WO2016204049A1 - Lead storage cell - Google Patents

Lead storage cell Download PDF

Info

Publication number
WO2016204049A1
WO2016204049A1 PCT/JP2016/067119 JP2016067119W WO2016204049A1 WO 2016204049 A1 WO2016204049 A1 WO 2016204049A1 JP 2016067119 W JP2016067119 W JP 2016067119W WO 2016204049 A1 WO2016204049 A1 WO 2016204049A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
separator
electrode material
rib
Prior art date
Application number
PCT/JP2016/067119
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 隆文
柴原 敏夫
博紀 平野
和也 丸山
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2017525170A priority Critical patent/JP6338020B2/en
Publication of WO2016204049A1 publication Critical patent/WO2016204049A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery.
  • ISS cars idling stop system cars
  • power generation control cars that reduce alternator power generation by engine power.
  • Micro hybrid vehicles are being studied.
  • the lead storage battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge).
  • PSOC Partial State Of Charge
  • the lead storage battery has a structure in which, for example, a positive electrode (positive electrode plate or the like), a negative electrode (negative electrode plate or the like), and a synthetic resin bag-like separator that separates both electrodes are laminated.
  • a separator there is known a microporous film with ribs formed by projecting main ribs for electrode plate contact on one side of a flat sheet, which is mainly formed of polyolefin or the like that can be easily integrated into a bag and processed with a bag. It has been.
  • This separator made of a microporous film with ribs is usually designed such that the surface on which the main ribs for electrode plate abutment are in contact with the positive electrode plate. Further, the surface opposite to the surface on which the electrode plate contact main rib protrudes is a flat surface on which no rib is provided, and is designed to contact the negative electrode plate.
  • Patent Document 1 in order to suppress dendrite short (short circuit), a separator composed of a raw material composition mainly composed of polyolefin, inorganic powder and plasticizer is used and has a specific structure. Is described.
  • the penetration short circuit is likely to occur.
  • the penetration short circuit is suppressed. Has been found to be not sufficient. Therefore, in recent years, it has been required for lead storage batteries to further improve the short-circuit suppressing effect as compared with the prior art.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lead-acid battery that has an excellent short-circuit suppressing effect even when a separator containing silica is used.
  • a lead storage battery includes a positive electrode and a negative electrode facing each other via a separator, and an electrolyte solution, the separator includes polyolefin and silica, and the positive electrode is held by the positive electrode current collector and the positive electrode current collector.
  • a negative electrode current collector, and a negative electrode material held by the negative electrode current collector, the electrolytic solution contains aluminum ions, and after the formation of the negative electrode material after the formation The mass ratio of the positive electrode material is 1.05 or more.
  • the lead storage battery according to the present invention is excellent in the short-circuit suppressing effect even when a separator containing silica is used by having the above-described configuration. Moreover, according to the lead acid battery which concerns on this invention, it is possible to obtain the outstanding battery characteristic, suppressing a short circuit, for example, the outstanding charge acceptance property and ISS cycle characteristic can be obtained. Therefore, especially after a certain amount of charge / discharge is repeated from the initial state and the active material is sufficiently activated, the state of charge (SOC), which tends to be low in ISS cars, micro hybrid cars, etc., is set to an appropriate level. Can be maintained. Moreover, according to the lead acid battery which concerns on this invention, the outstanding charge acceptance property and ISS cycle characteristic, and other outstanding battery characteristics (a capacity
  • SOC state of charge
  • the lead acid battery which concerns on this invention, it can suppress that the lifetime of the lead acid battery used under PSOC becomes short.
  • the life of lead-acid batteries used under PSOC is shortened, if charging and discharging are repeated in a state where charging is insufficient, lead sulfate produced on the negative electrode (negative electrode plate, etc.) becomes coarse during discharge. This is thought to be because lead sulfate is difficult to return to the spongy metallic lead that is the charge product.
  • the total mass of oxygen and silicon in the separator is preferably 30 to 80% by mass based on the total mass of carbon, oxygen and silicon. In this case, it is possible to improve the separator strength while further improving the short-circuit suppressing effect.
  • the concentration of aluminum ions in the electrolytic solution is preferably 0.01 to 0.3 mol / L. In this case, it is possible to further improve battery characteristics such as charge acceptability while further improving the short-circuit suppressing effect.
  • the electrolytic solution further contains sodium ions.
  • the 5-hour capacity cycle characteristics can be further improved.
  • the mass ratio of the positive electrode material after conversion to the negative electrode material after conversion is preferably 1.05 to 1.60, and more preferably 1.05 to 1.50. In this case, the short circuit can be more effectively suppressed and the charge acceptability and the low temperature high rate discharge performance are further improved.
  • the specific surface area of the positive electrode material is preferably 3 m 2 / g or more. In this case, the charge acceptability is further improved.
  • the specific surface area of the negative electrode material is preferably 0.4 m 2 / g or more. In this case, the reactivity between the electrolytic solution and the negative electrode active material can be increased.
  • the separator is a long separator having a first rib, a second rib, and a base portion, and the base portion includes the first rib and the first rib.
  • 2 ribs, and the first rib and the second rib extend in the longitudinal direction of the separator, and both end portions in the short direction of the separator each support the second rib.
  • 10 to 40 are included and the region between the both end portions includes the first rib.
  • the present invention it is possible to provide a lead storage battery that is excellent in the effect of suppressing a short circuit even when a separator containing silica is used. Moreover, according to the lead acid battery which concerns on this invention, the outstanding battery characteristic (for example, charge acceptance property and ISS cycle characteristic) can be acquired, suppressing a short circuit. Furthermore, according to the lead storage battery of the present invention, it is possible to achieve both excellent charge acceptability and ISS cycle characteristics and other excellent battery characteristics (capacity, discharge characteristics, etc.).
  • the lead acid battery according to the present invention can be suitably used in an automobile such as an ISS car and a micro hybrid car as a liquid lead acid battery in which charging is intermittently performed and high rate discharge is performed under PSOC. ADVANTAGE OF THE INVENTION According to this invention, the application to the micro hybrid vehicle of a lead storage battery can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application to the ISS vehicle of a lead storage battery can be provided.
  • silicon means silicon dioxide (SiO 2 ) or a general term for substances composed of silicon dioxide.
  • the lead storage battery according to the present embodiment includes a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like) that face each other with a separator interposed therebetween, and an electrolyte solution (such as sulfuric acid).
  • the liquid contains aluminum ions.
  • the lead storage battery according to this embodiment includes, for example, a battery case, an electrode (electrode plate or the like), an electrolytic solution (sulfuric acid or the like), and a separator, and has a positive electrode and a negative electrode as electrodes.
  • the electrode, the electrolytic solution, and the separator are accommodated in the battery case.
  • Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, and the like, and a liquid lead storage battery is preferable.
  • the positive electrode and the negative electrode constitute an electrode group (electrode plate group or the like) by being laminated via a separator.
  • the positive electrode has a positive electrode current collector and a positive electrode material held by the positive electrode current collector.
  • the negative electrode has a negative electrode current collector and a negative electrode material held by the negative electrode current collector.
  • the positive electrode material and the negative electrode material are, for example, electrode materials after chemical conversion. When the electrode material is unformed, the electrode materials (unformed positive electrode material and unformed negative electrode material) contain the raw materials and the like.
  • the current collector constitutes a conductive path for current from the electrode material.
  • As a basic configuration of the lead storage battery the same configuration as that of a conventional lead storage battery can be used.
  • the mass ratio of the positive electrode material after conversion to the negative electrode material after conversion is 1.05 or more.
  • a short circuit can be effectively suppressed because the mass ratio is 1.05 or more.
  • the mass ratio is more preferably 1.10 or more, and even more preferably 1.13 or more, from the viewpoint of more effectively suppressing a short circuit.
  • the mass ratio is preferably 1.60 or less, more preferably 1.55 or less, still more preferably 1.50 or less, and particularly preferably 1.40 or less from the viewpoint of further excellent charge acceptance and low-temperature high-rate discharge performance. 1.30 or less is very preferable, 1.20 or less is very preferable, and 1.17 or less is even more preferable.
  • the mass ratio is preferably 1.05 to 1.60, more preferably 1.05 to 1.55, still more preferably 1.05 to 1.50, and 1.05 to 1.40.
  • Particularly preferred is 1.05 to 1.30, very preferably 1.05 to 1.20, very preferably 1.05 to 1.17, even more preferably 1.10 to 1.17, .13 to 1.17 are particularly preferred.
  • the present inventors infer the reason why the occurrence of a short circuit can be suppressed when the mass ratio of the positive electrode material after conversion to the negative electrode material after conversion is within the above range.
  • discharge is possible until the remaining rate of the positive electrode or negative electrode active material is about 25%.
  • the mass ratio of the positive electrode material / negative electrode material is less than 1.05 (for example, 1.00 or more and less than 1.05, when the amount of the active material of the negative electrode is larger than the amount of the active material of the positive electrode)
  • the mass ratio of the positive electrode material / negative electrode material is 1.05 or more (when the amount of the active material of the negative electrode is small with respect to the amount of the active material of the positive electrode), the capacity that the negative electrode can discharge becomes small.
  • the discharge limit is reached earlier than when the amount of the negative electrode material is large, the consumption amount of sulfuric acid used as the electrolytic solution is reduced, and the decrease in the sulfuric acid specific gravity of the electrolytic solution is reduced.
  • dissolution of lead sulfate in the active material into the electrolytic solution is suppressed, it is presumed that an infiltration short circuit can be suppressed.
  • the separator prevents electrical connection between the positive electrode and the negative electrode and allows sulfate ions in the electrolytic solution to pass therethrough.
  • the separator includes polyolefin and silica.
  • the separator is preferably made of a material mainly composed of polyolefin and silica (for example, the content (total amount) of polyolefin and silica is 50% by mass or more based on the total mass of the separator).
  • the polyolefin for example, a homopolymer or copolymer such as ethylene, propylene, butene, methylpentene, or a mixture thereof can be used.
  • Examples of the homopolymer include polyethylene, polypropylene, polybutene, polymethylpentene and the like.
  • polyethylene is preferable from the viewpoint of excellent moldability and economy.
  • Polyethylene has a lower melt molding temperature than polypropylene and good productivity.
  • the weight average molecular weight of the polyolefin is preferably 500,000 or more and more preferably 1,000,000 or more from the viewpoint of excellent mechanical strength of the separator. Although there is no restriction
  • the weight average molecular weight of polyolefin can be measured, for example with a high temperature GPC apparatus, using toluene or xylene as an eluent.
  • silica particles as silica.
  • the silica particles particles having a fine particle diameter and having a pore structure inside and / or on the surface are preferable.
  • the specific surface area of the silica particles is preferably 100 m 2 / g or more.
  • the pore structure of the separator is further refined (densified) and complicated to further improve the short-circuit resistance, and to increase the electrolyte solution holding power.
  • a hydrophilic group such as —OH
  • the specific surface area of a silica particle is 400 m ⁇ 2 > / g or less from a viewpoint that a silica particle can disperse
  • the specific surface area of the silica particles can be measured by, for example, the BET method.
  • the number of silica particles having a particle size (longest diameter) of 2 ⁇ m or more in the separator is arbitrarily selected when the cross section of the separator is analyzed with a scanning electron microscope (SEM) from the viewpoint of excellent uniformity of separator strength ⁇ 30 ⁇ m ⁇ Within the range of 40 ⁇ m, the number is preferably 20 or less, and more preferably 10 or less.
  • the total mass of oxygen and silicon (silicon) in the separator is from the viewpoint of further improving the short-circuit suppressing effect and improving the separator strength.
  • the following ranges are preferred based on the total mass of carbon, oxygen and silicon.
  • the total of the masses of oxygen and silicon is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more.
  • the total mass of oxygen and silicon may be 55% by mass or more, or 60% by mass or more.
  • the total of the masses of oxygen and silicon is preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less.
  • the total of the masses of oxygen and silicon may be 65% by mass or less.
  • the total of the masses of oxygen and silicon is preferably 30 to 80% by mass, more preferably 40 to 75% by mass, and still more preferably 50 to 70% by mass.
  • the total of the masses of oxygen and silicon may be 55 to 75% by mass or 60 to 65% by mass.
  • the masses of carbon, oxygen, and silicon in the separator can be obtained, for example, by analyzing the cross section of the separator by energy dispersive X-ray spectroscopy (EDX). That is, the total mass of oxygen and silicon is preferably in the above range based on the total mass of carbon, oxygen and silicon detected when the cross section of the separator is analyzed by EDX.
  • EDX energy dispersive X-ray spectroscopy
  • the separator of this embodiment can be obtained, for example, by melt-kneading a raw material composition mainly composed of polyolefin, silica, and a plasticizer to form a sheet-like material having a predetermined shape.
  • the plasticizer for example, mineral oil such as industrial lubricating oil made of saturated hydrocarbon (paraffin); higher alcohol such as stearyl alcohol; ester plasticizer such as dioctyl phthalate can be used. Among these, mineral oil is preferable because it can be easily reused.
  • the plasticizer is preferably blended in the raw material composition mainly composed of polyolefin, silica and plasticizer in an amount of 30 to 70% by mass based on the total amount of the raw material composition.
  • the plasticizer is removed by a method such as extraction and removal using a solvent after melt-kneading a raw material composition mainly composed of polyolefin, silica, and plasticizer to form a sheet-like material having a predetermined shape.
  • a raw material composition mainly composed of polyolefin, silica, and plasticizer to form a sheet-like material having a predetermined shape.
  • the plasticizer By removing the plasticizer, it can be made porous.
  • the oxidation resistance can be improved by adding an appropriate amount of the plasticizer.
  • the content of the plasticizer in the separator is preferably 5 to 30% by mass based on the total mass of the separator.
  • a saturated hydrocarbon organic solvent such as hexane, heptane, octane, nonane, decane and the like can be used.
  • separators include surfactants (hydrophilic agents), antioxidants, UV absorbers, weathering agents, lubricants, antibacterial agents, antifungal agents, pigments, dyes, colorants, antifogging agents, as necessary. You may contain additives, such as a matting agent, in the range which does not impair the objective and effect of this invention.
  • the separator preferably has a first rib and a base portion that supports the first rib, and more preferably has a second rib supported by the base portion.
  • the first rib and the second rib are, for example, convex.
  • the separator is long, for example, and the first rib and the second rib extend, for example, in the longitudinal direction of the separator.
