for idling stop, the container was formed, and the lead of No. 3 was used. Got a battery.
<Sample No.4>
The lead-acid battery of sample No. 4 has the positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. Except for using the positive electrode current collector 1 of sample No. 4, in the same manner as sample No. 1, after assembling a D23 type liquid lead-acid battery for idling stop, the container was formed, and the lead of No. 4 was used. Got a battery.

<サンプルNo.5>
サンプルNo.5の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.85mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.5の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.5の鉛蓄電池を得た。
<サンプルNo.6>
サンプルNo.6の鉛蓄電池は、図1に示す形状の正極集電体1を有し、中骨112の太さ(長手方向に垂直な断面積)が0.75mmであり、それ以外の点はサンプルNo.1と同じである。サンプルNo.6の正極集電体1を用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.6の鉛蓄電池を得た。
<Sample No.5>
The lead-acid battery of sample No. 5 has the positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. Except for using the positive electrode current collector 1 of sample No. 5, in the same manner as sample No. 1, after assembling a D23 type liquid lead-acid battery for idling stop, the container was formed, and the lead of No. 5 was used. Got a battery.
<Sample No.6>
The lead-acid battery of sample No. 6 has the positive electrode current collector 1 having the shape shown in FIG. is the same as sample No.1. Except for using the positive electrode current collector 1 of sample No. 6, in the same manner as sample No. 1, after assembling a D23 type liquid lead-acid battery for idling stop, the container was formed, and the lead of No. 6 was used. Got a battery.

<サンプルNo.7>
サンプルNo.7の鉛蓄電池は、図3に示す形状の正極集電体1Aを有し、寸法S1=115.0mm、寸法S2=110.0mm、寸法S3=100.0mm、寸法S4=45.0mm、中骨112aの太さ(長手方向に垂直な断面積)が0.80mm、中骨112bの太さが1.20mmである。サンプルNo.7の正極集電体1Aを用いた以外はサンプルNo.1と同じ方法で、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた後に電槽化成を行って、No.7の鉛蓄電池を得た。
<Sample No.7>
The lead-acid battery of sample No. 7 has a positive electrode current collector 1A having the shape shown in FIG. 0 mm, the thickness of the central rib 112a (cross-sectional area perpendicular to the longitudinal direction) is 0.80 mm, and the thickness of the central rib 112b is 1.20 mm. Except for using the positive electrode current collector 1A of sample No. 7, the same method as sample No. 1 was used to assemble a D23 type idling stop flooded lead-acid battery and then perform container formation. Got a battery.

[分割体の切断面の各抵抗値測定]
先ず、得られたサンプルNo.1~No.7の鉛蓄電池を分解して、正極板を取り出し、正極板から正極活物質を除去して洗浄することにより、No.1~No.7の各正極集電体1,1Aを得た。次に、正極集電体1,1Aを、それぞれ図1および図3に示す対角線Tに沿って鋏で切断することにより、図2および図4に示す、耳が存在する分割体2,2Aを得た。耳が存在する分割体2において、基準線Kにより区分された第一の部分21は、中骨112の切断面を13個有する。耳が存在する分割体2Aにおいて、基準線Kにより区分された第一の部分21Aは、中骨112a,112bの切断面を合計で13個有する。
[Each resistance value measurement of the cut surface of the divided body]
First, the obtained lead-acid batteries of samples No. 1 to No. 7 were disassembled, the positive electrode plate was taken out, and the positive electrode active material was removed from the positive electrode plate and washed to obtain each of No. 1 to No. 7. Positive electrode current collectors 1 and 1A were obtained. Next, the positive electrode current collectors 1 and 1A are cut with scissors along the diagonal lines T shown in FIGS. Obtained. In the divided body 2 where the ears are present, the first portion 21 divided by the reference line K has 13 cut surfaces of the central bone 112 . In the divided body 2A where the ears are present, the first portion 21A divided by the reference line K has a total of 13 cut surfaces of the middle ribs 112a and 112b.

次に、耳12の中心点Pと各中骨の切断面C1~C13との間の各抵抗値Rn(R1~R13)を、抵抗計(HIOKI社製 3554 BATTERY HiTESTER)を用いて三回ずつ測定し、平均値を算出した。また、中心点Pと各切断面C1~C13の中心点との各距離Xn(X1~X13)を、定規で測定した。これらの測定結果(各抵抗値Rnは三回測定の平均値)を表1~表7に示す。 Next, each resistance value Rn (R1 to R13) between the center point P of the ear 12 and the cut planes C1 to C13 of each middle bone was measured three times each using a resistance meter (3554 BATTERY HiTESTER manufactured by Hioki). It was measured and the average value was calculated. Further, distances Xn (X1 to X13) between the center point P and the center points of the cut surfaces C1 to C13 were measured with a ruler. Tables 1 to 7 show the results of these measurements (each resistance value Rn is the average value of three measurements).

