JP2021163610A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2021163610A
JP2021163610A JP2020063706A JP2020063706A JP2021163610A JP 2021163610 A JP2021163610 A JP 2021163610A JP 2020063706 A JP2020063706 A JP 2020063706A JP 2020063706 A JP2020063706 A JP 2020063706A JP 2021163610 A JP2021163610 A JP 2021163610A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lead
electrode plate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020063706A
Other languages
Japanese (ja)
Inventor
智史 柴田
Tomohito Shibata
有一 赤阪
Yuichi Akasaka
真也 菅
Shinya Suga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2020063706A priority Critical patent/JP2021163610A/en
Publication of JP2021163610A publication Critical patent/JP2021163610A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lead-acid battery having excellent lifetime performance while suppressing the increase in internal resistance and enabling accurate determination of the state of charge and state of deterioration by a method of measuring internal resistance.SOLUTION: A lead-acid battery includes an electrode plate group 1 formed by alternately stacking a plurality of positive electrode plates 10 having a positive electrode active material containing lead dioxide and negative electrode plates 20 having a negative electrode active material containing metallic lead via a ribbed separator 30 having a flat base surface and ribs of folds protruding in a direction perpendicular to a plane direction of the base surface. The electrode plate group 1 is immersed in an electrolytic solution to form a cell. The flatness of the positive electrode plates 10 after conversion is 4.0 mm or less. The ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after conversion is 1.00 or more and 1.60 or less.SELECTED DRAWING: Figure 1

Description

本発明は鉛蓄電池に関する。 The present invention relates to a lead storage battery.

近年の自動車市場では、燃費の向上や排出ガスの低減を目的とした、充電制御システムやアイドリングストップシステムを搭載した車両(以下、これらの車両を「充電制御車」、「アイドリングストップ車」と記すこともある)が主流となっている。これらの車両においては、車両側で鉛蓄電池の充電状態や劣化状態を判定し、その結果に基づいて、鉛蓄電池の充放電やエンジンのアイドリングストップを制御するようになっている。 In the automobile market in recent years, vehicles equipped with a charge control system and an idling stop system for the purpose of improving fuel efficiency and reducing emissions (hereinafter, these vehicles are referred to as "charge control vehicles" and "idling stop vehicles". (Sometimes) is the mainstream. In these vehicles, the charge state and the deterioration state of the lead storage battery are determined on the vehicle side, and the charge / discharge of the lead storage battery and the idling stop of the engine are controlled based on the result.

しかしながら、充電制御システムやアイドリングストップシステムを使用した場合には、鉛蓄電池に大きな負荷がかかるため、短寿命化しやすかった。例えば、いずれのシステムにおいても鉛蓄電池の充放電が頻繁に繰り返されるため、活物質の軟化や脱落が発生して早期に容量低下が生じるおそれがあった。また、アイドリングストップ車では鉛蓄電池の充電状態が低下しやすいので、鉛蓄電池の充電受入性が不十分だと、不動態化した硫酸鉛が極板の表面に蓄積するサルフェーションが進行し、内部抵抗の上昇と早期の容量低下が生じるおそれがあった。 However, when a charge control system or an idling stop system is used, a large load is applied to the lead storage battery, so that the life of the lead storage battery is likely to be shortened. For example, in any of the systems, the lead-acid battery is frequently charged and discharged, so that the active material may soften or fall off, resulting in an early decrease in capacity. In addition, since the charge state of the lead-acid battery tends to decrease in an idling stop vehicle, if the charge acceptability of the lead-acid battery is insufficient, sulfation in which the immobilized lead sulfate accumulates on the surface of the electrode plate progresses, and the internal resistance There was a risk of an increase in lead acid and an early decrease in capacity.

このような事情から、充電制御車やアイドリングストップ車に用いられる鉛蓄電池は、高い耐久性と充電受入性に加えて、充電状態や劣化状態を判定する際の正確性が求められた。鉛蓄電池の充電状態や劣化状態を判定する手法として、鉛蓄電池の内部抵抗を測定する方法が知られている。しかしながら、鉛蓄電池の内部抵抗は、充電状態、劣化状態以外の様々な要因で上昇する場合があるため、充電状態や劣化状態の正確な判定は容易ではなかった。 Under these circumstances, lead-acid batteries used in charge control vehicles and idling stop vehicles are required to have high durability and charge acceptability, as well as accuracy in determining the charge state and deterioration state. A method of measuring the internal resistance of a lead-acid battery is known as a method of determining the state of charge or deterioration of the lead-acid battery. However, since the internal resistance of the lead-acid battery may increase due to various factors other than the charged state and the deteriorated state, it is not easy to accurately determine the charged state and the deteriorated state.

他方、アイドリングストップを行うには、車両の停車時に、鉛蓄電池がエンジンを再始動可能な状態である必要がある。鉛蓄電池を繰り返し使用すると、劣化により寿命性能が低下する、すなわち、再始動可能な状態が維持できなくなるため、優れた寿命性能を有する鉛蓄電池であれば、アイドリングストップ車向けとして好適である。 On the other hand, in order to stop idling, the lead-acid battery needs to be in a state where the engine can be restarted when the vehicle is stopped. If the lead-acid battery is used repeatedly, the life performance deteriorates due to deterioration, that is, the restartable state cannot be maintained. Therefore, a lead-acid battery having excellent life performance is suitable for an idling stop vehicle.

特開2017−92001号公報JP-A-2017-92001

本発明は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能であることに加えて、優れた寿命性能を有する鉛蓄電池を提供することを課題とする。 The present invention provides a lead-acid battery having excellent life performance in addition to being able to accurately determine the charged state and the deteriorated state by a method of measuring the internal resistance while suppressing an increase in the internal resistance. That is the issue.

本発明の一態様に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬されてセルを構成し、化成後の正極板の平面度が4.0mm以下であり、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下であることを要旨とする。 In the lead storage battery according to one aspect of the present invention, a plurality of positive electrode plates having a positive electrode active material containing lead dioxide and a negative electrode plate having a negative electrode active material containing metallic lead are alternately laminated via a separator. The electrode plate group is provided, and the electrode plate group is immersed in an electrolytic solution to form a cell. The gist is that the ratio of the mass of the positive electrode active material is 1.00 or more and 1.60 or less.

本発明に係る鉛蓄電池は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能であることに加えて、優れた寿命性能を有する。 The lead-acid battery according to the present invention has excellent life performance in addition to being able to suppress an increase in internal resistance and accurately determining a charged state or a deteriorated state by a method of measuring internal resistance.

本発明の一実施形態に係る鉛蓄電池の構造を説明する部分断面図である。It is a partial cross-sectional view explaining the structure of the lead storage battery which concerns on one Embodiment of this invention. 極板の平面度の測定方法を説明する図である。It is a figure explaining the method of measuring the flatness of an electrode plate. 正極活物質の厚塗り度の差による湾曲の発生を模式的に示した正極板の図である。It is a figure of the positive electrode plate which schematically showed the occurrence of the curvature by the difference of the thick coating degree of the positive electrode active material.

本発明の一実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、そのような変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described. It should be noted that the embodiments described below show an example of the present invention, and the present invention is not limited to the present embodiment. In addition, various changes or improvements can be added to the present embodiment, and the modified or improved forms can also be included in the present invention.

本発明者が鋭意検討した結果、鉛蓄電池の内部抵抗の上昇及び寿命性能向上に関して新たな知見が見出されたので、以下に詳細に説明する。
鉛蓄電池においては、正極板と負極板とがセパレータを介して複数枚交互に積層された極板群が、所定の群圧が負荷された状態で電槽内に収容されている。このとき、極板群の極板間には、充放電反応に必要な電解液の拡散流路やガスの排出流路が必要であるため、ベース面にリブを設けたリブ付きセパレータを極板間に介在させて、電解液の拡散流路やガスの排出流路となる隙間を確保する手法が一般的である。
As a result of diligent studies by the present inventor, new findings have been found regarding an increase in the internal resistance of a lead-acid battery and an improvement in life performance, which will be described in detail below.
In a lead-acid battery, a group of electrode plates in which a plurality of positive electrode plates and negative electrode plates are alternately laminated via a separator is housed in a battery case under a predetermined group pressure. At this time, since a diffusion flow path for the electrolytic solution and a gas discharge flow path required for the charge / discharge reaction are required between the plates of the plate group, a ribbed separator having ribs on the base surface is used for the plates. A general method is to intervene between them to secure a gap that serves as a diffusion flow path for the electrolytic solution and a gas discharge flow path.

しかしながら、このようなリブ付きセパレータを用いた場合でも、内部抵抗が上昇したまま維持され、下がりにくい場合があった。このような内部抵抗が高止まりした鉛蓄電池について本発明者が調査した結果、極板群を構成する極板が湾曲しており、湾曲した極板の縁部にガスの気泡が引っかかり、極板に付着した状態となっていることが判明した。そして、ガスの気泡が極板に付着した結果、ガスが極板群内に閉じ込められて滞留し、活物質と電解液との接触面積(すなわち、反応が生じる部分の面積)が減少するため、鉛蓄電池の内部抵抗が上昇することが判明した。 However, even when such a ribbed separator is used, the internal resistance is maintained in an increased state and may be difficult to decrease. As a result of an investigation by the present inventor of a lead-acid battery having such a high internal resistance, the electrode plates constituting the electrode plate group are curved, and gas bubbles are caught on the edges of the curved electrode plates, and the electrode plates are formed. It turned out that it was in a state of being attached to. Then, as a result of the gas bubbles adhering to the electrode plate, the gas is confined and stays in the electrode plate group, and the contact area between the active material and the electrolytic solution (that is, the area where the reaction occurs) is reduced. It was found that the internal resistance of the lead-acid battery increased.