  • the height and / or width of the first rib is larger than, for example, the second rib.
  • the lead-acid battery according to the present embodiment has a first region including a first rib and a second region including a second rib, and a short direction of the separator (a direction perpendicular to the longitudinal direction; width).
  • Each end portion (one end portion and the other end portion; two second regions) in the direction) includes a second rib, and a region (first region) between the both end portions is a first rib. It is also possible to include this.
  • one aspect of the separator of the present embodiment will be described with reference to FIGS.
  • FIG. 1 (a) is a front view showing a separator
  • FIG. 1 (b) is a cross-sectional view of the separator
  • FIG. 2 is a cross-sectional view of the separator and the electrode.
  • the separator 10 includes a flat base portion 11, a plurality of convex ribs (first ribs) 12, and a plurality of convex mini ribs (second ribs) 13. ing.
  • the base portion 11 supports the rib 12 and the mini rib 13.
  • a plurality of ribs 12 are arranged in the center (first region) in the width direction of the separator 10 so as to extend in the longitudinal direction of the separator 10.
  • the plurality of ribs 12 are disposed substantially parallel to each other on the one surface 10 a of the separator 10.
  • the interval between the ribs 12 is, for example, 3 to 15 mm.
  • One end in the height direction of the rib 12 is integrated with the base portion 11, and the other end in the height direction of the rib 12 is in contact with one electrode 14a of the positive electrode and the negative electrode (see FIG. 2).
  • the base portion 11 faces the electrode 14 a in the height direction of the rib 12.
  • Ribs are not disposed on the other surface 10b of the separator 10, and the other surface 10b of the separator 10 faces or is in contact with the other electrode 14b (see FIG. 2) of the positive electrode and the negative electrode.
  • a plurality of (many) mini-ribs 13 are arranged so as to extend in the longitudinal direction of the separator 10 on both sides (both ends, two second regions) in the width direction of the separator 10.
  • the mini-rib 13 has a function of improving the separator strength in order to prevent the corners of the electrodes from breaking through the separator when the lead storage battery vibrates in the lateral direction.
  • the number of the mini-ribs 13 is preferably 10 or more from the viewpoint that the end of the separator is less likely to be wrinkled when the separator is wound, and that the strength for preventing a short circuit is easily improved. More than this is more preferable.
  • the number of mini-ribs 13 is preferably 40 or less from the viewpoint of easily forming the separator in a bag shape. From these viewpoints, the number of the mini-ribs 13 is preferably 10 to 40, more preferably 20 to 40.
  • the number of miniribs 13 is, for example, the number arranged at each of both ends.
  • the height, width, and interval of the mini-ribs 13 are preferably smaller than the ribs 12.
  • the cross-sectional shape of the minirib 13 may be the same as or different from the rib 12.
  • the cross-sectional shape of the mini-rib 13 is preferably a semicircular shape. Further, the mini-rib 13 may not be disposed in the separator 10.
  • the upper limit of the thickness T of the base portion 11 is preferably 0.4 mm or less, more preferably 0.3 mm or less, still more preferably 0.25 mm or less, and 0.25 mm from the viewpoint of obtaining further excellent charge acceptability and discharge characteristics. Is particularly preferably 0.225 mm or less, and very preferably 0.2 mm or less. Although there is no restriction
  • the upper limit of the height H of the rib 12 (the height in the facing direction of the base portion 11 and the electrode 14) H is preferably 1 mm or less, more preferably 0.9 mm or less, from the viewpoint of obtaining further excellent charge acceptance. 8 mm or less is further preferable, and 0.6 mm or less is particularly preferable.
  • the lower limit of the height H of the rib 12 is preferably 0.3 mm or more, more preferably 0.4 mm or more, and still more preferably 0.5 mm or more, from the viewpoint of suppressing oxidative deterioration at the positive electrode.
  • the height H of the rib 12 is preferably 0.3 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.3 to 0.8 mm, and 0.4 to 0.8 mm. Is particularly preferable, and 0.5 to 0.6 mm is very preferable.
  • the lower limit of the ratio H / T of the height H of the rib 12 to the thickness T of the base portion 11 is preferably 2 or more from the viewpoint of excellent oxidation resistance of the separator.
  • the lower limit of the ratio H / T is more preferably 2.3 or more, and even more preferably 2.5 or more, from the viewpoint of excellent oxidation resistance and productivity of the separator.
  • the upper limit of the ratio H / T is preferably 6 or less from the viewpoint of excellent rib shape retention and a further excellent short-circuit suppressing effect. If the ratio H / T is 6 or less, the distance between the positive electrode and the negative electrode is sufficient, and it is estimated that the short circuit is further suppressed. Further, when the ratio H / T is 6 or less, it is presumed that the battery characteristics such as charge acceptability are favorably maintained without damaging the ribs when the lead storage battery is assembled.
  • the upper limit of the ratio H / T is more preferably 5 or less, further preferably 4 or less, particularly preferably 3.7 or less, from the viewpoint of further improving the short-circuit suppressing effect and from the viewpoint of excellent rib shape retention. .5 or less is very preferable, and 3 or less is very preferable.
  • the ratio H / T is preferably 2 to 6, more preferably 2.3 to 5, further preferably 2.3 to 4, particularly preferably 2.3 to 3.7, and 2.3 to 3 .5 is very preferable, and 2.5 to 3 is very preferable.
  • the upper base width B of the rib 12 is preferably 0.1 mm or more, more preferably 0.2 mm or more, and more preferably 0.3 mm or more from the viewpoint of excellent rib shape retention and oxidation resistance. Is more preferable, and 0.35 mm or more is particularly preferable. From the same viewpoint, the upper base width B of the rib 12 is preferably 2 mm or less, more preferably 1 mm or less, still more preferably 0.8 mm or less, and particularly preferably 0.5 mm or less.
  • the upper base width B of the rib 12 is preferably 0.1 to 2 mm, more preferably 0.2 to 2 mm, still more preferably 0.3 to 2 mm, particularly preferably 0.35 to 2 mm, 0 .35 to 1 mm is very preferable, 0.35 to 0.8 mm is very preferable, and 0.35 to 0.5 mm is even more preferable.
  • the upper base width B of the rib 12 may be 0.2 to 1 mm, or may be 0.2 to 0.8 mm.
  • the bottom bottom width A of the rib is preferably 0.2 mm or more, more preferably 0.3 mm or more, still more preferably 0.4 mm or more, particularly preferably 0.5 mm or more, from the viewpoint of excellent rib shape retention. .7 mm or more is very preferable.
  • the lower bottom width A of the rib is preferably 4 mm or less, more preferably 2 mm or less, and still more preferably 1 mm or less.
  • the bottom bottom width A of the rib is preferably 0.2 to 4 mm, more preferably 0.3 to 2 mm, still more preferably 0.4 to 1 mm, particularly preferably 0.5 to 1 mm. 7 to 1 mm is very preferable.
  • the ratio B / A of the upper base width B to the lower base width A is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, from the viewpoint of excellent rib shape retention. .4 or more is particularly preferable, and 0.45 or more is very preferable.
  • the ratio B / A is preferably 1 or less, more preferably 0.8 or less, still more preferably 0.6 or less, and particularly preferably 0.55 or less.
  • the ratio B / A is preferably 0.1 to 1, more preferably 0.2 to 0.8, still more preferably 0.3 to 0.6, and particularly preferably 0.4 to 0.55. 0.45 to 0.55 is particularly preferable.
  • the separator 10 preferably has a bag shape surrounding at least one of the positive electrode and the negative electrode.
  • a mode in which one of the positive electrode and the negative electrode is accommodated in a bag-shaped separator and is alternately laminated with the other of the positive electrode and the negative electrode is preferable.
  • the negative electrode is accommodated in the bag-shaped separator because the positive electrode may penetrate the separator due to the elongation of the positive electrode current collector.
  • the separator 10 may be a microporous polyethylene sheet; a glass fiber and acid-resistant paper bonded together.
  • the separator 10 is preferably cut according to the length of the negative electrode (negative electrode plate or the like) in the step of laminating the electrodes (electrode plate or the like). Further, the cut separator 10 may be folded in two and wrapping the negative electrode by crimping both sides.
  • FIG. 3 is a view showing a bag-like separator 20 and an electrode (for example, a negative electrode) 14 accommodated in the separator 20.
  • the separator 10 used for preparation of the separator 20 is formed in the elongate sheet form, for example.
  • the separator 20 shown in FIG. 3 is obtained by cutting the separator 10 into an appropriate length, folding it in the longitudinal direction of the separator 10 and placing the electrodes 14 on the inside thereof, and superimposing them on both sides. It is obtained by welding (for example, reference numeral 22 in FIG. 3 indicates a mechanical seal portion).
  • the electrolytic solution of the lead storage battery according to the present embodiment contains aluminum ions.
  • the electrolytic solution contains aluminum ions, an excellent short-circuit suppressing effect can be obtained even when a separator containing silica is used.
  • the positive electrode side tends to be in an alkaline atmosphere, and when aluminum ions are not present in the electrolytic solution, silica is easily dissolved when it becomes alkaline.
  • silica is easily dissolved when it becomes alkaline.
  • the solubility of lead sulfate increases at the positive electrode, and the solubility and the pH decrease during charging (the pH decreases). From the difference in the solubility of lead sulfate when shifting to the acidic side), it is presumed that lead sulfate precipitates are likely to be generated inside the separator, and the short circuit is accelerated.
  • the electrolytic solution contains aluminum ions
  • an aluminum compound such as aluminum hydroxide is deposited inside the separator during discharge. Since the dissolution of silica is suppressed by precipitation of an aluminum compound such as aluminum hydroxide in this manner, the thickness of the separator can be maintained.
  • the pH of the electrolytic solution is increased by the precipitation reaction of an aluminum compound such as aluminum hydroxide (the pH is shifted to the alkali side), an increase in the solubility of lead sulfate can be suppressed. By these, it is estimated that a short circuit can be suppressed because aluminum ion exists in electrolyte solution.
  • the aluminum ion concentration of the electrolytic solution is preferably 0.01 mol / L or more based on the total amount of the electrolytic solution from the viewpoint of further improving the short-circuit suppressing effect and further improving battery characteristics such as charge acceptance. 0.02 mol / L or more is more preferable, and 0.05 mol / L or more is more preferable. From the same viewpoint, the aluminum ion concentration of the electrolytic solution may be 0.08 mol / L or more, 0.1 mol / L or more, 0.12 mol / L or more, and 0 .14 mol / L or more may be sufficient, and 0.15 mol / L or more may be sufficient.
  • the aluminum ion concentration of the electrolytic solution is preferably 0.3 mol / L or less on the basis of the total amount of the electrolytic solution from the viewpoint of further improving the short-circuit suppressing effect and further improving the charge acceptability and the ISS cycle characteristics. 0.25 mol / L or less is more preferable, and 0.2 mol / L or less is still more preferable. From these viewpoints, the aluminum ion concentration of the electrolytic solution is preferably from 0.01 to 0.3 mol / L, more preferably from 0.02 to 0.25 mol / L, based on the total amount of the electrolytic solution, from 0.05 to 0.2 mol / L is more preferable.
  • the aluminum ion concentration of the electrolytic solution may be 0.08 to 0.2 mol / L, 0.1 to 0.2 mol / L, or 0.12 to 0.2 mol. / L, 0.14 to 0.2 mol / L, or 0.15 to 0.2 mol / L.
  • the aluminum ion concentration of the electrolytic solution can be measured by, for example, ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • the mechanism that further improves the short-circuit suppressing effect when the aluminum ion concentration of the electrolytic solution is within the predetermined range it is presumed as described above regarding the use of aluminum ions.
  • the details of the mechanism for improving the charge acceptability are not clear, but are presumed as follows. That is, when the aluminum ion concentration is within the predetermined range, the solubility of the crystalline lead sulfate, which is a discharge product, in the electrolytic solution increases under any low SOC, or due to the high ion conductivity of aluminum ions. Since the diffusibility of the electrolytic solution into the electrode active material is improved, it is estimated that the charge acceptability is improved.
  • the electrolytic solution contains, for example, aluminum ions and sulfuric acid.
  • the electrolytic solution may further contain ions other than aluminum ions (sodium ions, potassium ions, phosphate ions, etc.), and preferably contains sodium ions.
  • ions other than aluminum ions sodium ions, potassium ions, phosphate ions, etc.
  • sodium ions When the electrolytic solution contains sodium ions, the 5-hour capacity cycle characteristics tend to be further improved.
  • PCL Premium Capacity Loss
  • the sodium ion concentration is preferably 0.01 mol / L or more, based on the total amount of the electrolytic solution, and preferably 0.02 mol / L or more from the viewpoint of further improving the 5-hour capacity cycle characteristics. More preferred is 0.03 mol / L or more.
  • the sodium ion concentration of the electrolytic solution is preferably 0.1 mol / L or less, based on the total amount of the electrolytic solution, from the viewpoint of further improving the 5-hour capacity cycle characteristics, the charge acceptability and the ISS cycle characteristics, and is preferably 0.08 mol / L. L or less is more preferable, and 0.06 mol / L or less is still more preferable.
  • the sodium ion concentration is preferably 0.01 to 0.1 mol / L, more preferably 0.02 to 0.08 mol / L, and more preferably 0.03 to 0.06 mol, based on the total amount of the electrolytic solution. / L is more preferable.
  • the sodium ion concentration of the electrolytic solution can be measured, for example, by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • the positive electrode material contains a positive electrode active material.
  • the positive electrode active material can be obtained by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material to obtain an unformed positive electrode active material and then forming an unformed positive electrode active material.
  • the positive electrode active material after chemical conversion preferably contains ⁇ -lead dioxide ( ⁇ -PbO 2 ), and may further contain ⁇ -lead dioxide ( ⁇ -PbO 2 ).
  • ⁇ -PbO 2 ⁇ -lead dioxide
  • lead powder is mentioned.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • Red lead as a raw material of the positive electrode active material (Pb 3 O 4) may be used.
  • the unformed positive electrode material preferably contains an unformed positive electrode active material containing tribasic lead sulfate as a main component.
  • the average particle diameter of the positive electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more, from the viewpoint of further improving charge acceptance and cycle characteristics.
  • the average particle diameter of the positive electrode active material is preferably 2.5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving the cycle characteristics.
  • the average particle diameter of the positive electrode active material is an average particle diameter of the positive electrode active material in the positive electrode material after chemical conversion.