[分割体の質量の比a/bの算出方法]
上記の分割体の切断面の各抵抗値測定をした後、耳が存在する分割体2または2Aの耳12を耳12の上部骨111との境界線Lに沿って切断する。耳12が切断されて残った分割体2または2Aの質量をaとし、質量計を用いて三回ずつ測定し、平均値を算出した。また、耳が存在しない分割体についても同様に質量bを測定し平均値を算出した。質量aの平均値と質量bの平均値を用い、分割体の比a/bを算出した。
[Method for calculating the mass ratio a/b of the divided bodies]
After measuring the resistance values of the cut surfaces of the divided body, the ear 12 of the divided body 2 or 2A where the ear exists is cut along the boundary line L between the upper bone 111 of the ear 12 and the upper bone 111 . The mass of the divided body 2 or 2A remaining after the ear 12 was cut was a, and the mass was measured three times using a mass meter, and the average value was calculated. In addition, the mass b was similarly measured for the divided body without ears, and the average value was calculated. Using the average value of mass a and the average value of mass b, the ratio a/b of the divided bodies was calculated.

Figure 0007113037000001
Figure 0007113037000001

Figure 0007113037000002
Figure 0007113037000002

Figure 0007113037000003
Figure 0007113037000003

Figure 0007113037000004
Figure 0007113037000004

Figure 0007113037000005
Figure 0007113037000005

Figure 0007113037000006
Figure 0007113037000006

Figure 0007113037000007
Figure 0007113037000007

次に、サンプル毎に、x軸およびy軸が共に線形目盛である座標平面に、抵抗値Rn(三回測定の平均値)をy座標、距離Xnをx座標として、測定結果をプロットした。これにより、図5~図11に示すグラフを得た。図5はNo.1の結果を、図6はNo.2の結果を、図7はNo.3の結果を、図8はNo.4の結果を、図9はNo.5の結果を、図10はNo.6の結果を、図11はNo.7の結果を、それぞれ示す。
図5に示すように、サンプルNo.1では、全てのプロットが、x=H(X8とX9との間の値)を交点として傾きが異なる二本の直線T1,T2に近似できた。次に、x<Hとなる各距離X1~X8での各抵抗値(三回測定の平均値)R1~R8の平均値Aと、x≧Hとなる各距離X9~X13での各抵抗値(三回測定の平均値)Rnの平均値Bを算出し、これらの算出値から比A/Bを算出した。その結果を表8に示す。
Next, for each sample, the measurement results were plotted on a coordinate plane in which both the x-axis and the y-axis are linear scales, with the resistance value Rn (average value of three measurements) as the y-coordinate and the distance Xn as the x-coordinate. As a result, the graphs shown in FIGS. 5 to 11 were obtained. Fig. 5 shows the results of No. 1, Fig. 6 shows the results of No. 2, Fig. 7 shows the results of No. 3, Fig. 8 shows the results of No. 4, Fig. 9 shows the results of No. 5, FIG. 10 shows the results of No. 6, and FIG. 11 shows the results of No. 7, respectively.
As shown in FIG. 5, in sample No. 1, all plots could be approximated to two straight lines T1 and T2 with different slopes with x=H (a value between X8 and X9) as the intersection point. Next, the average value A of each resistance value (average value of three measurements) R1 to R8 at each distance X1 to X8 where x<H, and each resistance value at each distance X9 to X13 where x≧H (Average value of three measurements) The average value B of Rn was calculated, and the ratio A/B was calculated from these calculated values. Table 8 shows the results.

Figure 0007113037000008
Figure 0007113037000008

表8に示すように、サンプルNo.1の比A/Bは0.31であった。
また、図6~図10に示すように、サンプルNo.2~No.6では、それぞれ全てのプロットが、x=H(X9とX10との間の値)を交点として傾きが異なる二本の直線T1,T2に近似できた。次に、x<Hとなる各距離X1~X9での各抵抗値(三回測定の平均値)R1~R9の平均値Aと、x≧Hとなる各距離X10~X13での各抵抗値(三回測定の平均値)Rnの平均値Bを算出し、これらの算出値から比A/Bを算出した。その結果を表9~表13に示す。
As shown in Table 8, the ratio A/B of sample No. 1 was 0.31.
In addition, as shown in FIGS. 6 to 10, in samples No. 2 to No. 6, all plots are two plots with different slopes with x = H (a value between X9 and X10) as the intersection point. It could be approximated to straight lines T1 and T2. Next, the average value A of each resistance value (average value of three measurements) R1 to R9 at each distance X1 to X9 where x<H, and each resistance value at each distance X10 to X13 where x≧H (Average value of three measurements) The average value B of Rn was calculated, and the ratio A/B was calculated from these calculated values. The results are shown in Tables 9 to 13.