また、隣接する極板間の距離が湾曲により小さくなるため、ガスが極板間に閉じこめられやすくなり、極板群の外部に出にくいことも分かった。
さらに、極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在することも分かった。この事実から、極板の湾曲の大きさや湾曲の形状によっては、極板群内にガスが滞留しにくい場合があるということが分かった。
It was also found that since the distance between the adjacent plates is reduced due to the curvature, the gas is easily trapped between the plates and it is difficult for the gas to go out of the plate group.
Furthermore, it was also found that there are lead-acid batteries whose internal resistance does not remain high even if the electrode plate is curved. From this fact, it was found that gas may not easily stay in the electrode plate group depending on the magnitude of the curvature of the electrode plate and the shape of the curvature.

極板が湾曲する原因は、本発明者の検討により、以下の通りであることが判明した。基板の表面に活物質からなる活物質層を形成し極板を製造する際には、基板の両板面に同一厚さの活物質層を形成しようとするが、両板面に同一厚さの活物質層を形成することは容易ではなく、異なる厚さの活物質層が形成されてしまうこともある。例えば、図3の例であれば、極板100の基板101の右側の板面101aに形成された活物質層102Aの厚さよりも、左側の板面101bに形成された活物質層102Bの厚さの方が大きい。 The cause of the bending of the electrode plate has been found to be as follows by the examination of the present inventor. When an active material layer made of an active material is formed on the surface of a substrate to manufacture an electrode plate, it is attempted to form an active material layer having the same thickness on both plate surfaces of the substrate, but the same thickness is formed on both plate surfaces. It is not easy to form the active material layer of the above, and the active material layer of different thickness may be formed. For example, in the example of FIG. 3, the thickness of the active material layer 102B formed on the left plate surface 101b is larger than the thickness of the active material layer 102A formed on the right plate surface 101a of the substrate 101 of the electrode plate 100. Is bigger.

このように基板101の両板面101a、101bに形成された活物質層102A、102Bの厚さが異なると、図3に示すように、化成によって極板100が湾曲して、略椀状に変形する。そして、図3に示すように、活物質層102Bの厚さが大きい方の板面101bが凸面となり、活物質層102Aの厚さが小さい方の板面101aが凹面となるように、極板100が湾曲する。 When the thicknesses of the active material layers 102A and 102B formed on the two plate surfaces 101a and 101b of the substrate 101 are different in this way, as shown in FIG. 3, the electrode plate 100 is curved by chemical formation to form a substantially bowl shape. Deform. Then, as shown in FIG. 3, the electrode plate is formed so that the plate surface 101b having a larger thickness of the active material layer 102B has a convex surface and the plate surface 101a having a smaller thickness of the active material layer 102A has a concave surface. 100 is curved.

これに加えて、化成後におけるセルあたりの負極活物質の質量に対する正極活物質の質量の比率が、所定の条件において鉛蓄電池の寿命性能に影響を及ぼすことが分かった。特に、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下であると、優れた寿命性能の鉛蓄電池を得られることが分かった。
なお、本明細書において「正極活物質の質量」または「負極活物質の質量」とは、化成後の正極板または負極板から正極集電体または負極集電体の質量を除いた値である。
In addition to this, it was found that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion affects the life performance of the lead storage battery under predetermined conditions. In particular, it was found that a lead-acid battery having excellent life performance can be obtained when the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.00 or more and 1.60 or less.
In the present specification, the "mass of the positive electrode active material" or the "mass of the negative electrode active material" is a value obtained by subtracting the mass of the positive electrode current collector or the negative electrode current collector from the positive electrode plate or the negative electrode plate after chemical conversion. ..

化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が寿命性能に影響する理由は定かではないが、次のように考えられる。アイドリングストップ用鉛蓄電池の寿命性能は、使用時の充放電の頻度に応じて低下する。充放電の繰り返しの際に、正極活物質の軟化が進行する。寿命性能を向上させるには、セルあたりの正極活物質の質量を増大させ、充放電を繰り返しても、正極活物質の軟化または脱落を起こりにくくすることが有効である。
したがって、化成後のセルあたりの負極活物質の質量を一定とし、正極活物質の質量を増やすようにした際に、負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下であると、充放電を繰り返しても正極板に十分な量の正極活物質が保持されるため、優れた寿命性能を得られると考えられる。なお、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率は、負極活物質の質量を減らすことでも本発明の効果を奏す比率にすることが可能であるが、所望の放電容量を得るには正極活物質の質量の増減により制御することが好ましい。
鋭意検討した結果、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00未満であると、正極活物質の質量が少なくなり、優れた寿命性能を得られなくなる。また、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.60を超えると、正極活物質層の厚みが増大し、正極活物質層内に充放電により発生したガスが溜まり、内部抵抗を上昇させるおそれがあり、その結果、優れた寿命性能を得られなくなる。
The reason why the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion affects the life performance is not clear, but it is considered as follows. The life performance of a lead-acid battery for idling stop decreases according to the frequency of charging and discharging during use. When charging and discharging are repeated, softening of the positive electrode active material progresses. In order to improve the life performance, it is effective to increase the mass of the positive electrode active material per cell and prevent the positive electrode active material from softening or falling off even after repeated charging and discharging.
Therefore, when the mass of the negative electrode active material per cell after chemical conversion is kept constant and the mass of the positive electrode active material is increased, the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material is 1.00 or more. When it is 60 or less, a sufficient amount of the positive electrode active material is retained in the positive electrode plate even after repeated charging and discharging, so that it is considered that excellent life performance can be obtained. The ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion can be a ratio that exerts the effect of the present invention by reducing the mass of the negative electrode active material, but is desired. In order to obtain the discharge capacity, it is preferable to control by increasing or decreasing the mass of the positive electrode active material.
As a result of diligent studies, if the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is less than 1.00, the mass of the positive electrode active material becomes small and excellent life performance cannot be obtained. .. Further, when the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion exceeds 1.60, the thickness of the positive electrode active material layer increases, and it is generated by charging and discharging in the positive electrode active material layer. Gas may accumulate and increase the internal resistance, resulting in poor life performance.

なお、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.20以上1.40以下であると、放電容量と内部抵抗とのバランスがさらに優れるため、より好ましい。また、本発明において活物質の密度は特に限定されないが、放電容量に影響するパラメータであり、これも鉛蓄電池の用途に応じて任意に決定してよい。例えば、鉛蓄電池がアイドリングストップ車用である場合は、正極活物質の密度は3.9g/cm3以上4.5g/cm3以下であることが好ましく、負極活物質の密度は3.9g/cm3以上4.1g/cm3以下であることが好ましい。 It is more preferable that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.20 or more and 1.40 or less because the balance between the discharge capacity and the internal resistance is further excellent. Further, in the present invention, the density of the active material is not particularly limited, but it is a parameter that affects the discharge capacity, and this may also be arbitrarily determined according to the use of the lead storage battery. For example, when the lead-acid battery is for an idling stop vehicle, the density of the positive electrode active material is preferably 3.9 g / cm 3 or more and 4.5 g / cm 3 or less, and the density of the negative electrode active material is 3.9 g / cm / cm. It is preferably cm 3 or more and 4.1 g / cm 3 or less.

以上の検討結果から、本発明者は、極板の湾曲を抑えれば、化成、充放電等による内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能な鉛蓄電池が得られることを見出し、さらに、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率を改良することで、優れた寿命性能を有する鉛蓄電池が得られることを見出し、本発明を完成するに至った。 From the above examination results, the present inventor suppresses the increase in internal resistance due to chemical formation, charging / discharging, etc. by suppressing the bending of the electrode plate, and accurately determines the charging state and the deteriorated state by the method of measuring the internal resistance. By finding that a lead-acid battery capable of producing a lead-acid battery can be obtained and further improving the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion, a lead-acid battery having excellent life performance can be obtained. We have found that it can be obtained and have completed the present invention.

すなわち、本発明の一実施形態に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬されてセルを構成し、化成後の正極板の平面度が4.0mm以下であり、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下であることを特徴とするものである。極板群内の全ての正極板の平面度が4.0mm以下であることが好ましい。
なお、正極板と負極板とでは、化成時に正極板の方が湾曲しやすい。このことから、本発明の目的を達成するためには、正極板の平面度を小さく制御することが重要となる。
That is, in the lead storage battery according to the embodiment of the present invention, a plurality of positive electrode plates having a positive electrode active material containing lead dioxide and a plurality of negative electrode plates having a negative electrode active material containing metallic lead are alternated via a separator. The electrode plate group is immersed in an electrolytic solution to form a cell, the flatness of the positive electrode plate after chemical conversion is 4.0 mm or less, and the negative electrode active material per cell after chemical conversion. The ratio of the mass of the positive electrode active material to the mass of the positive electrode active material is 1.00 or more and 1.60 or less. It is preferable that the flatness of all the positive electrode plates in the electrode plate group is 4.0 mm or less.
It should be noted that the positive electrode plate and the negative electrode plate are more likely to be curved during chemical conversion. Therefore, in order to achieve the object of the present invention, it is important to control the flatness of the positive electrode plate to be small.