  • the average particle diameter of the positive electrode active material is, for example, the long side of all active material particles in the image of a scanning electron micrograph (1000 times) in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in the positive electrode material at the center of the positive electrode after chemical conversion It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
  • the content of the positive electrode active material is preferably 95% by mass or more based on the total mass of the positive electrode material, from the viewpoint of further excellent battery characteristics (capacity, low temperature high rate discharge performance, charge acceptance, ISS cycle characteristics, etc.) 97 mass% or more is more preferable, and 99 mass% or more is still more preferable.
  • the upper limit of the content of the positive electrode active material may be 100% by mass or less.
  • the content of the positive electrode active material is the content of the positive electrode active material in the positive electrode material after chemical conversion.
  • the positive electrode material may further contain an additive.
  • the additive include carbon materials (carbonaceous conductive material, excluding carbon fibers), reinforcing short fibers, and the like.
  • the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like.
  • Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the lower limit of the specific surface area of the positive electrode material is preferably 3 m 2 / g or more, more preferably 4 m 2 / g or more, and still more preferably 5 m 2 / g or more from the viewpoint of further excellent charge acceptance.
  • the upper limit of the specific surface area of the cathode material is not particularly limited, from the viewpoint of excellent practical point of view and utilization, preferably 15 m 2 / g or less, more preferably 13m 2 / g or less, is 12m 2 / g or less Further preferred.
  • the specific surface area of the positive electrode material is the specific surface area of the positive electrode material after chemical conversion.
  • the specific surface area of the positive electrode material is, for example, a method of adjusting the amount of sulfuric acid and water added when preparing the positive electrode material paste, a method of refining the active material at the stage of the unformed positive electrode active material, and changing the chemical conversion conditions. It can be adjusted by a method or the like.
  • the specific surface area of the positive electrode material can be measured by, for example, the BET method.
  • the BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area. Specifically, it is measured based on the following BET equation.
  • P / P o is satisfied be in the range of 0.05-0.35.
  • symbol is as follows.
  • P Adsorption equilibrium pressure when in an adsorption equilibrium state at a constant temperature
  • P o Saturated vapor pressure at the adsorption temperature
  • V Adsorption amount at the adsorption equilibrium pressure
  • m Monomolecular layer adsorption amount (a gas molecule is a single molecule on a solid surface) Adsorption amount when layer is formed)
  • C BET constant (parameter relating to the interaction between the solid surface and the adsorbent)
  • equation (2) By transforming equation (1) (dividing the numerator denominator on the left side by P), the following equation (2) is obtained.
  • V adsorption amount
  • P / P o the relationship between the adsorption amount
  • V the adsorption amount
  • P / P o the relative pressure
  • the following formula (3) is derived from the formula (2).
  • the intercept is i
  • the intercept i and the gradient s are as shown in the following formula (4) and the following formula (5), respectively.
  • the total surface area S total (m 2 ) of the sample is obtained by the following formula (9), and the specific surface area S (m 2 / g) is obtained by the following formula (10) from the total surface area S total .
  • N denotes the Avogadro's number
  • a CS shows the adsorption cross sectional area (m 2)
  • M indicates the molecular weight.
  • w shows a sample amount (g).
  • the porosity of the positive electrode material is preferably 50% by volume or more, more preferably 55% by volume or more, from the viewpoint that the area where sulfuric acid enters the pores (holes) in the positive electrode material increases and the capacity tends to increase.
  • limiting in particular in the upper limit of the porosity of a positive electrode material 70 volume% or less is preferable from a viewpoint that the amount of sulfuric acid impregnation to the void
  • the upper limit of the porosity is more preferably 60% by volume or less from a practical viewpoint.
  • the porosity of the positive electrode material is the porosity of the positive electrode material after chemical conversion.
  • the porosity of the positive electrode material is, for example, a value (ratio based on volume) obtained from mercury porosimeter measurement.
  • the porosity of the positive electrode material can be adjusted by, for example, the amount of dilute sulfuric acid added when producing the positive electrode material paste.
  • the negative electrode material contains a negative electrode active material.
  • the negative electrode active material can be obtained by chemical conversion of an unformed negative electrode active material after obtaining an unformed negative electrode active material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material.
  • Examples of the negative electrode active material after chemical conversion include spongy lead.
  • the spongy lead tends to react with sulfuric acid in the electrolyte and gradually change to lead sulfate (PbSO 4 ).
  • Examples of the raw material for the negative electrode active material include lead powder.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • the unformed negative electrode active material is composed of, for example, basic lead sulfate, metallic lead, and a lower oxide.
  • the average particle diameter of the negative electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more, from the viewpoint of further improving charge acceptance and ISS cycle characteristics.
  • the average particle diameter of the negative electrode active material is preferably 2.5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving the ISS cycle characteristics.
  • the average particle diameter of the negative electrode active material is an average particle diameter of the negative electrode active material in the negative electrode material after chemical conversion.
  • the average particle diameter of the negative electrode active material is, for example, the long side of all the active material particles in the scanning electron micrograph (1000 times) image of the negative electrode material in the central part of the negative electrode after chemical conversion in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in width. It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
  • the content of the negative electrode active material is preferably 93% by mass or more based on the total mass of the negative electrode material, from the viewpoint of further excellent battery characteristics (capacity, low temperature high rate discharge performance, charge acceptance, ISS cycle characteristics, etc.) 95 mass% or more is more preferable, and 98 mass% or more is still more preferable.
  • the upper limit of the content of the negative electrode active material may be 100% by mass or less.
  • the said content of a negative electrode active material is content of the negative electrode active material in the negative electrode material after chemical conversion.
  • the negative electrode material may further contain an additive.
  • an additive a resin having at least one selected from the group consisting of a sulfone group (sulfonic acid group, sulfo group) and a sulfonic acid group (a group in which a hydrogen atom of the sulfone group is substituted with an alkali metal) (sulfone group and And / or a resin having a sulfonate group); barium sulfate; a carbon material (carbonaceous conductive material, excluding carbon fiber); a reinforcing short fiber.
  • the negative electrode material contains a resin having at least one selected from the group consisting of a sulfone group and a sulfonate group, the charge acceptability can be further improved.
  • Examples of the resin having a sulfone group and / or a sulfonate group include bisphenol resins having a sulfone group and / or a sulfonate group (hereinafter simply referred to as “bisphenol resins”), lignin sulfonic acid, and lignin sulfonate. It is done.
  • Lignin sulfonic acid is a compound in which a part of the degradation product of lignin is sulfonated.
  • Examples of the lignin sulfonate include potassium lignin sulfonate and sodium lignin sulfonate.
  • bisphenol-based resins are preferable from the viewpoint of further improving charge acceptance.
  • the bisphenol resin is selected from the group consisting of a bisphenol compound, at least one selected from the group consisting of aminoalkyl sulfonic acid, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acid and aminoaryl sulfonic acid derivatives, and formaldehyde and formaldehyde derivatives. It is preferable that the resin is obtained by reacting at least one of the above.
  • a bisphenol compound is a compound having two hydroxyphenyl groups.
  • Examples of bisphenol compounds include 2,2-bis (4-hydroxyphenyl) propane (also referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, , 2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4-hydroxyphenyl) ) Diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone ("Bisphenol S” Also).
  • aminoalkylsulfonic acid examples include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like.
  • aminoalkyl sulfonic acid derivatives include compounds in which the hydrogen atom of aminoalkyl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, and sulfone groups of aminoalkyl sulfonic acid (—SO 3 H).
  • alkali metal salts in which a hydrogen atom is substituted with an alkali metal (for example, sodium or potassium).
  • aminoarylsulfonic acid examples include aminobenzenesulfonic acid (4-aminobenzenesulfonic acid and the like), aminonaphthalenesulfonic acid and the like.
  • aminoaryl sulfonic acid derivatives include compounds in which a hydrogen atom of aminoaryl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, a sulfone group of aminoaryl sulfonic acid (—SO 3 H)
  • alkali metal salts in which a hydrogen atom is substituted with an alkali metal (for example, sodium or potassium).
  • formaldehyde derivatives examples include paraformaldehyde, hexamethylenetetramine, and trioxane.
  • the bisphenol-based resin preferably has at least one selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
  • X 1 represents a divalent group
  • a 1 represents an alkylene group having 1 to 4 carbon atoms, or an arylene group
  • R 11 represents an alkali metal or a hydrogen atom
  • R 12 represents a methylol group (—CH 2 OH)
  • R 13 and R 14 each independently represents an alkali metal or a hydrogen atom
  • n11 represents an integer of 1 to 600
  • n12 represents 1 to 3 N13 represents 0 or 1.
  • X 2 represents a divalent group
  • a 2 represents an alkylene group having 1 to 4 carbon atoms, or an arylene group
  • R 21 represents an alkali metal or a hydrogen atom
  • R 22 represents a methylol group (—CH 2 OH)
  • R 23 and R 24 each independently represents an alkali metal or a hydrogen atom
  • n 21 represents an integer of 1 to 600
  • n 22 represents 1 to 3 N23 represents 0 or 1.
  • the ratio of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) is not particularly limited, and may vary depending on synthesis conditions and the like.
  • a resin having only one of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) may be used.
  • X 1 and X 2 include, for example, alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group,
  • An organic group such as a phenylethylidene group; a sulfonyl group; an isopropylidene group (—C (CH 3 ) 2 —) is preferable from the viewpoint of further excellent charge acceptability, and a sulfonyl group from the viewpoint of further excellent discharge characteristics.
  • X 1 and X 2 may be substituted with a halogen atom such as a fluorine atom.
  • a halogen atom such as a fluorine atom.
  • the hydrocarbon ring may be substituted with an alkyl group or the like.
  • Examples of A 1 and A 2 include alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, and a butylene group; and divalent arylene groups such as a phenylene group and a naphthylene group.
  • the arylene group may be substituted with an alkyl group or the like.
  • Examples of the alkali metal of R 11 , R 13 , R 14 , R 21 , R 23 and R 24 include sodium and potassium.
  • n11 and n21 are preferably 5 to 300 from the viewpoint of further excellent ISS cycle characteristics and solubility in a solvent.
  • n12 and n22 are preferably 1 or 2, and more preferably 1, from the viewpoint of improving the charge acceptance, discharge characteristics, and ISS cycle characteristics in a well-balanced manner.
  • n13 and n23 vary depending on production conditions, but 0 is preferable from the viewpoint of further excellent ISS cycle characteristics and excellent storage stability of a bisphenol-based resin.
  • the weight average molecular weight of a resin having a sulfonic group and / or a sulfonic acid group suppresses the elution of a resin having a sulfonic group and / or a sulfonic acid group from an electrode to an electrolyte in a lead storage battery Is preferably 3000 or more, more preferably 10,000 or more, still more preferably 20000 or more, and particularly preferably 30000 or more.
  • the weight average molecular weight of the resin having a sulfone group and / or a sulfonate group is 200000 from the viewpoint that the ISS cycle characteristics are easily improved by suppressing the decrease in the adsorptivity to the electrode active material and the decrease in the dispersibility.
  • the following is preferable, 150,000 or less is more preferable, and 100,000 or less is still more preferable.
  • the weight average molecular weight of the resin having a sulfone group and / or a sulfonate group can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions.
  • GPC gel permeation chromatography
  • the content of the resin having a sulfone group and / or a sulfonate group is based on the total mass of the negative electrode material from the viewpoint of obtaining further excellent charge acceptability. Moreover, 0.01 mass% or more is preferable in conversion of solid content, 0.05 mass% or more is more preferable, and 0.1 mass% or more is still more preferable.
  • the content of the resin having a sulfone group and / or a sulfonate group is preferably 2% by mass or less, preferably 1% by mass or less in terms of solid content, based on the total mass of the negative electrode material, from the viewpoint of obtaining further excellent discharge characteristics. Is more preferable, and 0.3 mass% or less is still more preferable.
  • Examples of the carbon material include carbon black and graphite.
  • Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like.
  • Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
  • the specific surface area of the negative electrode material is preferably 0.4 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 0.6 m 2 / g or more from the viewpoint of increasing the reactivity between the electrolytic solution and the negative electrode active material. Is more preferable.
  • the specific surface area of the negative electrode material, from the further suppression of the contraction of the negative electrode at the time of the cycle is preferably not more than 2m 2 / g, more preferably not more than 1.8 m 2 / g, more preferably not more than 1.5 m 2 / g.
  • the specific surface area of the negative electrode material is the specific surface area of the negative electrode material after chemical conversion.
  • the specific surface area of the negative electrode material changes, for example, the method of adjusting the addition amount of sulfuric acid and water when preparing the negative electrode material paste, the method of refining the active material at the stage of the unformed negative electrode active material, and the chemical conversion conditions It can be adjusted by the method.
  • the specific surface area of the negative electrode material can be measured by, for example, the BET method.
  • Examples of the method for producing the current collector include a casting method, an expanding method, and a punching method.
  • Examples of the current collector material include a lead-calcium-tin alloy and a lead-antimony alloy. A small amount of selenium, silver, bismuth or the like can be added to these.
  • the current collector can be obtained by forming these materials into a lattice shape or a mesh shape by the above-described manufacturing method.
  • the material and / or manufacturing method of the positive and negative electrode current collectors may be the same or different from each other.
  • the method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
  • the positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives.
  • the negative electrode material paste preferably contains a raw material for the negative electrode active material (such as lead powder), and preferably contains a resin having a sulfone group and / or a sulfonate group (such as a bisphenol-based resin) as a dispersant. Further, other additives may be further contained.
  • the positive electrode material paste for obtaining the positive electrode material can be obtained, for example, by the following method.
  • lead (Pb 3 O 4 ) may be used as a raw material for the positive electrode active material from the viewpoint of shortening the chemical formation time.
  • an additive (reinforcing short fiber, etc.) is added to the raw material of the positive electrode active material and dry mixed to obtain a mixture.
  • a positive electrode material paste is obtained by adding and knead
  • An unformed positive electrode can be obtained by filling the positive electrode material paste into the current collector and then aging and drying.
  • the blending amount of the reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material (lead powder, etc.) 0.05 to 0.3% by mass is more preferable.
  • aging conditions for obtaining an unformed positive electrode 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a relative humidity of 50 to 98% RH.