Figure 0007113037000009
Figure 0007113037000009

Figure 0007113037000010
Figure 0007113037000010

Figure 0007113037000011
Figure 0007113037000011

Figure 0007113037000012
Figure 0007113037000012

Figure 0007113037000013
Figure 0007113037000013

表9~表13に示すように、サンプルNo.2の比A/Bは0.35、サンプルNo.3の比A/Bは0.45、サンプルNo.4の比A/Bは0.50、サンプルNo.5の比A/Bは0.55、サンプルNo.6の比A/Bは0.65であった。
さらに図11に示すように、サンプルNo.7では、全てのプロットが、x=H(X10の値)を交点として傾きが異なる二本の直線T1,T2に近似できた。次に、x<Hとなる各距離X1~X9での各抵抗値(三回測定の平均値)R1~R9の平均値Aと、x≧Hとなる各距離X10~X13での各抵抗値(三回測定の平均値)Rnの平均値Bを算出し、これらの算出値から比A/Bを算出した。その結果を表14に示す。
As shown in Tables 9 to 13, the ratio A/B of sample No. 2 is 0.35, the ratio A/B of sample No. 3 is 0.45, and the ratio A/B of sample No. 4 is 0.35. 50, the ratio A/B of sample No. 5 was 0.55, and the ratio A/B of sample No. 6 was 0.65.
Furthermore, as shown in FIG. 11, in sample No. 7, all plots could be approximated to two straight lines T1 and T2 with different slopes with x=H (the value of X10) as the intersection point. Next, the average value A of each resistance value (average value of three measurements) R1 to R9 at each distance X1 to X9 where x<H, and each resistance value at each distance X10 to X13 where x≧H (Average value of three measurements) The average value B of Rn was calculated, and the ratio A/B was calculated from these calculated values. The results are shown in Table 14.

Figure 0007113037000014
Figure 0007113037000014

表14に示すように、サンプルNo.7の比A/Bは0.55であった。
[試験および評価]
得られたNo.1~No.7の鉛蓄電池について、EUCARパワーアシストプロファイルによる寿命試験を実施した。この試験の1サイクルの充放電パターンを図12に示す。C2は2時間率容量である。この充放電パターンでは部分充電状態での深い放電がある。
また、この寿命試験を100サイクル行った後に、電解液の比重を電槽の上部と下部で光学比重計を用いて測定し、これらの測定値から上下の比重差を算出した。
これらの結果を各サンプルの格子状基板の構成とともに表15に示す。
As shown in Table 14, the ratio A/B of sample No. 7 was 0.55.
[Test and Evaluation]
The obtained No.1 to No.7 lead-acid batteries were subjected to a life test using an EUCAR power assist profile. FIG. 12 shows the charge/discharge pattern of one cycle of this test. C2 is the 2 hour rate capacity. In this charge/discharge pattern, there is deep discharge in the partially charged state.
After 100 cycles of this life test, the specific gravity of the electrolyte was measured at the upper and lower portions of the battery case using an optical hydrometer, and the difference in specific gravity between the upper and lower portions was calculated from these measured values.
These results are shown in Table 15 together with the structure of the grid-like substrate of each sample.