本発明の一実施形態に係る鉛蓄電池の構造について、図1を参照しながら、さらに詳細に説明する。本実施形態に係る鉛蓄電池は、正極板10と負極板20とがリブ付きセパレータ30を介して複数枚交互に積層された極板群1を備えている。この極板群1は、その積層方向が水平方向に沿うように(すなわち、正極板10及び負極板20の板面が鉛直方向に沿うように)、図示しない電解液とともに電槽41内に収容され、電槽41内で電解液に浸漬されている。すなわち、本実施形態に係る鉛蓄電池は、極板群1と、極板群1を浸漬した電解液と、を有している。 The structure of the lead storage battery according to the embodiment of the present invention will be described in more detail with reference to FIG. The lead-acid battery according to the present embodiment includes a electrode plate group 1 in which a plurality of positive electrode plates 10 and a negative electrode plate 20 are alternately laminated via a ribbed separator 30. The electrode plate group 1 is housed in the battery case 41 together with an electrolytic solution (not shown) so that the stacking direction thereof is along the horizontal direction (that is, the plate surfaces of the positive electrode plate 10 and the negative electrode plate 20 are along the vertical direction). Then, it is immersed in the electrolytic solution in the electric tank 41. That is, the lead-acid battery according to the present embodiment has a electrode plate group 1 and an electrolytic solution in which the electrode plate group 1 is immersed.

正極板10は、例えば、鉛合金からなる板状格子体の開口部に、二酸化鉛を含有する正極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、二酸化鉛を含有する正極活物質からなる活物質層を形成したものである。負極板20は、例えば、鉛合金からなる板状格子体の開口部に、金属鉛を含有する負極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、金属鉛を含有する負極活物質からなる活物質層を形成したものである。正極板10、負極板20の基板である板状格子体は、鋳造法、打ち抜き法、エキスパンド方式で製造することができる。リブ付きセパレータ30は、例えば、樹脂、ガラス等からなる多孔質の膜状体であり、平板状のベース面と、ベース面の面方向に対し直行する方向に突出する襞状のリブとを有する。 In the positive electrode plate 10, for example, the opening of a plate-shaped lattice made of lead alloy is filled with a positive electrode active material containing lead dioxide, and lead dioxide is added to both plate surfaces of the plate-shaped lattice made of lead alloy. An active material layer made of a positive electrode active material contained therein is formed. In the negative electrode plate 20, for example, the opening of a plate-shaped lattice made of lead alloy is filled with a negative electrode active material containing metal lead, and metal lead is added to both plate surfaces of the plate-shaped lattice made of lead alloy. An active material layer made of the contained negative electrode active material is formed. The plate-shaped lattice body which is the substrate of the positive electrode plate 10 and the negative electrode plate 20 can be manufactured by a casting method, a punching method, or an expanding method. The ribbed separator 30 is, for example, a porous film-like body made of resin, glass, or the like, and has a flat plate-shaped base surface and fold-shaped ribs protruding in a direction orthogonal to the surface direction of the base surface. ..

正極板10及び負極板20の上端部には、それぞれ集電耳11、21が形成されており、各正極板10の集電耳11は正極ストラップ13で連結され、各負極板20の集電耳21は負極ストラップ23で連結されている。そして、正極ストラップ13は正極端子15の一端に接続され、負極ストラップ23は負極端子25の一端に接続されており、正極端子15の他端及び負極端子25の他端が、電槽41の開口部を閉塞する蓋43を貫通して、電槽41と蓋43からなる鉛蓄電池のケース体の外部に露出している。 Current collecting ears 11 and 21 are formed on the upper ends of the positive electrode plate 10 and the negative electrode plate 20, respectively, and the current collecting ears 11 of each positive electrode plate 10 are connected by a positive electrode strap 13 to collect electricity from each negative electrode plate 20. The ears 21 are connected by a negative electrode strap 23. The positive electrode strap 13 is connected to one end of the positive electrode terminal 15, the negative electrode strap 23 is connected to one end of the negative electrode terminal 25, and the other end of the positive electrode terminal 15 and the other end of the negative electrode terminal 25 are openings of the battery case 41. It penetrates the lid 43 that closes the portion and is exposed to the outside of the case body of the lead storage battery including the battery case 41 and the lid 43.

このような構造を有する本実施形態に係る鉛蓄電池において、化成後の正極板10の平面度は4.0mm以下とされている。平面度の数値が小さいほど正極板10は平らであり、ガスの気泡が正極板10の表面に付着しにくい。化成後の正極板10の平面度が4.0mm以下であれば、ガスは極板群1の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。 In the lead-acid battery according to the present embodiment having such a structure, the flatness of the positive electrode plate 10 after chemical conversion is set to 4.0 mm or less. The smaller the value of flatness, the flatter the positive electrode plate 10, and the more difficult it is for gas bubbles to adhere to the surface of the positive electrode plate 10. If the flatness of the positive electrode plate 10 after chemical conversion is 4.0 mm or less, the gas is likely to be discharged to the outside of the electrode plate group 1, so that the increase in the internal resistance of the lead storage battery is suppressed and the internal resistance is measured. This makes it possible to accurately determine the state of charge and the state of deterioration.

化成後の正極板10の平面度を4.0mm以下とする方法は特に限定されるものではなく、化成による湾曲を抑える方法により鉛蓄電池を製造してもよいし、化成により湾曲した正極板10を矯正して平面度を4.0mm以下としてもよい。
前述したように、正極板の両板面に形成した活物質層の厚さが異なると、化成時に正極板に湾曲が生じるので、両板面に略同一厚さの活物質層が形成された正極板を化成に供すれば、湾曲を抑えて平面度を4.0mm以下とすることができる。
The method of setting the flatness of the positive electrode plate 10 after chemical conversion to 4.0 mm or less is not particularly limited, and a lead storage battery may be manufactured by a method of suppressing curvature due to chemical conversion, or the positive electrode plate 10 curved by chemical conversion. May be corrected to reduce the flatness to 4.0 mm or less.
As described above, if the thicknesses of the active material layers formed on both plate surfaces of the positive electrode plate are different, the positive electrode plates are curved during chemical conversion, so that active material layers having substantially the same thickness are formed on both plate surfaces. If the positive electrode plate is subjected to chemical conversion, the curvature can be suppressed and the flatness can be reduced to 4.0 mm or less.

両板面に同一厚さの活物質層を形成する方法としては、例えば、以下の2つの方法を挙げることができる。第一の方法は、厚さの異なる活物質層が両板面に形成された正極板を、負極板及びセパレータと積層する前に、正極板の厚さの大きい方の活物質層を削って、厚さの小さい方の活物質層と厚さを一致させる方法である。
正極板の両板面に同時に活物質層を形成しようとすると、同一厚さの活物質層を形成することが難しくなるので、第二の方法は、正極活物質のペーストを板状格子体の開口部に片面ずつ充填して活物質層を形成することにより、同一厚さの活物質層を形成する方法である。
Examples of the method for forming the active material layer having the same thickness on both plate surfaces include the following two methods. The first method is to scrape the thicker active material layer of the positive electrode plate before laminating the positive electrode plate having the active material layers having different thicknesses on both plate surfaces with the negative electrode plate and the separator. , It is a method of matching the thickness with the smaller active material layer.
If an attempt is made to form an active material layer on both plate surfaces of the positive electrode plate at the same time, it becomes difficult to form an active material layer having the same thickness. This is a method of forming an active material layer having the same thickness by filling the openings one side at a time to form an active material layer.

ただし、化成後の正極板10の平面度が0.5mm未満の場合は、ガスが極板群1の外部に排出されやすくなるものの、極板群1を電槽41内に収容した際に電槽41の内壁面により極板群1に負荷される群圧が不十分となるおそれがある。その結果、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。よって、化成後の正極板10の平面度は0.5mm以上とすることが好ましい。 However, if the flatness of the positive electrode plate 10 after chemical conversion is less than 0.5 mm, the gas is likely to be discharged to the outside of the electrode plate group 1, but when the electrode plate group 1 is housed in the electric tank 41, electricity is generated. The group pressure applied to the electrode plate group 1 by the inner wall surface of the tank 41 may be insufficient. As a result, the positive electrode active material tends to soften or fall off, which may reduce the performance and life of the lead-acid battery. Therefore, the flatness of the positive electrode plate 10 after chemical conversion is preferably 0.5 mm or more.

正極板の平面度は、JIS B0419:1991に規定された方法によって測定することができる。すなわち、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置して、湾曲した正極板の凸面の頂点(基台の平面から最も離れた部分)と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。 The flatness of the positive electrode plate can be measured by the method specified in JIS B0419: 1991. That is, as shown in FIG. 2, the positive electrode plate is formed so that the plate surface of the positive electrode plate and the flat surface of the base base are substantially parallel to the plane of the base and the convex surface of the curved positive electrode plate is directed upward. Is placed, and the distance h between the apex of the convex surface of the curved positive electrode plate (the portion farthest from the plane of the base) and the plane of the base is measured. Then, the value obtained by subtracting the thickness of the positive electrode plate from this distance h is defined as the flatness.

なお、従来の鉛蓄電池においても極板は湾曲しており、平面度が4.0mm以下の極板を有する鉛蓄電池は確認されていなかった。例えば特許文献1の図面には、湾曲していない平らな極板が描画されているが、便宜上、平らに描画されているのであって、実際には極板は平らではなく湾曲していた。また、極板の湾曲によってガスが極板群の内部に閉じ込められ内部抵抗が上昇するという知見は、当業者においても全く知られていなかった。 Even in the conventional lead-acid battery, the electrode plate is curved, and a lead-acid battery having an electrode plate having a flatness of 4.0 mm or less has not been confirmed. For example, in the drawing of Patent Document 1, a flat plate that is not curved is drawn, but for convenience, it is drawn flat, and the plate is actually curved rather than flat. Further, the knowledge that gas is trapped inside the electrode plate group due to the curvature of the electrode plate and the internal resistance is increased has not been known to those skilled in the art.