  • the drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
  • the negative electrode material paste can be obtained, for example, by the following method. First, an additive (a resin having a sulfone group and / or a sulfonate group, a carbon material, a reinforcing short fiber, barium sulfate, or the like) is added to the raw material of the negative electrode active material and dry mixed to obtain a mixture. And a negative electrode material paste is obtained by adding and knead
  • an additive a resin having a sulfone group and / or a sulfonate group, a carbon material, a reinforcing short fiber, barium sulfate, or the like
  • a negative electrode material paste is obtained by adding and knead
  • the amount of each component is preferably within the following range.
  • the amount of the resin having a sulfone group and / or a sulfonate group is preferably 0.01 to 2.0% by mass in terms of resin solid content based on the total mass of the raw material of the negative electrode active material (such as lead powder). 0.05 to 1.0 mass% is more preferable, 0.1 to 0.5 mass% is still more preferable, and 0.1 to 0.3 mass% is particularly preferable.
  • the blending amount of the carbon material is preferably 0.1 to 3% by mass, and more preferably 0.2 to 1.4% by mass, based on the total mass of the negative electrode active material (such as lead powder).
  • the blending amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass based on the total mass of the negative electrode active material (lead powder or the like).
  • the compounding amount of barium sulfate is preferably 0.01 to 2.0% by mass, more preferably 0.01 to 1.0% by mass, based on the total mass of the negative electrode active material (lead powder, etc.).
  • the aging conditions for obtaining the unformed negative electrode are preferably 15 to 30 hours in an atmosphere of a temperature of 45 to 65 ° C. and a relative humidity of 70 to 98% RH.
  • the drying conditions are preferably 45 to 60 ° C. and 15 to 30 hours.
  • the unformed negative electrode and the unformed positive electrode produced as described above are alternately stacked via separators, and the current collectors of the same polarity electrodes are connected (welded, etc.) with a strap.
  • An electrode group is obtained.
  • This electrode group is arranged in a battery case to produce an unformed battery.
  • a direct current is applied to form a battery case.
  • the lead acid battery can be obtained by adjusting the specific gravity of the electrolyte after the formation to an appropriate specific gravity.
  • the electrolytic solution contains, for example, sulfuric acid and aluminum ions, and can be obtained by mixing sulfuric acid and aluminum sulfate powder.
  • Aluminum sulfate to be dissolved in the electrolytic solution can be added as an anhydride or a hydrate.
  • the specific gravity after chemical conversion of the electrolytic solution is preferably in the following range.
  • the specific gravity of the electrolytic solution is preferably 1.25 or more, more preferably 1.26 or more, further preferably 1.27 or more, and 1.275 or more from the viewpoint of further suppressing the osmotic short circuit or freezing and further improving the discharge characteristics. Is particularly preferred.
  • the specific gravity of the electrolytic solution is preferably 1.33 or less, more preferably 1.32 or less, still more preferably 1.31 or less, and particularly preferably 1.30 or less, from the viewpoint of further improving charge acceptability and ISS cycle characteristics. .
  • the value of the specific gravity of the electrolytic solution can be measured by, for example, a floating hydrometer or a digital hydrometer manufactured by Kyoto Electronics Industry Co., Ltd.
  • the battery case can accommodate electrodes (electrode plates, etc.) inside.
  • the battery case preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of easily accommodating the electrode.
  • an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid.
  • the shape of the battery case is not particularly limited, but a rectangular shape is preferable so that an ineffective space is reduced when an electrode (a plate plate or the like) is accommodated.
  • the material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (such as dilute sulfuric acid).
  • Specific examples of the material for the battery case include PP (polypropylene), PE (polyethylene), and ABS resin.
  • PP polypropylene
  • PE polyethylene
  • ABS resin ABS resin
  • the material of the box and the lid may be the same material or different materials.
  • materials having the same thermal expansion coefficient are preferable from the viewpoint of not generating excessive stress.
  • Chemical conversion conditions and specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material.
  • the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed after aging and drying in the electrode manufacturing process (tank chemical conversion).
  • An expanded lattice (positive electrode current collector) produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with this positive electrode material paste.
  • the grid (positive electrode current collector) filled with the positive electrode material paste was aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried and produced the unchemically formed positive electrode plate.
  • Lead powder was used as a raw material for the negative electrode active material.
  • Bispers P215 condensation product of bisphenol compound, aminobenzenesulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Industries Co., Ltd.
  • 0.2 parts by mass (solid content conversion) for reinforcement
  • a negative electrode material paste was filled in an expanded lattice (negative electrode current collector) produced by subjecting a rolled sheet made of a lead alloy to an expanding process.
  • the grid body (negative electrode current collector) filled with the negative electrode material paste was aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried and produced the unchemically formed negative electrode plate.
  • a long sheet-like material containing polyethylene and silica particles and having a plurality of linear ribs and mini-ribs arranged on one side is formed into a bag shape so that the surface on which the ribs and mini-ribs are arranged is located outside. It processed and the bag-shaped separator was prepared (refer FIG.1 and FIG.3).
  • Each of the ribs and the mini-ribs is disposed substantially parallel to each other and extends in the longitudinal direction of the separator. In the short direction of the separator, the first region including the rib is located between the two second regions including the mini-rib. Details of the separator are shown below.
  • Dilute sulfuric acid (electrolytic solution) having a specific gravity of 1.23 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.08 mol / L was injected into the battery. Then, in a 50 degreeC water tank, it formed for 16 hours with the energizing current 10A, the specific gravity of the electrolyte solution after formation was adjusted to 1.280, and the lead acid battery of Example 1 was obtained.
  • the amount of change in the mass of the positive electrode plate and the negative electrode plate before and after removing the electrode material was determined as the mass of the positive electrode material and the negative electrode material, respectively. From the result, the mass ratio of the positive electrode material to the negative electrode material (positive electrode material / negative electrode material) was calculated. The results are shown in Table 1.
  • the separator before battery assembly was cut by an ion milling apparatus E-3500 (trade name, manufactured by Hitachi High-Technologies Corporation) to expose the cross section.
  • EDX analysis of the separator cross section was performed using a scanning electron microscope (trade name: JSM-6010LA, manufactured by JEOL Ltd.). Mapping analysis was performed at a magnification of 300 times, and after the measurement, the separator portion was selected, and the abundances of carbon, oxygen, and silicon were quantified and converted to the mass of each element. Based on the total mass of carbon, oxygen and silicon obtained, the total mass (% by mass) of oxygen and silicon in the separator was calculated.
  • mapping analysis is as follows: acceleration voltage is 15 kV, spot size is 72, pressure is 35 Pa in low vacuum mode, dwell time is 1 millisecond, process time is T4, number of pixels is 512 ⁇ 384, and integration is 5 times. It was. Table 1 shows the quantitative results of each element.
  • a sample for measuring the specific surface area was prepared by the following procedure. First, the formed battery was disassembled, electrode plates (positive and negative plates) were taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 2 g of an electrode material (a positive electrode material and a negative electrode material) was collected from the center of the electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.
  • the specific surface areas of the positive electrode material and the negative electrode material after chemical conversion were calculated according to the BET method by measuring the nitrogen gas adsorption amount at a liquid nitrogen temperature by a multipoint method while cooling the measurement sample prepared above with liquid nitrogen.
  • the measurement conditions were as follows. As a result of the measurement, the specific surface area of the positive electrode material was 5 m 2 / g, and the specific surface area of the negative electrode material was 0.6 m 2 / g.
  • Example 2 and 3 are the same as Example 1 except that dilute sulfuric acid having a specific gravity of 1.280 (after chemical conversion) prepared so that the aluminum ion concentration becomes the value shown in Table 1 is used as the electrolytic solution.
  • a lead storage battery was prepared.
  • Examples 4 to 6 The same as Example 1 except that the amounts of the positive electrode material and the negative electrode material were adjusted so that the mass ratio (positive electrode material / negative electrode material) of the positive electrode material after conversion to the negative electrode material after conversion was the value shown in Table 1. Thus, lead acid batteries of Examples 4 to 6 were produced.
  • Example 7 Except for using dilute sulfuric acid having a specific gravity of 1.280 (after chemical conversion) in which aluminum sulfate anhydride and sodium sulfate are dissolved so that the aluminum ion concentration and sodium ion concentration are the values shown in Table 1, as the electrolytic solution, In the same manner as in Example 1, a lead storage battery of Example 7 was produced.
  • Comparative Example 1 A lead acid battery of Comparative Example 1 was produced in the same manner as Example 1 except that dilute sulfuric acid having a specific gravity of 1.280 (after chemical conversion) not containing aluminum ions was used as the electrolytic solution.
  • Comparative Example 2 Except having adjusted the quantity of the positive electrode material and the negative electrode material so that the mass ratio (positive electrode material / negative electrode material) of the positive electrode material after conversion with respect to the negative electrode material after conversion was 0.95, it carried out similarly to Example 1.
  • the lead acid battery of Comparative Example 2 was produced.
  • the produced lead storage battery was discharged at a constant current of 5.6 A at an ambient temperature of 25 ° C., and the 5-hour rate discharge capacity was calculated from the discharge duration until the cell voltage fell below 1.75 V. Thereafter, constant current charging was performed at 5.6 A until the 5-hour charge capacity was 150% of the 5-hour discharge capacity. Next, constant current discharge was performed at 5.6 A until the cell voltage reached 1.75V. The charging and discharging were repeated. With respect to the initial 5-hour rate discharge capacity, when the obtained 5-hour rate discharge capacity was less than 50%, the cycle was measured. The 5-hour rate capacity cycle characteristics were evaluated relative to the measurement result of Comparative Example 1 as 100.
  • ISS cycle characteristics The produced lead-acid battery is subjected to constant current discharge for 45 A-59 seconds and 300 A-1 seconds at an ambient temperature of 25 ° C., followed by constant current / constant voltage charging for 100 A-2.33 V-60 seconds.
  • a test for one cycle was performed. This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this cycle test, since the amount of charge is small with respect to the amount of discharge, if the charging is not performed completely, the charging gradually becomes insufficient. As a result, the first-second voltage when the discharge current is 300 A for 1 second is gradually reduced.
  • the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging.
  • the first-second voltage at the time of 300 A discharge was measured, and the cycle number when the first-second voltage fell below 1.2 V was defined as the ISS cycle characteristics.
  • the ISS cycle characteristics were evaluated relative to the measurement result of Comparative Example 1 as 100.
  • the lead storage batteries of Examples 1 to 7 were superior to the lead storage batteries of Comparative Examples 1 and 2 in the evaluation results of the penetration short circuit. Since the lead acid batteries of Examples 1 to 7 have a mass ratio of the positive electrode material after chemical conversion to the negative electrode material after chemical conversion is 1.05 or more, the mass ratio does not satisfy the above conditions, compared with the lead acid battery of Comparative Example 2 The decrease in the specific gravity of the electrolyte in the overdischarged state is small, and the increase in the solubility of lead sulfate can be suppressed, so that it is presumed that the effect of suppressing the penetration short circuit is excellent.
  • the lead acid battery of Comparative Example 1 in which the mass ratio of the positive electrode material after chemical conversion to the negative electrode material after chemical conversion is 1.05 or more but the electrolyte does not contain aluminum ions is different from the lead acid batteries of Examples 1-7. In comparison, it was confirmed that the evaluation result of the penetration short circuit was inferior.

Abstract

A lead storage cell provided with a positive electrode and a negative electrode that face each other across a separator 10, and an electrolyte. The separator 10 contains a polyolefin and silica. The positive electrode has a positive electrode collector and a positive electrode member held by the positive electrode collector. The negative electrode has a negative electrode collector and a negative electrode member held by the negative electrode collector. The electrolyte contains aluminum ions. The mass ratio of the chemically converted positive electrode member relative to the chemically converted negative electrode member is 1.05 or higher.

Description

鉛蓄電池Lead acid battery
 本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.
 近年、自動車においては、大気汚染防止又は地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、例えば、エンジンの動作時間を少なくするアイドリングストップシステム車(以下、「ISS車」という)、及び、エンジンの動力によるオルタネータの発電を低減する発電制御車等のマイクロハイブリッド車が検討されている。 In recent years, various measures for improving fuel efficiency have been studied for automobiles in order to prevent air pollution or global warming. Examples of automobiles that have taken measures to improve fuel efficiency include idling stop system cars (hereinafter referred to as “ISS cars”) that reduce engine operating time, and power generation control cars that reduce alternator power generation by engine power. Micro hybrid vehicles are being studied.
 ISS車では、エンジンの始動回数が多くなるため、鉛蓄電池の大電流放電が繰り返される。また、ISS車及び発電制御車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるため充電が不充分となる。 In ISS cars, the number of engine starts increases, so the large current discharge of the lead storage battery is repeated. Further, in the ISS car and the power generation control car, the amount of power generated by the alternator is reduced, and the lead storage battery is charged intermittently, so that the charge is insufficient.
 前記のような使われ方をする鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用されることになる。 The lead storage battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge).
 ところで、鉛蓄電池は、例えば、正極(正極板等)と、負極(負極板等)と、両電極を隔離する合成樹脂製の袋状のセパレータとが積層された構造を有している。前記セパレータとしては、リブの一体加工及び袋加工が容易なポリオレフィン等を主体として成形した、平板状シートの片面に極板当接用主リブを突設してなるリブ付き微多孔質フィルムが知られている。このリブ付き微多孔質フィルムからなるセパレータは、通常、極板当接用主リブを突設した面が正極板に当接するように設計されている。また、極板当接用主リブを突設した面と反対側の面は、リブを設けないフラットな面であり、負極板に当接するように設計されている。 Incidentally, the lead storage battery has a structure in which, for example, a positive electrode (positive electrode plate or the like), a negative electrode (negative electrode plate or the like), and a synthetic resin bag-like separator that separates both electrodes are laminated. As the separator, there is known a microporous film with ribs formed by projecting main ribs for electrode plate contact on one side of a flat sheet, which is mainly formed of polyolefin or the like that can be easily integrated into a bag and processed with a bag. It has been. This separator made of a microporous film with ribs is usually designed such that the surface on which the main ribs for electrode plate abutment are in contact with the positive electrode plate. Further, the surface opposite to the surface on which the electrode plate contact main rib protrudes is a flat surface on which no rib is provided, and is designed to contact the negative electrode plate.