Figure 0007113037000015
Figure 0007113037000015

表15から分かるように、0.35≦A/B≦0.55を満たさないNo.1とNo.6の鉛蓄電池は、電解液の上下比重差が0.070と0.040であったのに対し、0.35≦A/B≦0.55を満たすNo.2~No.5とNo.7の鉛蓄電池は、電解液の上下比重差が0.005~0.015と小さかった。また、0.35≦A/B≦0.55を満たさないNo.1とNo.6の鉛蓄電池の寿命は、8000~8500サイクルであったのに対し、0.35≦A/B≦0.55を満たすNo.2~No.5とNo.6の鉛蓄電池の寿命は、17000~22000サイクルと長かった。 As can be seen from Table 15, in No. 1 and No. 6 lead-acid batteries that do not satisfy 0.35 ≤ A/B ≤ 0.55, the difference in the upper and lower specific gravities of the electrolyte was 0.070 and 0.040. On the other hand, in No. 2 to No. 5 and No. 7 lead-acid batteries that satisfy 0.35 ≤ A / B ≤ 0.55, the difference in the upper and lower specific gravities of the electrolyte was as small as 0.005 to 0.015. . In addition, the life of No. 1 and No. 6 lead-acid batteries not satisfying 0.35 ≤ A / B ≤ 0.55 was 8000 to 8500 cycles, whereas 0.35 ≤ A / B ≤ 0 No. 2 to No. 5 and No. 6 lead-acid batteries satisfying .55 had a long life of 17,000 to 22,000 cycles.

以上の結果から、0.35≦A/B≦0.55を満たす正極集電体を備え、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bが1.5である液式鉛蓄電池は、部分充電状態で使用される場合に電解液の成層化が抑制されて、寿命を長くできることが確認できた。なお、正極集電体の耳が存在する分割体の質量aと正極集電体の耳が存在しない分割体の質量bとの比a/bが1.1以上1.9以下であると、正極集電体の電位分布が改善され、電解液の成層化がより抑制されることで寿命を長くすることができる。 From the above results, the mass a of the divided body having positive electrode current collector satisfying 0.35≦A/B≦0.55 and having positive electrode current collector tabs and the division without positive electrode current collector ears It was confirmed that the flooded lead-acid battery whose ratio a/b to the mass b of the body is 1.5 suppresses the stratification of the electrolyte solution when used in a partially charged state, and can extend the life of the battery. Note that when the ratio a/b of the mass a of the positive electrode current collector segment where the positive electrode current collector ears are present and the mass b of the positive electrode current collector segment where the positive electrode current collector ears are not present is 1.1 or more and 1.9 or less, The potential distribution of the positive electrode current collector is improved, and stratification of the electrolytic solution is further suppressed, so that the service life can be lengthened.

1 正極集電体
1A 正極集電体
11 格子状基板
11A 格子状基板
12 耳
111 上部骨
112 中骨
112a 中骨
112b 中骨
2 耳が存在する分割体
2A 耳が存在する分割体
21 第一の部分
21A 第一の部分
22 第二の部分
22A 第二の部分
1 positive electrode current collector 1A positive electrode current collector 11 grid substrate 11A grid substrate 12 ear 111 upper bone 112 middle bone 112a middle bone 112b middle bone 2 divided body with ears 2A divided body with ears 21 first Part 21A First part 22 Second part 22A Second part

Claims (1)

正極集電体と正極合剤とを有する正極板を備えた液式鉛蓄電池であって、
前記正極集電体は、長方形の格子状基板と前記格子状基板に連続する耳とを有し、
前記格子状基板に前記正極合剤が保持され、
前記格子状基板は、前記長方形の一辺に沿う上部骨と、前記上部骨に接続されて前記上部骨より下方に存在する複数本の中骨と、を有し、
前記耳は、前記上部骨の前記一辺の中心から一方にずれた位置から上側に突出し、
前記正極集電体を前記長方形の前記一方の側の角を通る対角線に沿って切断して生じる分割体のうち前記耳が存在する分割体は、前記耳の前記上部骨との境界線上の中心点Pを通り前記上部骨に垂直な基準線により、第一の部分と第二の部分に区分され、前記第一の部分は前記第二の部分よりも面積が大きく、
x軸およびy軸が共に線形目盛である座標平面に、前記第一の部分における、前記複数本の中骨の各切断面Cnと前記中心点Pとの間の各抵抗値Rnをy座標、前記各切断面Cnの中心点と前記中心点Pとの各距離Xnをx座標としてなされた全てのプロットが、x=Hを交点として傾きが異なる二本の直線に近似でき、
x<Hとなる各距離Xnでの各抵抗値Rnの平均値Aと、x≧Hとなる各距離Xnでの各抵抗値Rnの平均値Bと、による比A/Bが、0.35以上0.55以下であり、
前記正極集電体の耳が存在する分割体の前記耳が前記境界線に沿って切断されて残ったものの質量aと前記正極集電体の耳が存在しない分割体の質量bとの比a/bが1.1以上1.9以下であることを特徴とする液式鉛蓄電池。
A liquid lead-acid battery comprising a positive electrode plate having a positive electrode current collector and a positive electrode mixture,
The positive electrode current collector has a rectangular grid-like substrate and ears continuous with the grid-like substrate,
The positive electrode mixture is held on the grid-like substrate,
The lattice-like substrate has an upper rib along one side of the rectangle and a plurality of middle ribs connected to the upper bone and existing below the upper bone,
the ear protrudes upward from a position shifted to one side from the center of the one side of the upper bone;
Of the divided bodies produced by cutting the positive electrode current collector along a diagonal line passing through the one corner of the rectangle, the divided body in which the ear exists is the center on the boundary line between the ear and the upper bone. A reference line passing through a point P and perpendicular to the upper bone is divided into a first portion and a second portion, the first portion having a larger area than the second portion;
Each resistance value Rn between each cutting plane Cn of the plurality of midribs and the center point P in the first portion is represented by the y-coordinate on a coordinate plane in which both the x-axis and the y-axis are linear scales, All the plots made with each distance Xn between the center point of each cut surface Cn and the center point P as the x coordinate can be approximated to two straight lines with different slopes with x = H as the intersection point,
The ratio A/B between the average value A of each resistance value Rn at each distance Xn satisfying x<H and the average value B of each resistance value Rn at each distance Xn satisfying x≧H is 0.35. 0.55 or less,
The ratio of the mass a of the portion of the segmented body in which the positive electrode current collector ear exists and the segment left after the segment is cut along the boundary line to the mass b of the segmented body in which the positive electrode current collector ear does not exist A flooded lead-acid battery, wherein a/b is 1.1 or more and 1.9 or less.
JP2020009364A 2020-01-23 2020-01-23 liquid lead acid battery Active JP7113037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020009364A JP7113037B2 (en) 2020-01-23 2020-01-23 liquid lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020009364A JP7113037B2 (en) 2020-01-23 2020-01-23 liquid lead acid battery