また、上記のような構造を有する本実施形態に係る鉛蓄電池において、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、平板状のベース面と、ベース面の面方向に対し直行する方向に突出する襞状のリブとを有するリブ付きセパレータを介して複数枚交互に積層された極板群を備え、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下である。これにより、正極板に十分な量の正極活物質が保持されるため、優れた寿命性能の鉛蓄電池が得られる。 Further, in the lead storage battery according to the present embodiment having the above structure, the positive electrode plate having a positive electrode active material containing lead dioxide and the negative electrode plate having a negative electrode active material containing metallic lead are flat plates. A group of electrode plates alternately laminated via a ribbed separator having a base surface and fold-shaped ribs protruding in a direction orthogonal to the surface direction of the base surface is provided, and a negative electrode per cell after chemical conversion is provided. The ratio of the mass of the positive electrode active material to the mass of the active material is 1.00 or more and 1.60 or less. As a result, a sufficient amount of the positive electrode active material is retained in the positive electrode plate, so that a lead storage battery having excellent life performance can be obtained.

以上のように、本実施形態に係る鉛蓄電池は、化成、定電圧充電等による内部抵抗の上昇が生じにくく、充電後の内部抵抗の低下も速い。また、本実施形態に係る鉛蓄電池は、優れた寿命性能を有する。さらに、本実施形態に係る鉛蓄電池は、高い充電受入性(充電効率が高く短時間で充電可能)も有している。よって、本実施形態に係る鉛蓄電池は、充電制御車、アイドリングストップ車のような充電制御を行う車両に搭載され且つ主に部分充電状態で用いられる鉛蓄電池として好適である。なお、部分充電状態とは、充電状態が例えば70%超過100%未満の状態である。 As described above, in the lead storage battery according to the present embodiment, the internal resistance does not easily increase due to chemical conversion, constant voltage charging, etc., and the internal resistance decreases quickly after charging. Further, the lead storage battery according to the present embodiment has excellent life performance. Further, the lead-acid battery according to the present embodiment also has high charge acceptability (high charging efficiency and charging in a short time). Therefore, the lead-acid battery according to the present embodiment is suitable as a lead-acid battery mounted on a vehicle that performs charge control such as a charge control vehicle and an idling stop vehicle and is mainly used in a partially charged state. The partially charged state is a state in which the charged state is, for example, more than 70% and less than 100%.

また、本実施形態に係る鉛蓄電池は、車両の内燃機関を起動する電源としての用途のみならず、電動自動車、電動フォークリフト、電動バス、電動バイク、電動スクータ、小型電動モペッド、ゴルフ用カート、電気機関車等の動力電源や補機用予備(バックアップ)電源としても使用可能である。さらに、本実施形態に係る鉛蓄電池は、照明用電源、予備電源としても使用可能である。あるいは、太陽光発電、風力発電等により発電された電気エネルギーの蓄電装置としても使用可能である。 Further, the lead storage battery according to the present embodiment is not only used as a power source for starting an internal combustion engine of a vehicle, but also an electric vehicle, an electric forklift, an electric bus, an electric motorcycle, an electric scooter, a small electric moped, a golf cart, and electricity. It can also be used as a power source for motor vehicles and as a backup power source for auxiliary machinery. Further, the lead storage battery according to the present embodiment can also be used as a power source for lighting and a standby power source. Alternatively, it can also be used as a power storage device for electric energy generated by solar power generation, wind power generation, or the like.

なお、本実施形態に係る鉛蓄電池においては、化成後の負極板の平面度は特に限定されるものではないが、化成後の正極板と同様に平面度は小さくてもよく、例えば4.0mm以下としてもよい。また、化成後の正極板の平面度と化成後の負極板の平面度は、同一であってもよいし異なっていてもよいが、異なっている方が好ましい。例えば、正極板の平面度に対する負極板の平面度の比を、極板群内において平均で50%以上80%以下とすれば、極板群内にガスが滞留しにくく、極板群からのガスの排出が生じやすい。 In the lead-acid battery according to the present embodiment, the flatness of the negative electrode plate after chemical conversion is not particularly limited, but the flatness may be small as in the positive electrode plate after chemical conversion, for example, 4.0 mm. It may be as follows. Further, the flatness of the positive electrode plate after chemical conversion and the flatness of the negative electrode plate after chemical conversion may be the same or different, but it is preferable that they are different. For example, if the ratio of the flatness of the negative electrode plate to the flatness of the positive electrode plate is 50% or more and 80% or less on average in the electrode plate group, gas is less likely to stay in the electrode plate group and the electrode plate group Emission of gas is likely to occur.

以下に、本実施形態に係る鉛蓄電池について、さらに詳細に説明する。
〔化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率の関係について〕
前述したように、本実施形態に係る鉛蓄電池においては、平板状のベース面と、ベース面の面方向に対し直行する方向に突出する襞状のリブとを有するリブ付きセパレータを介して複数枚交互に積層された極板群を備え、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下である。このような構成であれば、正極板に十分な量の正極活物質が保持され、優れた寿命性能を得られる。
The lead-acid battery according to the present embodiment will be described in more detail below.
[Relationship of the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion]
As described above, in the lead storage battery according to the present embodiment, a plurality of lead-acid batteries are provided via a ribbed separator having a flat plate-shaped base surface and fold-shaped ribs protruding in a direction perpendicular to the surface direction of the base surface. The electrode plates are alternately laminated, and the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.00 or more and 1.60 or less. With such a configuration, a sufficient amount of the positive electrode active material is retained in the positive electrode plate, and excellent life performance can be obtained.

化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00未満であると、正極活物質の質量が少なくなり、優れた寿命性能を得られなくなる。また、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.60を超えると、正極活物質層の厚みが増大し、正極活物質層内に充放電により発生したガスが溜まり、内部抵抗を上昇させるおそれがあり、その結果、優れた寿命性能を得られなくなる。
また、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.20以上1.40以下であると、放電容量と内部抵抗とのバランスがさらに優れるため、より好ましい。
If the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is less than 1.00, the mass of the positive electrode active material becomes small, and excellent life performance cannot be obtained. Further, when the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion exceeds 1.60, the thickness of the positive electrode active material layer increases, and it is generated by charging and discharging in the positive electrode active material layer. Gas may accumulate and increase the internal resistance, resulting in poor life performance.
Further, it is more preferable that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.20 or more and 1.40 or less because the balance between the discharge capacity and the internal resistance is further excellent.

〔正極板の湾曲の形状について〕
前述したように、正極板の湾曲の形状によっては、極板群内にガスが滞留しにくい場合があり、化成後の正極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在する。例えば、湾曲した正極板の凸面の頂点が、鉛蓄電池内に配されている状態の正極板の鉛直方向中央よりも下方側部分に位置するような湾曲形状であれば、ガスの気泡の出口となる鉛直方向中央よりも上方側部分の湾曲度合いは小さいと言えるので、ガスは極板群内に滞留しにくい。
[About the curved shape of the positive electrode plate]
As described above, depending on the shape of the curvature of the positive electrode plate, gas may not easily stay in the electrode plate group, and there is a lead-acid battery in which the internal resistance does not remain high even if the positive electrode plate after chemical conversion is curved. .. For example, if the apex of the convex surface of the curved positive electrode plate is located on the lower side of the vertical center of the positive electrode plate arranged in the lead storage battery, it can be regarded as an outlet for gas bubbles. Since it can be said that the degree of curvature of the portion above the center in the vertical direction is small, the gas is unlikely to stay in the electrode plate group.

すなわち、ガスの気泡が極板群から外部に排出される際の出口となる部分である、正極板の鉛直方向中央よりも上方側部分の湾曲度合いが小さければ、ガスは極板群内に滞留しにくく排出されやすいので、鉛蓄電池の内部抵抗の上昇が抑制される。よって、化成後の正極板のうち、鉛直方向中央よりも上方側部分の平面度が4.0mm以下であれば、鉛蓄電池の内部抵抗の上昇が抑制されるという効果が奏される。 That is, if the degree of curvature of the portion above the vertical center of the positive electrode plate, which is the outlet when gas bubbles are discharged from the electrode plate group to the outside, is small, the gas stays in the electrode plate group. Since it is difficult to discharge and is easily discharged, an increase in the internal resistance of the lead storage battery is suppressed. Therefore, if the flatness of the portion of the positive electrode plate after chemical conversion above the center in the vertical direction is 4.0 mm or less, the effect of suppressing an increase in the internal resistance of the lead storage battery is achieved.