 一般に、鉛蓄電池において充電する際、充電末期に正極から酸素ガスが発生するため、セパレータの正極に対向する面は酸化雰囲気下にある。したがって、セパレータの正極に対向する面は、負極に対向する面と比較して酸化されやすく、セパレータが劣化して脆くなり、その厚みが減少して穴があきやすくなる。その結果、正極と負極とが短絡することが問題となる場合がある。 Generally, when charging in a lead storage battery, oxygen gas is generated from the positive electrode at the end of charging, and therefore the surface of the separator facing the positive electrode is in an oxidizing atmosphere. Therefore, the surface facing the positive electrode of the separator is more easily oxidized than the surface facing the negative electrode, and the separator is deteriorated and becomes brittle, and its thickness is reduced and a hole is easily formed. As a result, a short circuit between the positive electrode and the negative electrode may be a problem.
 また、鉛蓄電池では、充放電の繰り返しにおいて、放電時には水が生成し、充電時には硫酸が生成する。そして、硫酸は水に比べて比重が高く下部に沈降しやすいことから、電解液(硫酸)濃度が電池の上部と下部とで異なってくる成層化現象が生じる。従来のエンジン車では、走行時に過充電されるので、この際に正極及び負極から発生する酸素ガス及び水素ガスによる電解液の攪拌作用によって、成層化は緩和される。しかし、PSOC下では、充電不足の状態が続くので、酸素ガス及び水素ガスによる電解液の攪拌作用が発現しにくく、成層化が生じやすい。成層化が発生すると、電池上部の電解液濃度が低下するため、電池上部で硫酸鉛の溶解量が増加し、浸透短絡が発生しやすくなる。 Also, in lead-acid batteries, during repeated charging and discharging, water is generated during discharging and sulfuric acid is generated during charging. Since sulfuric acid has a higher specific gravity than water and tends to settle at the lower part, a stratification phenomenon occurs in which the electrolyte (sulfuric acid) concentration differs between the upper part and the lower part of the battery. Since the conventional engine vehicle is overcharged during running, stratification is alleviated by the stirring action of the electrolyte solution by oxygen gas and hydrogen gas generated from the positive electrode and the negative electrode at this time. However, under PSOC, the state of insufficient charging continues, so that the stirring action of the electrolyte solution by oxygen gas and hydrogen gas hardly occurs, and stratification tends to occur. When stratification occurs, the electrolyte concentration in the upper part of the battery decreases, so the amount of lead sulfate dissolved in the upper part of the battery increases, and an osmotic short circuit is likely to occur.
 これに対し、下記特許文献1には、デンドライトショート(短絡)を抑制するために、ポリオレフィン、無機粉体及び可塑剤を主体とした原料組成物から構成され、特定の構造を有するセパレータを用いることが記載されている。 On the other hand, in Patent Document 1 below, in order to suppress dendrite short (short circuit), a separator composed of a raw material composition mainly composed of polyolefin, inorganic powder and plasticizer is used and has a specific structure. Is described.
特開2013-211115号公報JP2013-211115A
 ところで、本発明者らの検討によれば、セパレータに含まれる無機粉体としてシリカを用いた場合、浸透短絡しやすくなり、例えば、前記特許文献1に記載されている技術では、浸透短絡の抑制が充分でないことが予想されることが見出された。そのため、近年、鉛蓄電池に対しては、短絡の抑制効果を従来技術と比較して更に高めることが求められている。 By the way, according to the study by the present inventors, when silica is used as the inorganic powder contained in the separator, the penetration short circuit is likely to occur. For example, in the technique described in Patent Document 1, the penetration short circuit is suppressed. Has been found to be not sufficient. Therefore, in recent years, it has been required for lead storage batteries to further improve the short-circuit suppressing effect as compared with the prior art.
 本発明は、前記事情に鑑みてなされたものであり、シリカを含むセパレータを用いた場合であっても短絡の抑制効果に優れる鉛蓄電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lead-acid battery that has an excellent short-circuit suppressing effect even when a separator containing silica is used.
 本発明に係る鉛蓄電池は、セパレータを介して対向する正極及び負極と、電解液と、を備え、セパレータがポリオレフィン及びシリカを含み、正極が、正極集電体と、正極集電体に保持された正極材と、を有し、負極が、負極集電体と、負極集電体に保持された負極材と、を有し、電解液がアルミニウムイオンを含み、化成後の負極材に対する化成後の正極材の質量比が1.05以上である。 A lead storage battery according to the present invention includes a positive electrode and a negative electrode facing each other via a separator, and an electrolyte solution, the separator includes polyolefin and silica, and the positive electrode is held by the positive electrode current collector and the positive electrode current collector. A negative electrode current collector, and a negative electrode material held by the negative electrode current collector, the electrolytic solution contains aluminum ions, and after the formation of the negative electrode material after the formation The mass ratio of the positive electrode material is 1.05 or more.
 本発明に係る鉛蓄電池は、前記構成を備えることにより、シリカを含むセパレータを用いた場合であっても短絡の抑制効果に優れる。また、本発明に係る鉛蓄電池によれば、短絡を抑制しつつ優れた電池特性を得ることが可能であり、例えば、優れた充電受け入れ性及びISSサイクル特性を得ることができる。したがって、特に、初期の状態からある程度の充放電が繰り返されて活物質が充分に活性化した後において、ISS車、マイクロハイブリッド車等では低くなりがちなSOC(State Of Charge)を適正なレベルに維持することができる。また、本発明に係る鉛蓄電池によれば、優れた充電受け入れ性及びISSサイクル特性と、他の優れた電池特性(容量、放電特性等)とを両立することができる。 The lead storage battery according to the present invention is excellent in the short-circuit suppressing effect even when a separator containing silica is used by having the above-described configuration. Moreover, according to the lead acid battery which concerns on this invention, it is possible to obtain the outstanding battery characteristic, suppressing a short circuit, for example, the outstanding charge acceptance property and ISS cycle characteristic can be obtained. Therefore, especially after a certain amount of charge / discharge is repeated from the initial state and the active material is sufficiently activated, the state of charge (SOC), which tends to be low in ISS cars, micro hybrid cars, etc., is set to an appropriate level. Can be maintained. Moreover, according to the lead acid battery which concerns on this invention, the outstanding charge acceptance property and ISS cycle characteristic, and other outstanding battery characteristics (a capacity | capacitance, discharge characteristic, etc.) can be made compatible.
 また、本発明に係る鉛蓄電池によれば、PSOC下で使用される鉛蓄電池の寿命が短くなることを抑制することができる。なお、PSOC下で使用される鉛蓄電池の寿命が短くなる理由について、充電が不足している状態で充放電を繰り返すと、放電の際に負極(負極板等)に生成する硫酸鉛が粗大化し、充電生成物である海綿状金属鉛に硫酸鉛が戻り難くなるためと考えられる。 Moreover, according to the lead acid battery which concerns on this invention, it can suppress that the lifetime of the lead acid battery used under PSOC becomes short. Regarding the reason why the life of lead-acid batteries used under PSOC is shortened, if charging and discharging are repeated in a state where charging is insufficient, lead sulfate produced on the negative electrode (negative electrode plate, etc.) becomes coarse during discharge. This is thought to be because lead sulfate is difficult to return to the spongy metallic lead that is the charge product.
 エネルギー分散型X線分光法(EDX)による元素分析において、前記セパレータにおける酸素及びケイ素の質量の合計は、炭素、酸素及びケイ素の質量の合計を基準として30~80質量%であることが好ましい。この場合、短絡の抑制効果に更に優れると共に、セパレータ強度を向上させることができる。 In elemental analysis by energy dispersive X-ray spectroscopy (EDX), the total mass of oxygen and silicon in the separator is preferably 30 to 80% by mass based on the total mass of carbon, oxygen and silicon. In this case, it is possible to improve the separator strength while further improving the short-circuit suppressing effect.
 電解液におけるアルミニウムイオンの濃度は、0.01~0.3mol/Lであることが好ましい。この場合、短絡の抑制効果に更に優れると共に、充電受け入れ性等の電池特性を更に向上させることができる。 The concentration of aluminum ions in the electrolytic solution is preferably 0.01 to 0.3 mol / L. In this case, it is possible to further improve battery characteristics such as charge acceptability while further improving the short-circuit suppressing effect.
 前記電解液は、ナトリウムイオンを更に含むことが好ましい。この場合、5時間率容量サイクル特性を更に向上させることができる。 It is preferable that the electrolytic solution further contains sodium ions. In this case, the 5-hour capacity cycle characteristics can be further improved.
 化成後の負極材に対する化成後の正極材の質量比は、1.05~1.60が好ましく、1.05~1.50がより好ましい。この場合、短絡を更に効果的に抑制することができると共に充電受け入れ性及び低温高率放電性能に更に優れる。 The mass ratio of the positive electrode material after conversion to the negative electrode material after conversion is preferably 1.05 to 1.60, and more preferably 1.05 to 1.50. In this case, the short circuit can be more effectively suppressed and the charge acceptability and the low temperature high rate discharge performance are further improved.
 正極材の比表面積は、3m/g以上が好ましい。この場合、充電受け入れ性に更に優れる。 The specific surface area of the positive electrode material is preferably 3 m 2 / g or more. In this case, the charge acceptability is further improved.
 負極材の比表面積は、0.4m/g以上が好ましい。この場合、電解液と負極活物質との反応性を高めることができる。 The specific surface area of the negative electrode material is preferably 0.4 m 2 / g or more. In this case, the reactivity between the electrolytic solution and the negative electrode active material can be increased.
 本発明に係る鉛蓄電池は、前記セパレータが、第1のリブと、第2のリブと、ベース部と、を有する長尺のセパレータであり、前記ベース部が、前記第1のリブ及び前記第2のリブを支持しており、前記第1のリブ及び前記第2のリブが、前記セパレータの長手方向に延びており、前記セパレータの短手方向における両端部のそれぞれが前記第2のリブを10~40本含み、前記両端部の間の領域が前記第1のリブを含む態様であってもよい。 In the lead-acid battery according to the present invention, the separator is a long separator having a first rib, a second rib, and a base portion, and the base portion includes the first rib and the first rib. 2 ribs, and the first rib and the second rib extend in the longitudinal direction of the separator, and both end portions in the short direction of the separator each support the second rib. There may be an aspect in which 10 to 40 are included and the region between the both end portions includes the first rib.
 本発明によれば、シリカを含むセパレータを用いた場合であっても短絡の抑制効果に優れる鉛蓄電池を提供することができる。また、本発明に係る鉛蓄電池によれば、短絡を抑制しつつ優れた電池特性(例えば充電受け入れ性及びISSサイクル特性)を得ることができる。さらに、本発明に係る鉛蓄電池によれば、優れた充電受け入れ性及びISSサイクル特性と、他の優れた電池特性(容量、放電特性等)とを両立することができる。本発明に係る鉛蓄電池は、充電が間欠的に行われ、PSOC下で高率放電が行われる液式鉛蓄電池として、ISS車、マイクロハイブリッド車等の自動車において好適に用いることができる。本発明によれば、鉛蓄電池のマイクロハイブリッド車への応用を提供できる。本発明によれば、鉛蓄電池のISS車への応用を提供できる。 According to the present invention, it is possible to provide a lead storage battery that is excellent in the effect of suppressing a short circuit even when a separator containing silica is used. Moreover, according to the lead acid battery which concerns on this invention, the outstanding battery characteristic (for example, charge acceptance property and ISS cycle characteristic) can be acquired, suppressing a short circuit. Furthermore, according to the lead storage battery of the present invention, it is possible to achieve both excellent charge acceptability and ISS cycle characteristics and other excellent battery characteristics (capacity, discharge characteristics, etc.). The lead acid battery according to the present invention can be suitably used in an automobile such as an ISS car and a micro hybrid car as a liquid lead acid battery in which charging is intermittently performed and high rate discharge is performed under PSOC. ADVANTAGE OF THE INVENTION According to this invention, the application to the micro hybrid vehicle of a lead storage battery can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application to the ISS vehicle of a lead storage battery can be provided.
セパレータを示す図面である。It is drawing which shows a separator. セパレータ及び電極の断面図である。It is sectional drawing of a separator and an electrode. 袋状のセパレータと、袋状のセパレータに収容される電極とを示す図面である。It is drawing which shows a bag-shaped separator and the electrode accommodated in a bag-shaped separator.
 以下、本発明の実施形態について詳細に説明する。なお、比重は、温度によって変化するため、本明細書においては20℃で換算した比重と定義する。また、本明細書において「シリカ」とは、二酸化ケイ素(SiO)、又は、二酸化ケイ素によって構成される物質の総称を意味する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, since specific gravity changes with temperature, in this specification, it defines as specific gravity converted at 20 degreeC. Further, in this specification, “silica” means silicon dioxide (SiO 2 ) or a general term for substances composed of silicon dioxide.
<鉛蓄電池>
 本実施形態に係る鉛蓄電池は、セパレータを介して対向する正極(正極板等)及び負極(負極板等)と、電解液(硫酸等)と、を備え、セパレータがポリオレフィン及びシリカを含み、電解液がアルミニウムイオンを含む。
<Lead battery>
The lead storage battery according to the present embodiment includes a positive electrode (positive electrode plate or the like) and a negative electrode (negative electrode plate or the like) that face each other with a separator interposed therebetween, and an electrolyte solution (such as sulfuric acid). The liquid contains aluminum ions.
 本実施形態に係る鉛蓄電池は、例えば、電槽、電極(電極板等)、電解液(硫酸等)及びセパレータを備えており、電極として正極及び負極を有している。電極、電解液及びセパレータは、電槽内に収容されている。本実施形態に係る鉛蓄電池としては、液式鉛蓄電池、制御弁式鉛蓄電池等が挙げられ、液式鉛蓄電池が好ましい。 The lead storage battery according to this embodiment includes, for example, a battery case, an electrode (electrode plate or the like), an electrolytic solution (sulfuric acid or the like), and a separator, and has a positive electrode and a negative electrode as electrodes. The electrode, the electrolytic solution, and the separator are accommodated in the battery case. Examples of the lead storage battery according to this embodiment include a liquid lead storage battery, a control valve type lead storage battery, and the like, and a liquid lead storage battery is preferable.