Publications (2)

Publication Number Publication Date
JP2021118059A JP2021118059A (en) 2021-08-10
JP7113037B2 true JP7113037B2 (en) 2022-08-04

Family

ID=77175094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020009364A Active JP7113037B2 (en) 2020-01-23 2020-01-23 liquid lead acid battery

Country Status (1)

Country Link
JP (1) JP7113037B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185157A (en) 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2019029068A (en) 2017-07-25 2019-02-21 株式会社Gsユアサ Lead storage battery
JP6637225B1 (en) 2019-09-30 2020-01-29 古河電池株式会社 Liquid lead storage battery
JP6726349B1 (en) 2019-11-01 2020-07-22 古河電池株式会社 Lead acid battery
JP2021111618A (en) 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725965B2 (en) * 1997-05-28 2005-12-14 松下電器産業株式会社 Sealed lead-acid battery and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185157A (en) 1999-12-28 2001-07-06 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2019029068A (en) 2017-07-25 2019-02-21 株式会社Gsユアサ Lead storage battery
JP6637225B1 (en) 2019-09-30 2020-01-29 古河電池株式会社 Liquid lead storage battery
JP6726349B1 (en) 2019-11-01 2020-07-22 古河電池株式会社 Lead acid battery
JP2021111618A (en) 2020-01-08 2021-08-02 古河電池株式会社 Liquid type lead storage battery

Also Published As

Publication number Publication date
JP2021118059A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6637225B1 (en) Liquid lead storage battery
JP7348081B2 (en) liquid lead acid battery
JP6726349B1 (en) Lead acid battery
JP7079831B2 (en) Liquid lead-acid battery
JP2021163612A (en) Lead-acid battery
JP7105258B2 (en) liquid lead acid battery
JP7065127B2 (en) Liquid lead-acid battery
JP7113037B2 (en) liquid lead acid battery
JP7026753B2 (en) Liquid lead-acid battery
JP7065126B2 (en) Liquid lead-acid battery
JP7090395B2 (en) Liquid lead-acid battery
JP7011024B2 (en) Liquid lead-acid battery
JP7011023B2 (en) Liquid lead-acid battery
JP7011025B2 (en) Liquid lead-acid battery
JP6982671B2 (en) Liquid lead-acid battery
JP7348089B2 (en) liquid lead acid battery
JP7079830B2 (en) Liquid lead-acid battery
JP6998442B2 (en) Liquid lead-acid battery
JP7348082B2 (en) liquid lead acid battery
JP7079832B2 (en) Liquid lead-acid battery
JP7011026B2 (en) Liquid lead-acid battery
JP7348080B2 (en) liquid lead acid battery
JP6998441B2 (en) Liquid lead-acid battery
CN210744085U (en) Lead-acid battery
JP2021163611A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7113037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150