〔電解液について〕
電解液にアルミニウムイオンを添加すると、充電受入性が向上することが知られている。しかしながら、平面度が大きい極板を使用した鉛蓄電池において、電解液にアルミニウムイオンを添加した場合は、平面度が大きくなることによって極板間にガスが溜まり、内部抵抗が上昇するため、アルミニウムイオンの添加効果が小さくなることが分かった。
また、電解液にアルミニウムイオンやナトリウムイオンを過剰に添加すると、電解液の抵抗及び粘度が上昇するためガスが抜けにくくなり、内部抵抗がより上昇しやすいことが分かった。よって、平面度とともに、電解液中のアルミニウムイオン及びナトリウムイオンの濃度を適正なものとすることが重要である。電解液中のアルミ二ウムイオンの濃度は、0.01モル/L以上0.3モル/L以下とすることが好ましい。アルミ二ウムイオンの濃度が0.01モル/L未満では、十分な添加効果が得られない。また、アルミ二ウムイオンを0.3モル/Lを超えて添加すると、電解液の粘度が上昇し、ガスが極板群から外部に排出されにくくなる。
また、電解液はナトリウムイオンを含有していてもよい。ただし、電解液中のナトリウムイオンの存在は有害であり、アルミニウムイオン等による充電率改善効果を阻害するため、電解液中のナトリウムイオンの含有量は、0.002モル/L以上0.05モル/L以下であることが好ましい。
なお、電解液中のアルミニウムイオンおよびナトリウムイオンの含有量の測定方法は特に限定されないが、例えばICP発光分析装置を用いて測定することができる。
[About electrolyte]
It is known that the addition of aluminum ions to the electrolytic solution improves charge acceptability. However, in a lead-acid battery using a plate with a large flatness, when aluminum ions are added to the electrolytic solution, gas accumulates between the plates due to the increase in flatness, and the internal resistance increases, so that the aluminum ions It was found that the effect of adding lead was reduced.
It was also found that when aluminum ions or sodium ions are excessively added to the electrolytic solution, the resistance and viscosity of the electrolytic solution increase, so that it becomes difficult for gas to escape and the internal resistance tends to increase. Therefore, it is important to make the concentrations of aluminum ions and sodium ions in the electrolytic solution appropriate as well as the flatness. The concentration of aluminum ions in the electrolytic solution is preferably 0.01 mol / L or more and 0.3 mol / L or less. If the concentration of aluminum ion is less than 0.01 mol / L, a sufficient addition effect cannot be obtained. Further, when the aluminum ion is added in an amount exceeding 0.3 mol / L, the viscosity of the electrolytic solution increases, and the gas is less likely to be discharged from the electrode plate group to the outside.
Further, the electrolytic solution may contain sodium ions. However, the presence of sodium ions in the electrolytic solution is harmful and hinders the effect of improving the charge rate by aluminum ions and the like. Therefore, the content of sodium ions in the electrolytic solution is 0.002 mol / L or more and 0.05 mol. It is preferably / L or less.
The method for measuring the contents of aluminum ions and sodium ions in the electrolytic solution is not particularly limited, but can be measured using, for example, an ICP emission spectrometer.

〔極板群に負荷される群圧について〕
前述したように、極板群を電槽内に収容した際には電槽の内壁面により極板群に群圧が負荷されるが、群圧が不十分であると、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。一方、群圧が高すぎると、正極活物質中にガスが滞留して、鉛蓄電池の内部抵抗が上昇するおそれがある。よって、極板群に負荷される群圧は10kPa以下とすることが好ましい。
[About the group pressure applied to the electrode plate group]
As described above, when the electrode plate group is housed in the battery case, the group pressure is applied to the electrode plate group by the inner wall surface of the battery case, but if the group pressure is insufficient, the positive electrode active material is softened. The lead-acid battery may drop out easily and the performance and life of the lead-acid battery may deteriorate. On the other hand, if the group pressure is too high, gas may stay in the positive electrode active material and the internal resistance of the lead storage battery may increase. Therefore, the group pressure applied to the electrode plate group is preferably 10 kPa or less.

〔正極活物質が含有する二酸化鉛について〕
二酸化鉛には、斜方晶系であるα相(α−二酸化鉛)と、正方晶系のβ相(β−二酸化鉛)がある。正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)は、20%以上40%以下であることが好ましい。このような構成であれば、電解液の成層化が生じにくいので、鉛蓄電池の寿命が向上するという効果が奏される。
[About lead dioxide contained in the positive electrode active material]
Lead dioxide includes an orthorhombic α phase (α-lead dioxide) and a tetragonal β phase (β-lead dioxide). The ratio α / (α + β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is preferably 20% or more and 40% or less. With such a configuration, stratification of the electrolytic solution is unlikely to occur, so that the effect of improving the life of the lead storage battery is achieved.

α−二酸化鉛は、多孔性に乏しく比表面積が小さいため放電能力が小さいが、結晶の崩壊が極めて徐々に進行するため軟化速度が小さい。一方、β−二酸化鉛は、多孔性に富み比表面積が大きいため放電能力が大きい反面、結晶の崩壊が速く進み軟化速度が大きい。よって、鉛蓄電池の長寿命化と優れた放電能力との両立のためには、正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)が20%以上40%以下となるように、正極活物質内にα−二酸化鉛とβ−二酸化鉛が分散していることが好ましい。 α-Lead dioxide has a small discharge capacity due to its poor porosity and small specific surface area, but its softening rate is low because the crystal decay progresses extremely gradually. On the other hand, β-lead dioxide is highly porous and has a large specific surface area, so that it has a large discharge capacity, but on the other hand, the crystal decays rapidly and the softening rate is high. Therefore, in order to achieve both a long life of the lead-acid battery and an excellent discharge capacity, the ratio α / (α + β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is set. It is preferable that α-lead dioxide and β-lead dioxide are dispersed in the positive electrode active material so as to be 20% or more and 40% or less.

α−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)が20%より小さいと、鉛蓄電池の寿命が不十分となるおそれがある。一方、α−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)が40%より大きいと、鉛蓄電池の容量が低下するおそれがある。 If the ratio α / (α + β) of the mass α of α-lead dioxide to the mass β of β-lead dioxide is less than 20%, the life of the lead storage battery may be insufficient. On the other hand, if the ratio α / (α + β) of the mass α of α-lead dioxide to the mass β of β-lead dioxide is larger than 40%, the capacity of the lead storage battery may decrease.

なお、正極活物質の活物質層の厚さとは、正極板の表面と、これに対向する正極基板の板面との間の距離であり、すなわち、正極板の表面に直交する仮想直線のうち、正極板の表面から正極基板の板面までの部分の長さである。正極板の表面は、段差、屈曲、湾曲等がマクロスケール(数十μm〜数mm程度)においては実質的に存在しない一つの平坦な平面である。正極活物質の活物質層の厚さは、正極板の表面と正極基板の板面との間の距離を1箇所測定して得た値でもよいし、正極板の表面と正極基板の板面との間の距離を複数箇所測定して得た値の平均値でもよい。 The thickness of the active material layer of the positive electrode active material is the distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate facing the surface of the positive electrode plate, that is, among the virtual straight lines orthogonal to the surface of the positive electrode plate. , The length of the portion from the surface of the positive electrode plate to the plate surface of the positive electrode substrate. The surface of the positive electrode plate is one flat flat surface in which steps, bends, curves, etc. are substantially not present on a macro scale (several tens of μm to several mm). The thickness of the active material layer of the positive electrode active material may be a value obtained by measuring the distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate at one point, or the surface of the positive electrode plate and the plate surface of the positive electrode substrate. The average value of the values obtained by measuring the distance between the two and the plurality of points may be used.

例えば、正極基板として板状格子体を用いた場合には、正極板の表面と、板状格子体の格子網目を形成する縦横の格子骨の表面とが対向するので、正極板の表面と格子骨の表面との間の距離を測定して、その測定値を正極活物質の活物質層の厚さとすればよい。また、板状格子体において格子骨は複数並んでいるので、複数の格子骨において、正極板の表面と格子骨の表面との間の距離を測定し、それら測定値の平均値を正極活物質の活物質層の厚さとしてもよい。 For example, when a plate-shaped lattice body is used as the positive electrode substrate, the surface of the positive electrode plate and the surface of the vertical and horizontal lattice bones forming the lattice network of the plate-shaped lattice body face each other, so that the surface of the positive electrode plate and the lattice The distance from the surface of the bone may be measured, and the measured value may be used as the thickness of the active material layer of the positive electrode active material. Further, since a plurality of lattice bones are lined up in the plate-shaped lattice body, the distance between the surface of the positive electrode plate and the surface of the lattice bone is measured in the plurality of lattice bones, and the average value of these measured values is used as the positive electrode active material. It may be the thickness of the active material layer of.

また、板状格子体の格子骨の断面形状(格子骨の長手方向に直交する平面で切断した場合の断面の形状)は、基本的には矩形であるので、正極板の表面とこれに対向する格子骨の表面とは平行をなす。ただし、エキスパンド方式で製造した板状格子体では、製造過程で板状格子体に捩れや歪みが生じる場合がある。板状格子体に捩れや歪みが生じた場合には、格子骨の表面が正極板の表面に対して傾斜するか又は曲面状となるため、正極板の表面とこれに対向する格子骨の表面とは非平行となる。このような場合には、正極板の表面と格子骨の表面との間の距離は測定箇所によって大きく異なるので、各格子骨において、格子骨の表面と正極板の表面との最短距離を測定し、それらの測定値の平均値を正極活物質の活物質層の厚さとするとよい。 Further, since the cross-sectional shape of the lattice bone of the plate-shaped lattice body (the shape of the cross section when cut in a plane orthogonal to the longitudinal direction of the lattice bone) is basically rectangular, it faces the surface of the positive electrode plate and faces the surface thereof. It is parallel to the surface of the lattice bone. However, in the plate-shaped lattice body manufactured by the expanding method, the plate-shaped lattice body may be twisted or distorted during the manufacturing process. When the plate-shaped lattice body is twisted or distorted, the surface of the lattice bone is inclined or curved with respect to the surface of the positive electrode plate, so that the surface of the positive electrode plate and the surface of the lattice bone facing the surface of the positive electrode plate are formed. Is non-parallel to. In such a case, the distance between the surface of the positive electrode plate and the surface of the lattice bone varies greatly depending on the measurement location. Therefore, in each lattice bone, the shortest distance between the surface of the lattice bone and the surface of the positive electrode plate is measured. , The average value of those measured values may be the thickness of the active material layer of the positive electrode active material.