 正極及び負極は、セパレータを介して積層されることにより電極群(極板群等)を構成している。正極は、正極集電体と、当該正極集電体に保持された正極材と、を有している。負極は、負極集電体と、当該負極集電体に保持された負極材と、を有している。本実施形態において正極材及び負極材は、例えば、化成後の電極材である。電極材が未化成である場合、電極材(未化成の正極材及び未化成の負極材)は、その原料等を含有している。集電体は、電極材からの電流の導電路を構成する。鉛蓄電池の基本構成としては、従来の鉛蓄電池と同様の構成を用いることができる。 The positive electrode and the negative electrode constitute an electrode group (electrode plate group or the like) by being laminated via a separator. The positive electrode has a positive electrode current collector and a positive electrode material held by the positive electrode current collector. The negative electrode has a negative electrode current collector and a negative electrode material held by the negative electrode current collector. In the present embodiment, the positive electrode material and the negative electrode material are, for example, electrode materials after chemical conversion. When the electrode material is unformed, the electrode materials (unformed positive electrode material and unformed negative electrode material) contain the raw materials and the like. The current collector constitutes a conductive path for current from the electrode material. As a basic configuration of the lead storage battery, the same configuration as that of a conventional lead storage battery can be used.
 化成後の負極材に対する化成後の正極材の質量比(正極材/負極材)は、1.05以上である。前記質量比が1.05以上であることで、短絡を効果的に抑制することができる。前記質量比は、短絡を更に効果的に抑制することができる観点から、1.10以上がより好ましく、1.13以上が更に好ましい。前記質量比は、充電受け入れ性及び低温高率放電性能に更に優れる観点から、1.60以下が好ましく、1.55以下がより好ましく、1.50以下が更に好ましく、1.40以下が特に好ましく、1.30以下が極めて好ましく、1.20以下が非常に好ましく、1.17以下がより一層好ましい。これらの観点から、前記質量比は、1.05~1.60が好ましく、1.05~1.55がより好ましく、1.05~1.50が更に好ましく、1.05~1.40が特に好ましく、1.05~1.30が極めて好ましく、1.05~1.20が非常に好ましく、1.05~1.17がより一層好ましく、1.10~1.17が更に好ましく、1.13~1.17が特に好ましい。 The mass ratio of the positive electrode material after conversion to the negative electrode material after conversion (positive electrode material / negative electrode material) is 1.05 or more. A short circuit can be effectively suppressed because the mass ratio is 1.05 or more. The mass ratio is more preferably 1.10 or more, and even more preferably 1.13 or more, from the viewpoint of more effectively suppressing a short circuit. The mass ratio is preferably 1.60 or less, more preferably 1.55 or less, still more preferably 1.50 or less, and particularly preferably 1.40 or less from the viewpoint of further excellent charge acceptance and low-temperature high-rate discharge performance. 1.30 or less is very preferable, 1.20 or less is very preferable, and 1.17 or less is even more preferable. From these viewpoints, the mass ratio is preferably 1.05 to 1.60, more preferably 1.05 to 1.55, still more preferably 1.05 to 1.50, and 1.05 to 1.40. Particularly preferred is 1.05 to 1.30, very preferably 1.05 to 1.20, very preferably 1.05 to 1.17, even more preferably 1.10 to 1.17, .13 to 1.17 are particularly preferred.
 化成後の負極材に対する化成後の正極材の質量比が前記範囲内であると短絡の発生を抑制できる理由について、本発明者らは次のように推測する。微小電流による過放電状態では、正極又は負極の活物質の残存率が25%程度になるまで放電が可能である。正極材/負極材の質量比が1.05未満(例えば1.00以上1.05未満。正極の活物質の量に対して負極の活物質の量が多い場合等)であると、負極が放電できる容量が大きくなることで、電解液として用いる硫酸の消費量が多くなり、電解液の硫酸比重が水に近い値にまで低下する。一方、正極材/負極材の質量比が1.05以上(正極の活物質の量に対して負極の活物質の量が少ない場合等)であると、負極が放電できる容量が小さくなることで、負極材の量が多いときに比べて放電限界に早く達し、電解液として用いる硫酸の消費量が少なくなり、電解液の硫酸比重の低下が小さくなる。その結果、活物質中の硫酸鉛の電解液への溶解が抑制されるため、浸透短絡を抑制することができるものと推測される。 The present inventors infer the reason why the occurrence of a short circuit can be suppressed when the mass ratio of the positive electrode material after conversion to the negative electrode material after conversion is within the above range. In an overdischarged state due to a minute current, discharge is possible until the remaining rate of the positive electrode or negative electrode active material is about 25%. When the mass ratio of the positive electrode material / negative electrode material is less than 1.05 (for example, 1.00 or more and less than 1.05, when the amount of the active material of the negative electrode is larger than the amount of the active material of the positive electrode) By increasing the capacity that can be discharged, the amount of sulfuric acid used as the electrolytic solution increases, and the specific gravity of sulfuric acid in the electrolytic solution decreases to a value close to that of water. On the other hand, when the mass ratio of the positive electrode material / negative electrode material is 1.05 or more (when the amount of the active material of the negative electrode is small with respect to the amount of the active material of the positive electrode), the capacity that the negative electrode can discharge becomes small. The discharge limit is reached earlier than when the amount of the negative electrode material is large, the consumption amount of sulfuric acid used as the electrolytic solution is reduced, and the decrease in the sulfuric acid specific gravity of the electrolytic solution is reduced. As a result, since dissolution of lead sulfate in the active material into the electrolytic solution is suppressed, it is presumed that an infiltration short circuit can be suppressed.
(セパレータ)
 セパレータは、正極と負極との電気的な接続を阻止し、且つ、電解液の硫酸イオンを透過させるものである。セパレータは、ポリオレフィン及びシリカを含む。セパレータは、ポリオレフィン及びシリカを主体(例えば、ポリオレフィン及びシリカの含有量(合計量)がセパレータの全質量基準で50質量%以上)とした材料から構成されていることが好ましい。ポリオレフィンとしては、例えば、エチレン、プロピレン、ブテン、メチルペンテン等の単独重合体若しくは共重合体、又は、これらの混合物を使用できる。前記単独重合体としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等が挙げられる。これらの中でも、成形性及び経済性に優れる観点から、ポリエチレンが好ましい。ポリエチレンは、溶融成形温度がポリプロピレンよりも低く、生産性が良好である。
(Separator)
The separator prevents electrical connection between the positive electrode and the negative electrode and allows sulfate ions in the electrolytic solution to pass therethrough. The separator includes polyolefin and silica. The separator is preferably made of a material mainly composed of polyolefin and silica (for example, the content (total amount) of polyolefin and silica is 50% by mass or more based on the total mass of the separator). As the polyolefin, for example, a homopolymer or copolymer such as ethylene, propylene, butene, methylpentene, or a mixture thereof can be used. Examples of the homopolymer include polyethylene, polypropylene, polybutene, polymethylpentene and the like. Among these, polyethylene is preferable from the viewpoint of excellent moldability and economy. Polyethylene has a lower melt molding temperature than polypropylene and good productivity.
 ポリオレフィンの重量平均分子量は、セパレータの機械的強度に優れる観点から、50万以上が好ましく、100万以上がより好ましい。重量平均分子量の上限に特に制限はないが、実用的な観点から、500万以下が好ましい。なお、ポリオレフィンの重量平均分子量は、例えば、高温GPC装置により、溶離液としてトルエン又はキシレンを用いて測定することができる。 The weight average molecular weight of the polyolefin is preferably 500,000 or more and more preferably 1,000,000 or more from the viewpoint of excellent mechanical strength of the separator. Although there is no restriction | limiting in particular in the upper limit of a weight average molecular weight, From a practical viewpoint, 5 million or less is preferable. In addition, the weight average molecular weight of polyolefin can be measured, for example with a high temperature GPC apparatus, using toluene or xylene as an eluent.
 本実施形態においては、シリカとしてシリカ粒子を用いることが好ましい。シリカ粒子としては、粒径が細かく、内部及び/又は表面に孔構造を備えている粒子が好ましい。シリカ粒子の比表面積は、100m/g以上であることが好ましい。比表面積が100m/g以上であると、セパレータの孔構造を更に微細化(緻密化)及び複雑化して耐短絡性を更に高め、且つ、電解液保持力を高め、粉体表面に多数の親水基(-OH等)を備えることによりセパレータの親水性を更に高めることができる。また、シリカ粒子の比表面積は、セパレータ中でシリカ粒子が均一に分散できる観点から、400m/g以下であることが好ましい。これらの観点から、シリカ粒子の比表面積は、100~400m/gであることが好ましい。シリカ粒子の比表面積は、例えばBET法により測定できる。 In the present embodiment, it is preferable to use silica particles as silica. As the silica particles, particles having a fine particle diameter and having a pore structure inside and / or on the surface are preferable. The specific surface area of the silica particles is preferably 100 m 2 / g or more. When the specific surface area is 100 m 2 / g or more, the pore structure of the separator is further refined (densified) and complicated to further improve the short-circuit resistance, and to increase the electrolyte solution holding power. By providing a hydrophilic group (such as —OH), the hydrophilicity of the separator can be further increased. Moreover, it is preferable that the specific surface area of a silica particle is 400 m < 2 > / g or less from a viewpoint that a silica particle can disperse | distribute uniformly in a separator. From these viewpoints, the specific surface area of the silica particles is preferably 100 to 400 m 2 / g. The specific surface area of the silica particles can be measured by, for example, the BET method.
 セパレータにおける粒径(最長径)2μm以上のシリカ粒子の数は、セパレータ強度の均一性に優れる観点から、セパレータの断面を走査型電子顕微鏡(SEM)で分析した際に任意に選択される30μm×40μmの範囲内において20個以下であることが好ましく、10個以下であることがより好ましい。 The number of silica particles having a particle size (longest diameter) of 2 μm or more in the separator is arbitrarily selected when the cross section of the separator is analyzed with a scanning electron microscope (SEM) from the viewpoint of excellent uniformity of separator strength × 30 μm × Within the range of 40 μm, the number is preferably 20 or less, and more preferably 10 or less.
 エネルギー分散型X線分光法(EDX)による元素分析において、セパレータにおける酸素及びケイ素(シリコン)の質量の合計は、短絡の抑制効果に更に優れる観点、及び、セパレータ強度を向上させる観点から、セパレータにおける炭素、酸素及びケイ素の質量の合計を基準として、下記の範囲であることが好ましい。酸素及びケイ素の質量の前記合計は、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が更に好ましい。酸素及びケイ素の質量の前記合計は、55質量%以上であってもよく、60質量%以上であってもよい。酸素及びケイ素の質量の前記合計は、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下が更に好ましい。酸素及びケイ素の質量の前記合計は、65質量%以下であってもよい。酸素及びケイ素の質量の前記合計は、30~80質量%が好ましく、40~75質量%がより好ましく、50~70質量%が更に好ましい。酸素及びケイ素の質量の前記合計は、55~75質量%であってもよく、60~65質量%であってもよい。 In elemental analysis by energy dispersive X-ray spectroscopy (EDX), the total mass of oxygen and silicon (silicon) in the separator is from the viewpoint of further improving the short-circuit suppressing effect and improving the separator strength. The following ranges are preferred based on the total mass of carbon, oxygen and silicon. The total of the masses of oxygen and silicon is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. The total mass of oxygen and silicon may be 55% by mass or more, or 60% by mass or more. The total of the masses of oxygen and silicon is preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less. The total of the masses of oxygen and silicon may be 65% by mass or less. The total of the masses of oxygen and silicon is preferably 30 to 80% by mass, more preferably 40 to 75% by mass, and still more preferably 50 to 70% by mass. The total of the masses of oxygen and silicon may be 55 to 75% by mass or 60 to 65% by mass.
 セパレータ中の炭素、酸素及びケイ素の質量は、例えば、セパレータの断面をエネルギー分散型X線分光法(EDX)で分析することにより求められる。すなわち、セパレータの断面をEDXで分析した際に検出される炭素、酸素及びケイ素の質量の合計を基準にして酸素及びケイ素の質量の合計が前記範囲であることが好ましい。 The masses of carbon, oxygen, and silicon in the separator can be obtained, for example, by analyzing the cross section of the separator by energy dispersive X-ray spectroscopy (EDX). That is, the total mass of oxygen and silicon is preferably in the above range based on the total mass of carbon, oxygen and silicon detected when the cross section of the separator is analyzed by EDX.
 本実施形態のセパレータは、例えば、ポリオレフィン、シリカ及び可塑剤を主体とした原料組成物を溶融混練して所定形状のシート状物に成形することにより得ることができる。 The separator of this embodiment can be obtained, for example, by melt-kneading a raw material composition mainly composed of polyolefin, silica, and a plasticizer to form a sheet-like material having a predetermined shape.
 可塑剤としては、例えば、飽和炭化水素(パラフィン)からなる工業用潤滑油等の鉱物オイル;ステアリルアルコール等の高級アルコール;フタル酸ジオクチル等のエステル系可塑剤などが使用できる。中でも、再利用がしやすい点で、鉱物オイルが好ましい。可塑剤は、ポリオレフィン、シリカ及び可塑剤を主体とした原料組成物中に、原料組成物の全量を基準として30~70質量%配合されることが好ましい。 As the plasticizer, for example, mineral oil such as industrial lubricating oil made of saturated hydrocarbon (paraffin); higher alcohol such as stearyl alcohol; ester plasticizer such as dioctyl phthalate can be used. Among these, mineral oil is preferable because it can be easily reused. The plasticizer is preferably blended in the raw material composition mainly composed of polyolefin, silica and plasticizer in an amount of 30 to 70% by mass based on the total amount of the raw material composition.
 可塑剤は、ポリオレフィン、シリカ及び可塑剤を主体とした原料組成物を溶融混練して所定形状のシート状物に成形した後、例えば、溶剤を用いた抽出除去等の方法により除去される。可塑剤を除去することで、多孔質化できるが、鉛蓄電池用セパレータにおいては、可塑剤を適量含有させておくことで、耐酸化性を向上させることができる。セパレータ中の可塑剤の含有量は、セパレータの全質量を基準として5~30質量%が好ましい。 The plasticizer is removed by a method such as extraction and removal using a solvent after melt-kneading a raw material composition mainly composed of polyolefin, silica, and plasticizer to form a sheet-like material having a predetermined shape. By removing the plasticizer, it can be made porous. However, in the lead-acid battery separator, the oxidation resistance can be improved by adding an appropriate amount of the plasticizer. The content of the plasticizer in the separator is preferably 5 to 30% by mass based on the total mass of the separator.
 可塑剤を抽出除去するために用いる溶剤としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の飽和炭化水素系の有機溶剤を用いることができる。 As the solvent used for extracting and removing the plasticizer, for example, a saturated hydrocarbon organic solvent such as hexane, heptane, octane, nonane, decane and the like can be used.
 セパレータは、その他、必要に応じて、界面活性剤(親水化剤)、酸化防止剤、紫外線吸収剤、耐候剤、滑剤、抗菌剤、防黴剤、顔料、染料、着色剤、防曇剤、艶消し剤等の添加剤を、本発明の目的及び効果を損なわない範囲で含有してもよい。 Other separators include surfactants (hydrophilic agents), antioxidants, UV absorbers, weathering agents, lubricants, antibacterial agents, antifungal agents, pigments, dyes, colorants, antifogging agents, as necessary. You may contain additives, such as a matting agent, in the range which does not impair the objective and effect of this invention.
 セパレータは、第1のリブと、当該第1のリブを支持するベース部と、を有することが好ましく、ベース部に支持された第2のリブを更に有することがより好ましい。第1のリブ及び第2のリブは、例えば凸状である。セパレータは、例えば長尺であり、第1のリブ及び第2のリブは、例えば、セパレータの長手方向に延びている。第1のリブの高さ及び/又は幅は、例えば、第2のリブよりも大きい。本実施形態に係る鉛蓄電池は、第1のリブを含む第1の領域、及び、第2のリブを含む第2の領域を有し、セパレータの短手方向(長手方向に直交する方向。幅方向)における両端部(一端部及び他端部。二つの第2の領域)のそれぞれが第2のリブを含み、且つ、前記両端部の間の領域(第1の領域)が第1のリブを含む態様であってもよい。以下、本実施形態のセパレータの一態様を、図1~図3を用いて説明する。 The separator preferably has a first rib and a base portion that supports the first rib, and more preferably has a second rib supported by the base portion. The first rib and the second rib are, for example, convex. The separator is long, for example, and the first rib and the second rib extend, for example, in the longitudinal direction of the separator. The height and / or width of the first rib is larger than, for example, the second rib. The lead-acid battery according to the present embodiment has a first region including a first rib and a second region including a second rib, and a short direction of the separator (a direction perpendicular to the longitudinal direction; width). Each end portion (one end portion and the other end portion; two second regions) in the direction) includes a second rib, and a region (first region) between the both end portions is a first rib. It is also possible to include this. Hereinafter, one aspect of the separator of the present embodiment will be described with reference to FIGS.
 図1(a)は、セパレータを示す正面図であり、図1(b)は、セパレータの断面図である。図2は、セパレータ及び電極の断面図である。図1に示すように、セパレータ10は、平板状のベース部11と、凸状の複数のリブ(第1のリブ)12と、凸状の複数のミニリブ(第2のリブ)13とを備えている。ベース部11は、リブ12及びミニリブ13を支持している。リブ12は、セパレータ10の幅方向における中央(第1の領域)において、セパレータ10の長手方向に延びるように複数(多数本)配置されている。複数のリブ12は、セパレータ10の一方面10aにおいて互いに略平行に配置されている。リブ12の間隔は、例えば3~15mmである。リブ12の高さ方向の一端はベース部11に一体化しており、リブ12の高さ方向の他端は、正極及び負極のうちの一方の電極14aに接している(図2参照)。ベース部11は、リブ12の高さ方向において電極14aと対向している。セパレータ10の他方面10bにはリブは配置されておらず、セパレータ10の他方面10bは、正極及び負極のうちの他方の電極14b(図2参照)と対向又は接している。 FIG. 1 (a) is a front view showing a separator, and FIG. 1 (b) is a cross-sectional view of the separator. FIG. 2 is a cross-sectional view of the separator and the electrode. As shown in FIG. 1, the separator 10 includes a flat base portion 11, a plurality of convex ribs (first ribs) 12, and a plurality of convex mini ribs (second ribs) 13. ing. The base portion 11 supports the rib 12 and the mini rib 13. A plurality of ribs 12 (multiple ribs) are arranged in the center (first region) in the width direction of the separator 10 so as to extend in the longitudinal direction of the separator 10. The plurality of ribs 12 are disposed substantially parallel to each other on the one surface 10 a of the separator 10. The interval between the ribs 12 is, for example, 3 to 15 mm. One end in the height direction of the rib 12 is integrated with the base portion 11, and the other end in the height direction of the rib 12 is in contact with one electrode 14a of the positive electrode and the negative electrode (see FIG. 2). The base portion 11 faces the electrode 14 a in the height direction of the rib 12. Ribs are not disposed on the other surface 10b of the separator 10, and the other surface 10b of the separator 10 faces or is in contact with the other electrode 14b (see FIG. 2) of the positive electrode and the negative electrode.
 ミニリブ13は、セパレータ10の幅方向における両側(両端部、二つの第2の領域)において、セパレータ10の長手方向に延びるように複数(多数本)配置されている。ミニリブ13は、鉛蓄電池が横方向に振動した際に、電極の角がセパレータを突き破って短絡することを防止するためにセパレータ強度を向上させる機能を有する。 A plurality of (many) mini-ribs 13 are arranged so as to extend in the longitudinal direction of the separator 10 on both sides (both ends, two second regions) in the width direction of the separator 10. The mini-rib 13 has a function of improving the separator strength in order to prevent the corners of the electrodes from breaking through the separator when the lead storage battery vibrates in the lateral direction.
 ミニリブ13の数は、セパレータを巻き取る際にセパレータの端がしわになりにくく生産性に優れる観点、及び、短絡を防止するための強度が容易に向上する観点から、10本以上が好ましく、20本以上がより好ましい。ミニリブ13の数は、セパレータを袋状に形成しやすい観点から、40本以下が好ましい。これらの観点から、ミニリブ13の数は、10~40本が好ましく、20~40本がより好ましい。セパレータの短手方向の両端部にミニリブが配置されている場合、ミニリブ13の数は、例えば、両端部のそれぞれに配置される数である。 The number of the mini-ribs 13 is preferably 10 or more from the viewpoint that the end of the separator is less likely to be wrinkled when the separator is wound, and that the strength for preventing a short circuit is easily improved. More than this is more preferable. The number of mini-ribs 13 is preferably 40 or less from the viewpoint of easily forming the separator in a bag shape. From these viewpoints, the number of the mini-ribs 13 is preferably 10 to 40, more preferably 20 to 40. When miniribs are arranged at both ends in the short direction of the separator, the number of miniribs 13 is, for example, the number arranged at each of both ends.
 ミニリブ13の高さ、幅及び間隔は、何れもリブ12よりも小さいことが好ましい。ミニリブ13の断面形状は、リブ12と同一であってもよく、異なっていてもよい。ミニリブ13の断面形状は、半円型であることが好ましい。また、セパレータ10においてミニリブ13は配置されていなくてもよい。 The height, width, and interval of the mini-ribs 13 are preferably smaller than the ribs 12. The cross-sectional shape of the minirib 13 may be the same as or different from the rib 12. The cross-sectional shape of the mini-rib 13 is preferably a semicircular shape. Further, the mini-rib 13 may not be disposed in the separator 10.
 ベース部11の厚みTの上限は、更に優れた充電受け入れ性及び放電特性を得る観点から、0.4mm以下が好ましく、0.3mm以下がより好ましく、0.25mm以下が更に好ましく、0.25mm未満が特に好ましく、0.225mm以下が極めて好ましく、0.2mm以下が非常に好ましい。ベース部11の厚みTの下限は、特に制限はないが、短絡の抑制効果に更に優れる観点から、0.05mm以上が好ましく、0.1mm以上がより好ましい。 The upper limit of the thickness T of the base portion 11 is preferably 0.4 mm or less, more preferably 0.3 mm or less, still more preferably 0.25 mm or less, and 0.25 mm from the viewpoint of obtaining further excellent charge acceptability and discharge characteristics. Is particularly preferably 0.225 mm or less, and very preferably 0.2 mm or less. Although there is no restriction | limiting in particular in the minimum of the thickness T of the base part 11, 0.05 mm or more is preferable and 0.1 mm or more is more preferable from a viewpoint which is further excellent in the suppression effect of a short circuit.
 リブ12の高さ(ベース部11及び電極14の対向方向の高さ)Hの上限は、更に優れた充電受け入れ性を得る観点から、1mm以下が好ましく、0.9mm以下がより好ましく、0.8mm以下が更に好ましく、0.6mm以下が特に好ましい。リブ12の高さHの下限は、正極での酸化劣化を抑制する観点から、0.3mm以上が好ましく、0.4mm以上がより好ましく、0.5mm以上が更に好ましい。これらの観点から、リブ12の高さHは、0.3~1mmが好ましく、0.3~0.9mmがより好ましく、0.3~0.8mmが更に好ましく、0.4~0.8mmが特に好ましく、0.5~0.6mmが極めて好ましい。 The upper limit of the height H of the rib 12 (the height in the facing direction of the base portion 11 and the electrode 14) H is preferably 1 mm or less, more preferably 0.9 mm or less, from the viewpoint of obtaining further excellent charge acceptance. 8 mm or less is further preferable, and 0.6 mm or less is particularly preferable. The lower limit of the height H of the rib 12 is preferably 0.3 mm or more, more preferably 0.4 mm or more, and still more preferably 0.5 mm or more, from the viewpoint of suppressing oxidative deterioration at the positive electrode. From these viewpoints, the height H of the rib 12 is preferably 0.3 to 1 mm, more preferably 0.3 to 0.9 mm, still more preferably 0.3 to 0.8 mm, and 0.4 to 0.8 mm. Is particularly preferable, and 0.5 to 0.6 mm is very preferable.
 ベース部11の厚みTに対するリブ12の高さHの比率H/Tの下限は、セパレータの耐酸化性に優れる観点から、2以上が好ましい。比率H/Tが2以上であると、電極(例えば正極)と接触しない部分を充分に確保できるため、セパレータの耐酸化性が向上すると推測される。比率H/Tの下限は、セパレータの耐酸化性及び生産性に優れる観点から、2.3以上がより好ましく、2.5以上が更に好ましい。 The lower limit of the ratio H / T of the height H of the rib 12 to the thickness T of the base portion 11 is preferably 2 or more from the viewpoint of excellent oxidation resistance of the separator. When the ratio H / T is 2 or more, a portion that does not contact the electrode (for example, the positive electrode) can be sufficiently secured, so that it is estimated that the oxidation resistance of the separator is improved. The lower limit of the ratio H / T is more preferably 2.3 or more, and even more preferably 2.5 or more, from the viewpoint of excellent oxidation resistance and productivity of the separator.
 比率H/Tの上限は、リブの形状保持性に優れる観点、及び、短絡の抑制効果に更に優れる観点から、6以下が好ましい。比率H/Tが6以下であると、正極と負極との間の距離が充分であることから短絡が更に抑制されると推測される。また、比率H/Tが6以下であると、鉛蓄電池を組み立てた際にリブが破損することなく、充電受け入れ性等の電池特性が良好に維持されると推測される。比率H/Tの上限は、短絡の抑制効果に更に優れる観点、及び、リブの形状保持性に優れる観点から、5以下がより好ましく、4以下が更に好ましく、3.7以下が特に好ましく、3.5以下が極めて好ましく、3以下が非常に好ましい。 The upper limit of the ratio H / T is preferably 6 or less from the viewpoint of excellent rib shape retention and a further excellent short-circuit suppressing effect. If the ratio H / T is 6 or less, the distance between the positive electrode and the negative electrode is sufficient, and it is estimated that the short circuit is further suppressed. Further, when the ratio H / T is 6 or less, it is presumed that the battery characteristics such as charge acceptability are favorably maintained without damaging the ribs when the lead storage battery is assembled. The upper limit of the ratio H / T is more preferably 5 or less, further preferably 4 or less, particularly preferably 3.7 or less, from the viewpoint of further improving the short-circuit suppressing effect and from the viewpoint of excellent rib shape retention. .5 or less is very preferable, and 3 or less is very preferable.
 前記観点から、比率H/Tは、2~6が好ましく、2.3~5がより好ましく、2.3~4が更に好ましく、2.3~3.7が特に好ましく、2.3~3.5が極めて好ましく、2.5~3が非常に好ましい。 In view of the above, the ratio H / T is preferably 2 to 6, more preferably 2.3 to 5, further preferably 2.3 to 4, particularly preferably 2.3 to 3.7, and 2.3 to 3 .5 is very preferable, and 2.5 to 3 is very preferable.
 リブ12の上底幅B(図1(b)参照)は、リブの形状保持性及び耐酸化性に優れる観点から、0.1mm以上が好ましく、0.2mm以上がより好ましく、0.3mm以上が更に好ましく、0.35mm以上が特に好ましい。同様の観点から、リブ12の上底幅Bは、2mm以下が好ましく、1mm以下がより好ましく、0.8mm以下が更に好ましく、0.5mm以下が特に好ましい。これらの観点から、リブ12の上底幅Bは、0.1~2mmが好ましく、0.2~2mmがより好ましく、0.3~2mmが更に好ましく、0.35~2mmが特に好ましく、0.35~1mmが極めて好ましく、0.35~0.8mmが非常に好ましく、0.35~0.5mmがより一層好ましい。リブ12の上底幅Bは、0.2~1mmであってもよく、0.2~0.8mmであってもよい。 The upper base width B of the rib 12 (see FIG. 1B) is preferably 0.1 mm or more, more preferably 0.2 mm or more, and more preferably 0.3 mm or more from the viewpoint of excellent rib shape retention and oxidation resistance. Is more preferable, and 0.35 mm or more is particularly preferable. From the same viewpoint, the upper base width B of the rib 12 is preferably 2 mm or less, more preferably 1 mm or less, still more preferably 0.8 mm or less, and particularly preferably 0.5 mm or less. From these viewpoints, the upper base width B of the rib 12 is preferably 0.1 to 2 mm, more preferably 0.2 to 2 mm, still more preferably 0.3 to 2 mm, particularly preferably 0.35 to 2 mm, 0 .35 to 1 mm is very preferable, 0.35 to 0.8 mm is very preferable, and 0.35 to 0.5 mm is even more preferable. The upper base width B of the rib 12 may be 0.2 to 1 mm, or may be 0.2 to 0.8 mm.