以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
(A)内部抵抗の上昇に対する正極板の平面度の影響についての検討
まず、Pb−Ca系又はPb−Ca−Sn系の鉛合金からなる板状格子体を鋳造し、該板状格子体の所定の位置に集電耳を形成した。次に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、正極活物質のペーストを製造した。同様に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、負極活物質のペーストを製造した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(A) Examination of the effect of flatness of the positive electrode plate on the increase in internal resistance First, a plate-shaped lattice body made of a Pb-Ca-based or Pb-Ca-Sn-based lead alloy was cast, and the plate-shaped lattice body was cast. A collecting ear was formed at a predetermined position. Next, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a paste of a positive electrode active material. Similarly, lead powder containing lead monoxide as a main component was kneaded with water and dilute sulfuric acid, and if necessary, additives were mixed and kneaded to produce a paste of a negative electrode active material.

そして、正極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行い、化成前の正極板を作成した。同様に、負極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行い、化成前の負極板を作成した。 Then, after filling the plate-shaped lattice body with the paste of the positive electrode active material, aging and drying were performed to prepare a positive electrode plate before chemical conversion. Similarly, after filling the plate-shaped lattice with the paste of the negative electrode active material, aging and drying were performed to prepare a negative electrode plate before chemical conversion.

上記のようにして作製した化成前の正極板と負極板とを、平板状のベース面と、ベース面の面方向に対し直行する方向に突出する襞状のリブとを有する多孔質の合成樹脂からなるリブ付きセパレータを介在させつつ交互に複数枚積層して、極板群を作製した。この極板群を電槽内に収納し、各正極板の集電耳を正極ストラップで連結し、各負極板の集電耳を負極ストラップで連結した。そして、正極ストラップは正極端子の一端に接続し、負極ストラップは負極端子の一端に接続した。なお、電槽は、セルを収容するセル室を複数有しているが、セル室1個当たりのアッパーレベル(最高液面線)以下の部分の容積は570cm3である。 A porous synthetic resin having a flat plate-shaped base surface and fold-shaped ribs protruding in a direction perpendicular to the surface direction of the base surface of the positive electrode plate and the negative electrode plate before chemical formation produced as described above. A group of electrode plates was prepared by alternately laminating a plurality of sheets while interposing a ribbed separator made of. This group of electrode plates was housed in an electric tank, the current collecting ears of each positive electrode plate were connected by a positive electrode strap, and the current collecting ears of each negative electrode plate were connected by a negative electrode strap. Then, the positive electrode strap was connected to one end of the positive electrode terminal, and the negative electrode strap was connected to one end of the negative electrode terminal. The electric tank has a plurality of cell chambers for accommodating cells, and the volume of the portion below the upper level (maximum liquid level line) per cell chamber is 570 cm 3 .

さらに、蓋で電槽の開口部を閉塞した。正極極柱と負極極柱は、それぞれ蓋にインサート成型したブッシングに貫通させ、正極極柱の他端と負極極柱の他端を鉛蓄電池の外部に露出させた状態で溶接し、正極端子と負極端子を形成した。蓋に形成された注液口から、比重1.23の希硫酸からなる電解液を電槽のアッパーレベルまで注入し、注液口を栓体により封口して、電槽化成を行い、鉛蓄電池を得た。電解液の注入から化成のための通電開始までの時間(すなわちソーキング時間)は30分間、化成のための電気量は230%とした。このとき、注入した電解液の量はセル1個当たり(すなわちセル室1個当たり)375cm3であった。なお、化成後の電解液の比重は1.28であり、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率は1.20である。
なお、後の解体調査のため、各ロットの鉛蓄電池は複数個作製し、同じロットの鉛蓄電池であれば、同一の構造と電池特性を有するものと見なした。
Furthermore, the opening of the battery case was closed with a lid. The positive electrode pole and the negative electrode pole are each penetrated through a bushing insert-molded in the lid, and the other end of the positive electrode pole and the other end of the negative electrode pole are welded in a state of being exposed to the outside of the lead-acid battery to form a positive electrode terminal. A negative electrode terminal was formed. From the liquid injection port formed on the lid, an electrolyte solution consisting of dilute sulfuric acid with a specific gravity of 1.23 is injected to the upper level of the battery case, the liquid injection port is closed with a plug, and the battery bed is converted into a lead-acid battery. Got The time from the injection of the electrolytic solution to the start of energization for chemical formation (that is, the soaking time) was 30 minutes, and the amount of electricity for chemical conversion was 230%. At this time, the amount of the injected electrolytic solution was 375 cm 3 per cell (that is, per cell chamber). The specific gravity of the electrolytic solution after chemical conversion is 1.28, and the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.20.
For a later dismantling survey, a plurality of lead-acid batteries of each lot were manufactured, and if the lead-acid batteries of the same lot were used, they were considered to have the same structure and battery characteristics.

電池サイズはM−42とし、極板群を構成する正極板の枚数を6枚、負極板の枚数を7枚とした。正極板と負極板は連続製法により作製した。化成後の正極板の平面度は、化成前の正極板の両板面に形成された正極活物質の活物質層の厚塗り度比を変更することで調整した。ただし、化成後の正極板の平面度を調整する方法は、前述の厚塗り度比を変更する方法に限定されるものではなく、他の方法を用いても差し支えない。化成後の正極板の平面度の測定方法については、後に詳述する。 The battery size was M-42, the number of positive electrode plates constituting the electrode plate group was 6, and the number of negative electrode plates was 7. The positive electrode plate and the negative electrode plate were manufactured by a continuous manufacturing method. The flatness of the positive electrode plate after chemical conversion was adjusted by changing the thickness ratio of the active material layer of the positive electrode active material formed on both plate surfaces of the positive electrode plate before chemical conversion. However, the method of adjusting the flatness of the positive electrode plate after chemical conversion is not limited to the above-mentioned method of changing the thickness coating ratio, and other methods may be used. The method for measuring the flatness of the positive electrode plate after chemical conversion will be described in detail later.

また、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量との比率は0.90以上1.70以下の範囲で調整した。セパレータの厚さは、極板群に所定の群圧が負荷されるように調整した。正極板が有する正極活物質の密度は、4.2g/cm3である。負極板が有する負極活物質の密度は、4.0g/cm3である。正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)は、20%である。電解液は、硫酸アルミニウムを0.1モル/Lの濃度で含有するものを使用した。 The ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion was adjusted in the range of 0.90 or more and 1.70 or less. The thickness of the separator was adjusted so that a predetermined group pressure was applied to the electrode plate group. The density of the positive electrode active material contained in the positive electrode plate is 4.2 g / cm 3 . The density of the negative electrode active material contained in the negative electrode plate is 4.0 g / cm 3 . The ratio α / (α + β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is 20%. The electrolytic solution used was one containing aluminum sulfate at a concentration of 0.1 mol / L.

次に、作製した鉛蓄電池に対して初充電を行った後に、エージングを48時間施した。そして、鉛蓄電池の内部抵抗を測定した。この内部抵抗測定値を、「初期値」とした。
続いて、エージング後の満充電状態の鉛蓄電池に対して定電圧充電を行い、定電圧充電終了直後の内部抵抗を測定した。この内部抵抗測定値を、「充電直後の値」とした。定電圧充電の条件は、最大電流100A、制御電圧14.0V、充電時間10分間である(この鉛蓄電池は、5時間率容量(定格容量)を32Ahとする)。
定電圧充電が終了したら1時間静置し、静置後の内部抵抗を測定した。この内部抵抗測定値を、「静置後の値」とした。
Next, the produced lead-acid battery was first charged and then aged for 48 hours. Then, the internal resistance of the lead storage battery was measured. This internal resistance measurement value was defined as the "initial value".
Subsequently, the lead-acid battery in a fully charged state after aging was charged at a constant voltage, and the internal resistance immediately after the completion of the constant voltage charging was measured. This internal resistance measurement value was defined as the "value immediately after charging". The conditions for constant voltage charging are a maximum current of 100 A, a control voltage of 14.0 V, and a charging time of 10 minutes (this lead-acid battery has a 5-hour rate capacity (rated capacity) of 32 Ah).
When the constant voltage charging was completed, the mixture was allowed to stand for 1 hour, and the internal resistance after the stand was measured. This internal resistance measurement value was defined as the "value after standing".

正極板の平面度は、以下のようにして測定した。まず、化成後の鉛蓄電池を解体し、正極板を無作為に複数枚取り出した。取り出した正極板は、正極板が変形しないように注意を払い、流水にさらした状態で4時間保つことで、正極板の表面に付着した硫酸を水洗した後、60℃の乾燥機にて120分間乾燥させた。そして、マイクロメータを用いて、正極板の複数箇所において厚さを測定し、その平均値を正極板の厚さとする。次に、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置し、ハイトゲージを用いて、湾曲した正極板の凸面の頂点と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。 The flatness of the positive electrode plate was measured as follows. First, the lead-acid battery after chemical conversion was disassembled, and a plurality of positive electrode plates were randomly taken out. Care is taken not to deform the positive electrode plate, and the positive electrode plate is kept exposed to running water for 4 hours to wash the sulfuric acid adhering to the surface of the positive electrode plate with water, and then 120 in a dryer at 60 ° C. Allowed to dry for minutes. Then, the thickness is measured at a plurality of points on the positive electrode plate using a micrometer, and the average value thereof is taken as the thickness of the positive electrode plate. Next, as shown in FIG. 2, on the flat surface of the base, the positive electrode plate surface and the flat surface of the base base are substantially parallel to each other, and the convex surface of the curved positive electrode plate is directed upward. The plate is placed and the height gauge is used to measure the distance h between the apex of the convex surface of the curved positive electrode plate and the plane of the base. Then, the value obtained by subtracting the thickness of the positive electrode plate from this distance h is defined as the flatness.

また、上記で作製した同じ鉛蓄電池を用いて、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が、鉛蓄電池の性能に及ぼす影響について検討した。
鉛蓄電池の寿命性能については、欧州規格(EN規格)のEN 50342−6:2015に記載の17.5%DOD寿命試験により評価した。すなわち、下記の(1)、(2)、(3)の操作を複数サイクル繰り返し、電圧が10Vになったら寿命に達したと判定し、それまで行ったサイクル数を電池寿命とするとともに、電解液の上部と下部での比重の差を測定した。
(1)充電状態(SOC)を50%に調整する。具体的には、電流4I(A)で2.5時間放電する。
(2)放電深度(DOD)17.5%の充放電を85回繰り返す。具体的には、制限電圧14.4V、電流7I(A)で2400秒間定電圧充電した後、電流7I(A)で1800秒間放電する。
(3)満充電にして20HR容量試験を実施する。容量試験終了後、再び満充電を実施する。容量試験終了後、制限電圧16.0Vで、電流5I(A)で24時間定電圧充電する。
なお、「I」は20時間率電流を意味し、電池サイズがM−42(20時間率容量:40Ah)の場合は、2(A)である。
In addition, using the same lead-acid battery produced above, the effect of the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion on the performance of the lead-acid battery was examined.
The life performance of the lead-acid battery was evaluated by the 17.5% DOD life test described in EN 50342-6: 2015 of the European standard (EN standard). That is, the following operations (1), (2), and (3) are repeated for a plurality of cycles, and when the voltage reaches 10 V, it is determined that the battery has reached the end of its life. The difference in specific gravity between the upper part and the lower part of the liquid was measured.
(1) Adjust the charging state (SOC) to 50%. Specifically, discharge 2.5 hours at a current 4I n (A).
(2) Charging / discharging with a discharge depth (DOD) of 17.5% is repeated 85 times. Specifically, the limit voltage 14.4V, after constant voltage charging 2400 seconds at a current 7I n (A), discharge for 1800 seconds at a current 7I n (A).
(3) Fully charge and carry out a 20HR capacity test. After the capacity test is completed, the battery is fully charged again. After completion Capacity Test, in the limit voltage 16.0V, for 24 hours constant voltage charge at a current 5I n (A).
Incidentally, "I n" means 20 hours rate current, battery size is M-42 (20-hour rate capacity: 40Ah) case of a 2 (A).

これらの結果をまとめて表1に示す。内部抵抗の初期値、充電直後の値、静置後の値を用いて、内部抵抗の上昇率を算出した。初期値に対する充電直後の値の上昇率は、([充電直後の値]−[初期値])/[初期値]により算出し、初期値に対する静置後の値の上昇率は、([静置後の値]−[初期値])/[初期値]により算出した。 These results are summarized in Table 1. The rate of increase in internal resistance was calculated using the initial value of internal resistance, the value immediately after charging, and the value after standing. The rate of increase of the value immediately after charging with respect to the initial value is calculated by ([value immediately after charging]-[initial value]) / [initial value], and the rate of increase of the value after standing still with respect to the initial value is ([static]. It was calculated by [Value after installation]-[Initial value]) / [Initial value].

そして、初期値に対する充電直後の値の上昇率が10%以下であるという条件Aと、初期値に対する静置後の値の上昇率が5%以下であるという条件Bとを両方満たす場合は、内部抵抗の上昇が顕著に抑制されていると判定し、表1においては○印で示す。 Then, when both the condition A that the increase rate of the value immediately after charging with respect to the initial value is 10% or less and the condition B that the increase rate of the value after standing still with respect to the initial value is 5% or less are satisfied, It is judged that the increase in internal resistance is remarkably suppressed, and is indicated by a circle in Table 1.

条件Aと条件Bのいずれか一方の条件のみを満たす場合は、内部抵抗の上昇が十分に抑制されているものの、顕著に抑制されているとまでは言えないと判定し、表1においては△印で示す。条件Aと条件Bのいずれも満たさない場合は、内部抵抗の上昇の抑制が若干不十分又は全く不十分であると判定し、表1においては×印で示す。 When only one of the conditions A and B is satisfied, it is determined that the increase in internal resistance is sufficiently suppressed, but it cannot be said that it is significantly suppressed. Indicated by a mark. If neither condition A nor condition B is satisfied, it is determined that the suppression of the increase in internal resistance is slightly insufficient or completely insufficient, and is indicated by a cross in Table 1.

寿命性能(サイクル数)が800サイクル以上であるという条件Cを満たす場合は、鉛蓄電池の性能が顕著に優れていると判定し、表1においては○印で示す。条件Cを満たさない場合は、鉛蓄電池の性能が若干不十分又は全く不十分であると判定し、表1においては×印で示す。 When the condition C that the life performance (number of cycles) is 800 cycles or more is satisfied, it is judged that the performance of the lead storage battery is remarkably excellent, and it is indicated by a circle in Table 1. If the condition C is not satisfied, it is determined that the performance of the lead-acid battery is slightly insufficient or completely insufficient, and is indicated by a cross in Table 1.

総合判定については、内部抵抗上昇率、寿命性能が全て○印の判定であった場合は、表1の総合判定は○印を示す。内部抵抗上昇率または寿命性能が×印の判定であった場合は、表1の総合判定は×印を示す。 Regarding the comprehensive judgment, if the internal resistance increase rate and the life performance are all judged by ○, the comprehensive judgment in Table 1 is shown by ○. When the internal resistance increase rate or the life performance is judged by x, the comprehensive judgment in Table 1 shows x.

Figure 2021163610
Figure 2021163610

表1に示す結果から、正極板の平面度が4.0mm以下である実施例101〜115は、内部抵抗の上昇が顕著に抑制されていることが分かる。
これに対して、正極板の平面度が5.0mmである比較例111〜115は、初期値に対する充電直後の値の上昇率が高いことが分かる。また、初期値に対する静置後の値の上昇率も高いことから、内部抵抗の低下速度が遅いことが分かる。
また、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下である実施例101〜115および比較例112〜114は、サイクル数が顕著に向上していることが分かる。
これに対して、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00未満である比較例101、103、105、107、109および111は、サイクル数が向上していないことが分かる。これは、セルあたりの正極活物質の質量が少ないため、軟化・脱落がしやすくなったことに因ると考えられる。また、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.60超過である比較例102、104、106、108、110および115は、初期値に対する充電直後の値の上昇率および初期値に対する静置後の値の上昇率が高いことから、内部抵抗の低下速度が遅いことが分かる。同様に、比較例112〜114は、サイクル数は顕著に向上しているが、平面度が4.0mmを超えているため、初期値に対する充電直後の値の上昇率および初期値に対する静置後の値の上昇率が高いことから、内部抵抗の低下速度が遅いことが分かる。これは、正極活物質層の厚みが増大し、正極活物質層内に充放電により発生したガスが溜まることに因ると考えられる。
From the results shown in Table 1, it can be seen that in Examples 101 to 115 in which the flatness of the positive electrode plate is 4.0 mm or less, the increase in internal resistance is remarkably suppressed.
On the other hand, in Comparative Examples 111 to 115 in which the flatness of the positive electrode plate is 5.0 mm, it can be seen that the rate of increase in the value immediately after charging with respect to the initial value is high. In addition, since the rate of increase in the value after standing still is high with respect to the initial value, it can be seen that the rate of decrease in internal resistance is slow.
Further, in Examples 101 to 115 and Comparative Examples 112 to 114 in which the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.00 or more and 1.60 or less, the number of cycles is remarkable. You can see that it is improving.
On the other hand, in Comparative Examples 101, 103, 105, 107, 109 and 111 in which the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion was less than 1.00, the number of cycles was improved. You can see that it is not. It is considered that this is because the mass of the positive electrode active material per cell is small, so that it is easy to soften and fall off. Further, Comparative Examples 102, 104, 106, 108, 110 and 115 in which the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion exceeds 1.60 are the values immediately after charging with respect to the initial values. Since the rate of increase of the value after standing still is high and the rate of increase of the value after standing still is high, it can be seen that the rate of decrease of the internal resistance is slow. Similarly, in Comparative Examples 112 to 114, the number of cycles is remarkably improved, but since the flatness exceeds 4.0 mm, the rate of increase in the value immediately after charging with respect to the initial value and after standing still with respect to the initial value. Since the rate of increase in the value of is high, it can be seen that the rate of decrease in internal resistance is slow. It is considered that this is because the thickness of the positive electrode active material layer is increased and the gas generated by charging / discharging is accumulated in the positive electrode active material layer.

表1に示す評価結果から、化成後の正極板の平面度が4.0mm以下であり、化成後のセルあたりの負極活物質の質量に対する正極活物質の質量の比率が1.00以上1.60以下であると、内部抵抗の上昇が十分に抑制されるとともに、優れた寿命性能が確保されることが分かる。 From the evaluation results shown in Table 1, the flatness of the positive electrode plate after chemical conversion is 4.0 mm or less, and the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.00 or more. When it is 60 or less, it can be seen that an increase in internal resistance is sufficiently suppressed and excellent life performance is ensured.

(B)鉛蓄電池の性能に対する二酸化鉛のαβ比率の影響についての検討
正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)の影響について検討した。鉛蓄電池の構成及び製造方法については、二酸化鉛のαβ比率が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。鉛蓄電池の性能については、以下の方法により電解液の成層化の程度と寿命性能で評価した。
(B) Examination of the effect of the αβ ratio of lead dioxide on the performance of lead-acid batteries Examination of the effect of the ratio α / (α + β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material bottom. The configuration and manufacturing method of the lead storage battery are the same as in the case of the above examination (A) unless otherwise specified, except that the αβ ratio of lead dioxide is different. The performance of the lead-acid battery was evaluated by the degree of stratification of the electrolytic solution and the life performance by the following method.

電解液の成層化の程度と寿命性能については、欧州規格(EN規格)のEN 50342−6:2015に記載の17.5%DOD寿命試験により評価した。すなわち、下記の(1)、(2)、(3)の操作を複数サイクル繰り返し、電圧が10Vになったら寿命に達したと判定し、それまで行ったサイクル数を電池寿命とするとともに、電解液の上部と下部での比重の差を測定した。 The degree of stratification and life performance of the electrolytic solution were evaluated by the 17.5% DOD life test described in EN 50342-6: 2015 of the European standard (EN standard). That is, the following operations (1), (2), and (3) are repeated for a plurality of cycles, and when the voltage reaches 10 V, it is determined that the battery has reached the end of its life. The difference in specific gravity between the upper part and the lower part of the liquid was measured.

(1)充電状態(SOC)を50%に調整する。具体的には、電流4I(A)で2.5時間放電する。
(2)放電深度(DOD)17.5%の充放電を85回繰り返す。具体的には、制限電圧14.4V、電流7I(A)で2400秒間定電圧充電した後、電流7I(A)で1800秒間放電する。
(3)満充電にして20HR容量試験を実施する。容量試験終了後、再び満充電を実施する。容量試験終了後、制限電圧16.0Vで、電流5I(A)で24時間定電圧充電する。
なお、「I」は20時間率電流を意味し、電池サイズがM−42(20時間率容量:40Ah)の場合は、2(A)である。
(1) Adjust the charging state (SOC) to 50%. Specifically, discharge 2.5 hours at a current 4I n (A).
(2) Charging / discharging with a discharge depth (DOD) of 17.5% is repeated 85 times. Specifically, the limit voltage 14.4V, after constant voltage charging 2400 seconds at a current 7I n (A), discharge for 1800 seconds at a current 7I n (A).
(3) Fully charge and carry out a 20HR capacity test. After the capacity test is completed, the battery is fully charged again. After completion Capacity Test, in the limit voltage 16.0V, for 24 hours constant voltage charge at a current 5I n (A).
Incidentally, "I n" means 20 hours rate current, battery size is M-42 (20-hour rate capacity: 40Ah) case of a 2 (A).

評価結果を表2に示す。寿命性能が900サイクル以上であるという条件Dと、電解液の成層化の程度(電解液の上部と下部での比重の差)が0.02以下であるという条件Eとを両方満たす場合は、鉛蓄電池の性能が特に顕著に優れていると判定し、表2においては◎印で示す。条件Dと条件Eのいずれか一方の条件のみを満たす場合は、鉛蓄電池の性能が十分に優れているものの、顕著に優れているとまでは言えないと判定し、表2においては○印で示す。 The evaluation results are shown in Table 2. When both the condition D that the life performance is 900 cycles or more and the condition E that the degree of stratification of the electrolytic solution (difference in specific gravity between the upper part and the lower part of the electrolytic solution) is 0.02 or less are satisfied, the condition D is satisfied. It was judged that the performance of the lead-acid battery was particularly excellent, and it is indicated by a ◎ mark in Table 2. When only one of the conditions D and E is satisfied, it is judged that the performance of the lead-acid battery is sufficiently excellent, but not significantly excellent, and is marked with a circle in Table 2. show.

Figure 2021163610
Figure 2021163610

表2に示す評価結果から、二酸化鉛のαβ比率α/(α+β)が20%以上40%以下であると、内部抵抗の上昇が十分に抑制されているとともに内部抵抗の低下速度が速いことが分かる。また、鉛蓄電池の寿命性能が優れており、且つ、電解液の成層化が生じにくいことが分かる。以上より、二酸化鉛のαβ比率α/(α+β)が20%以上40%以下であると、特に顕著な効果を得られることが分かる。 From the evaluation results shown in Table 2, when the αβ ratio α / (α + β) of lead dioxide is 20% or more and 40% or less, the increase in internal resistance is sufficiently suppressed and the rate of decrease in internal resistance is fast. I understand. Further, it can be seen that the life performance of the lead storage battery is excellent and that stratification of the electrolytic solution is unlikely to occur. From the above, it can be seen that a particularly remarkable effect can be obtained when the αβ ratio α / (α + β) of lead dioxide is 20% or more and 40% or less.

1 極板群
10 正極板
20 負極板
30 セパレータ
1 electrode plate group 10 positive electrode plate 20 negative electrode plate 30 separator

Claims (5)

二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、前記極板群が電解液に浸漬されてセルを構成し、
化成後の前記正極板の平面度が4.0mm以下であり、
化成後の前記セルあたりの前記負極活物質の質量に対する前記正極活物質の質量の比率が1.00以上1.60以下であることを特徴とする鉛蓄電池。
A positive electrode plate having a positive electrode active material containing lead dioxide and a negative electrode plate having a negative electrode active material containing metallic lead are provided with a group of electrode plates in which a plurality of sheets are alternately laminated via a separator. Is immersed in the electrolyte to form a cell,
The flatness of the positive electrode plate after chemical conversion is 4.0 mm or less,
A lead-acid battery characterized in that the ratio of the mass of the positive electrode active material to the mass of the negative electrode active material per cell after chemical conversion is 1.00 or more and 1.60 or less.
前記正極活物質が含有するα−二酸化鉛の質量αとβ−二酸化鉛の質量βの比率α/(α+β)が20%以上40%以下である請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the ratio α / (α + β) of the mass α of α-lead dioxide and the mass β of β-lead dioxide contained in the positive electrode active material is 20% or more and 40% or less. 前記正極活物質の密度が3.9g/cm3以上4.5g/cm3以下であり、前記負極活物質の密度が3.9g/cm3以上4.1g/cm3以下である請求項1又は請求項2に記載の鉛蓄電池。 Claim 1 in which the density of the positive electrode active material is 3.9 g / cm 3 or more and 4.5 g / cm 3 or less, and the density of the negative electrode active material is 3.9 g / cm 3 or more and 4.1 g / cm 3 or less. Alternatively, the lead storage battery according to claim 2. 前記電解液のアルミニウムイオンの含有量が0.01モル/L以上0.3モル/L以下である請求項1〜3のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 3, wherein the aluminum ion content of the electrolytic solution is 0.01 mol / L or more and 0.3 mol / L or less. 前記極板群に負荷された群圧が10kPa以下である請求項1〜4のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 4, wherein the group pressure loaded on the electrode plate group is 10 kPa or less.
JP2020063706A 2020-03-31 2020-03-31 Lead-acid battery Pending JP2021163610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020063706A JP2021163610A (en) 2020-03-31 2020-03-31 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063706A JP2021163610A (en) 2020-03-31 2020-03-31 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2021163610A true JP2021163610A (en) 2021-10-11

Family

ID=78003632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063706A Pending JP2021163610A (en) 2020-03-31 2020-03-31 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2021163610A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204049A1 (en) * 2015-06-18 2016-12-22 日立化成株式会社 Lead storage cell
JP6670903B1 (en) * 2018-09-27 2020-03-25 古河電池株式会社 Lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204049A1 (en) * 2015-06-18 2016-12-22 日立化成株式会社 Lead storage cell
JP6670903B1 (en) * 2018-09-27 2020-03-25 古河電池株式会社 Lead storage battery

Similar Documents

Publication Publication Date Title
JP6670903B1 (en) Lead storage battery
CN112042041B (en) Lead-acid battery
JP2021163612A (en) Lead-acid battery
JP2021163618A (en) Lead-acid battery
JP2021163608A (en) Lead-acid battery
JP6705873B2 (en) Lead acid battery
JP7002518B2 (en) Lead-acid battery
JP7097403B2 (en) Lead-acid battery
JP2021163610A (en) Lead-acid battery
JP6817264B2 (en) Lead-acid battery
JP7065127B2 (en) Liquid lead-acid battery
JP2021163616A (en) Lead-acid battery
JP2021163609A (en) Lead-acid battery
JP2021114404A (en) Lead acid battery
JP6705874B2 (en) Lead acid battery
JP2021163537A (en) Lead-acid battery
JP2021163617A (en) Lead-acid battery
JP2021163613A (en) Lead-acid battery
JP2021163614A (en) Lead-acid battery
JP2021111556A (en) Liquid type lead storage battery
JP2021163611A (en) Lead-acid battery
JP7011023B2 (en) Liquid lead-acid battery
JP7065126B2 (en) Liquid lead-acid battery
JP7011025B2 (en) Liquid lead-acid battery
JP2020053292A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221011