 リブの下底幅Aは、リブの形状保持性に優れる観点から、0.2mm以上が好ましく、0.3mm以上がより好ましく、0.4mm以上が更に好ましく、0.5mm以上が特に好ましく、0.7mm以上が極めて好ましい。同様の観点から、リブの下底幅Aは、4mm以下が好ましく、2mm以下がより好ましく、1mm以下が更に好ましい。これらの観点から、リブの下底幅Aは、0.2~4mmが好ましく、0.3~2mmがより好ましく、0.4~1mmが更に好ましく、0.5~1mmが特に好ましく、0.7~1mmが極めて好ましい。 The bottom bottom width A of the rib is preferably 0.2 mm or more, more preferably 0.3 mm or more, still more preferably 0.4 mm or more, particularly preferably 0.5 mm or more, from the viewpoint of excellent rib shape retention. .7 mm or more is very preferable. From the same viewpoint, the lower bottom width A of the rib is preferably 4 mm or less, more preferably 2 mm or less, and still more preferably 1 mm or less. From these viewpoints, the bottom bottom width A of the rib is preferably 0.2 to 4 mm, more preferably 0.3 to 2 mm, still more preferably 0.4 to 1 mm, particularly preferably 0.5 to 1 mm. 7 to 1 mm is very preferable.
 下底幅Aに対する上底幅Bの比率B/Aは、リブの形状保持性に優れる観点から、0.1以上が好ましく、0.2以上がより好ましく、0.3以上が更に好ましく、0.4以上が特に好ましく、0.45以上が極めて好ましい。同様の観点から、比率B/Aは、1以下が好ましく、0.8以下がより好ましく、0.6以下が更に好ましく、0.55以下が特に好ましい。これらの観点から、比率B/Aは、0.1~1が好ましく、0.2~0.8がより好ましく、0.3~0.6が更に好ましく、0.4~0.55が特に好ましく、0.45~0.55が極めて好ましい。 The ratio B / A of the upper base width B to the lower base width A is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, from the viewpoint of excellent rib shape retention. .4 or more is particularly preferable, and 0.45 or more is very preferable. From the same viewpoint, the ratio B / A is preferably 1 or less, more preferably 0.8 or less, still more preferably 0.6 or less, and particularly preferably 0.55 or less. From these viewpoints, the ratio B / A is preferably 0.1 to 1, more preferably 0.2 to 0.8, still more preferably 0.3 to 0.6, and particularly preferably 0.4 to 0.55. 0.45 to 0.55 is particularly preferable.
 セパレータ10は、正極及び負極の少なくとも一方の電極を包む袋状であることが好ましい。例えば、正極及び負極のうちの一方が袋状のセパレータに収容され、且つ、正極及び負極のうちの他方と交互に積層されている態様が好ましい。例えば、袋状のセパレータを正極に適用した場合、正極集電体の伸びにより正極がセパレータを貫通する可能性があることから、負極が袋状のセパレータに収容されていることが好ましい。 The separator 10 preferably has a bag shape surrounding at least one of the positive electrode and the negative electrode. For example, a mode in which one of the positive electrode and the negative electrode is accommodated in a bag-shaped separator and is alternately laminated with the other of the positive electrode and the negative electrode is preferable. For example, when a bag-shaped separator is applied to the positive electrode, it is preferable that the negative electrode is accommodated in the bag-shaped separator because the positive electrode may penetrate the separator due to the elongation of the positive electrode current collector.
 セパレータ10としては、微多孔性ポリエチレンシート;ガラス繊維と耐酸紙とを貼りあわせたもの等を用いることができる。セパレータ10は、電極(極板等)を積層する工程の際に、負極(負極板等)の長さに応じて切断されることが好ましい。また、前記切断されたセパレータ10は、2つに折り、両サイドを圧着することで負極を包み込む形であってもよい。 The separator 10 may be a microporous polyethylene sheet; a glass fiber and acid-resistant paper bonded together. The separator 10 is preferably cut according to the length of the negative electrode (negative electrode plate or the like) in the step of laminating the electrodes (electrode plate or the like). Further, the cut separator 10 may be folded in two and wrapping the negative electrode by crimping both sides.
 図3は、袋状のセパレータ20と、セパレータ20に収容される電極(例えば負極)14とを示す図面である。図1(a)に示すように、セパレータ20の作製に用いるセパレータ10は、例えば、長尺のシート状に形成されている。図3に示すセパレータ20は、セパレータ10を適切な長さに切断し、セパレータ10の長手方向に二つ折りにしてその内側に電極14を配置して重ね合せ、両側部をメカニカルシール、圧着又は熱溶着することにより得られる(例えば、図3の符号22はメカニカルシール部を示す)。 FIG. 3 is a view showing a bag-like separator 20 and an electrode (for example, a negative electrode) 14 accommodated in the separator 20. As shown to Fig.1 (a), the separator 10 used for preparation of the separator 20 is formed in the elongate sheet form, for example. The separator 20 shown in FIG. 3 is obtained by cutting the separator 10 into an appropriate length, folding it in the longitudinal direction of the separator 10 and placing the electrodes 14 on the inside thereof, and superimposing them on both sides. It is obtained by welding (for example, reference numeral 22 in FIG. 3 indicates a mechanical seal portion).
(電解液)
 本実施形態に係る鉛蓄電池の電解液は、アルミニウムイオンを含む。電解液がアルミニウムイオンを含むことにより、シリカを含むセパレータを用いた場合であっても優れた短絡の抑制効果が得られる。
(Electrolyte)
The electrolytic solution of the lead storage battery according to the present embodiment contains aluminum ions. When the electrolytic solution contains aluminum ions, an excellent short-circuit suppressing effect can be obtained even when a separator containing silica is used.
 シリカを含むセパレータを用いた場合に短絡が起こりやすくなる原因、及び、電解液がアルミニウムイオンを含むことにより短絡の発生を抑制できる原因は明らかではないが、本発明者らは次のように推測する。 The reason why a short circuit is likely to occur when a separator containing silica is used and the reason why the occurrence of a short circuit can be suppressed when the electrolyte contains aluminum ions are not clear, but the present inventors speculate as follows: To do.
 まず、放電反応のときには正極側がアルカリ雰囲気になりやすく、電解液中にアルミニウムイオンが存在しない場合、アルカリ性になるとシリカが溶解しやすくなる。シリカが溶解すると、セパレータが収縮してセパレータの厚みが減少するために短絡が生じやすくなると推測される。また、正極の放電反応による水素イオンの消費によりpHが上昇する(pHがアルカリ側にシフトする)と、正極において硫酸鉛の溶解度が上昇し、当該溶解度と、充電時にpHが低下する(pHが酸性側にシフトする)際の硫酸鉛の溶解度との差からセパレータ内部に硫酸鉛の析出物が生じやすくなり、短絡が加速するものと推測される。 First, during the discharge reaction, the positive electrode side tends to be in an alkaline atmosphere, and when aluminum ions are not present in the electrolytic solution, silica is easily dissolved when it becomes alkaline. When silica is dissolved, it is presumed that a short circuit is likely to occur because the separator contracts and the thickness of the separator decreases. Further, when the pH increases due to the consumption of hydrogen ions due to the discharge reaction of the positive electrode (the pH shifts to the alkali side), the solubility of lead sulfate increases at the positive electrode, and the solubility and the pH decrease during charging (the pH decreases). From the difference in the solubility of lead sulfate when shifting to the acidic side), it is presumed that lead sulfate precipitates are likely to be generated inside the separator, and the short circuit is accelerated.
 一方、本実施形態では、電解液がアルミニウムイオンを含むことにより、放電時にセパレータ内部に水酸化アルミニウム等のアルミニウム化合物が析出する。このように水酸化アルミニウム等のアルミニウム化合物が析出することによりシリカの溶解が抑制されるため、セパレータの厚みを保持することができる。また、水酸化アルミニウム等のアルミニウム化合物の析出反応により電解液のpHが上昇すること(pHがアルカリ側にシフトすること)も緩和できるため、硫酸鉛の溶解度の上昇を抑制できる。これらにより、アルミニウムイオンが電解液中に存在することで、短絡を抑制することができると推測される。 On the other hand, in the present embodiment, since the electrolytic solution contains aluminum ions, an aluminum compound such as aluminum hydroxide is deposited inside the separator during discharge. Since the dissolution of silica is suppressed by precipitation of an aluminum compound such as aluminum hydroxide in this manner, the thickness of the separator can be maintained. In addition, since the pH of the electrolytic solution is increased by the precipitation reaction of an aluminum compound such as aluminum hydroxide (the pH is shifted to the alkali side), an increase in the solubility of lead sulfate can be suppressed. By these, it is estimated that a short circuit can be suppressed because aluminum ion exists in electrolyte solution.
 電解液のアルミニウムイオン濃度は、短絡の抑制効果に更に優れる観点、及び、充電受け入れ性等の電池特性が更に向上する観点から、電解液の全量を基準として、0.01mol/L以上が好ましく、0.02mol/L以上がより好ましく、0.05mol/L以上が更に好ましい。同様の観点から、電解液のアルミニウムイオン濃度は、0.08mol/L以上であってもよく、0.1mol/L以上であってもよく、0.12mol/L以上であってもよく、0.14mol/L以上であってもよく、0.15mol/L以上であってもよい。電解液のアルミニウムイオン濃度は、短絡の抑制効果に更に優れる観点、及び、充電受け入れ性及びISSサイクル特性が更に向上する観点から、電解液の全量を基準として、0.3mol/L以下が好ましく、0.25mol/L以下がより好ましく、0.2mol/L以下が更に好ましい。これらの観点から、電解液のアルミニウムイオン濃度は、電解液の全量を基準として、0.01~0.3mol/Lが好ましく、0.02~0.25mol/Lがより好ましく、0.05~0.2mol/Lが更に好ましい。同様の観点から、電解液のアルミニウムイオン濃度は、0.08~0.2mol/Lであってもよく、0.1~0.2mol/Lであってもよく、0.12~0.2mol/Lであってもよく、0.14~0.2mol/Lであってもよく、0.15~0.2mol/Lであってもよい。電解液のアルミニウムイオン濃度は、例えば、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定することができる。 The aluminum ion concentration of the electrolytic solution is preferably 0.01 mol / L or more based on the total amount of the electrolytic solution from the viewpoint of further improving the short-circuit suppressing effect and further improving battery characteristics such as charge acceptance. 0.02 mol / L or more is more preferable, and 0.05 mol / L or more is more preferable. From the same viewpoint, the aluminum ion concentration of the electrolytic solution may be 0.08 mol / L or more, 0.1 mol / L or more, 0.12 mol / L or more, and 0 .14 mol / L or more may be sufficient, and 0.15 mol / L or more may be sufficient. The aluminum ion concentration of the electrolytic solution is preferably 0.3 mol / L or less on the basis of the total amount of the electrolytic solution from the viewpoint of further improving the short-circuit suppressing effect and further improving the charge acceptability and the ISS cycle characteristics. 0.25 mol / L or less is more preferable, and 0.2 mol / L or less is still more preferable. From these viewpoints, the aluminum ion concentration of the electrolytic solution is preferably from 0.01 to 0.3 mol / L, more preferably from 0.02 to 0.25 mol / L, based on the total amount of the electrolytic solution, from 0.05 to 0.2 mol / L is more preferable. From the same viewpoint, the aluminum ion concentration of the electrolytic solution may be 0.08 to 0.2 mol / L, 0.1 to 0.2 mol / L, or 0.12 to 0.2 mol. / L, 0.14 to 0.2 mol / L, or 0.15 to 0.2 mol / L. The aluminum ion concentration of the electrolytic solution can be measured by, for example, ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
 電解液のアルミニウムイオン濃度が前記所定範囲であることにより短絡の抑制効果に更に優れるメカニズムについては、アルミニウムイオンを用いることに関して上述した通りと推測する。充電受け入れ性が向上するメカニズムの詳細については明らかではないが、以下のように推測される。すなわち、アルミニウムイオン濃度が前記所定範囲であると、任意の低SOC下において、放電生成物である結晶性硫酸鉛の電解液中への溶解度が上がるため、又は、アルミニウムイオンの高いイオン伝導性により電解液の電極活物質内部への拡散性が向上するため、充電受け入れ性が向上すると推測される。 Regarding the mechanism that further improves the short-circuit suppressing effect when the aluminum ion concentration of the electrolytic solution is within the predetermined range, it is presumed as described above regarding the use of aluminum ions. The details of the mechanism for improving the charge acceptability are not clear, but are presumed as follows. That is, when the aluminum ion concentration is within the predetermined range, the solubility of the crystalline lead sulfate, which is a discharge product, in the electrolytic solution increases under any low SOC, or due to the high ion conductivity of aluminum ions. Since the diffusibility of the electrolytic solution into the electrode active material is improved, it is estimated that the charge acceptability is improved.
 電解液は、例えば、アルミニウムイオンと硫酸とを含む。電解液は、アルミニウムイオン以外のイオン(ナトリウムイオン、カリウムイオン、リン酸イオン等)を更に含んでいてもよく、ナトリウムイオンを含むことが好ましい。電解液がナトリウムイオンを含む場合、5時間率容量サイクル特性が更に向上する傾向がある。 The electrolytic solution contains, for example, aluminum ions and sulfuric acid. The electrolytic solution may further contain ions other than aluminum ions (sodium ions, potassium ions, phosphate ions, etc.), and preferably contains sodium ions. When the electrolytic solution contains sodium ions, the 5-hour capacity cycle characteristics tend to be further improved.
 鉛蓄電池において、電池容量が早期に低下するPCL(Premature Capacity Loss)と呼ばれる現象がある。これは、集電体と活物質との界面で部分放電が進行して、早期に容量低下してしまう現象である。PCLは、5時間率容量サイクル特性により評価することができる。 In lead-acid batteries, there is a phenomenon called PCL (Premium Capacity Loss), in which the battery capacity decreases early. This is a phenomenon in which the partial discharge progresses at the interface between the current collector and the active material and the capacity is quickly reduced. PCL can be evaluated by 5-hour capacity cycle characteristics.
 電解液がナトリウムイオンを含む場合、ナトリウムイオン濃度は、5時間率容量サイクル特性に更に優れる観点から、電解液の全量を基準として、0.01mol/L以上が好ましく、0.02mol/L以上がより好ましく、0.03mol/L以上が更に好ましい。電解液のナトリウムイオン濃度は、5時間率容量サイクル特性、充電受け入れ性及びISSサイクル特性が更に向上する観点から、電解液の全量を基準として、0.1mol/L以下が好ましく、0.08mol/L以下がより好ましく、0.06mol/L以下が更に好ましい。これらの観点から、ナトリウムイオン濃度は、電解液の全量を基準として、0.01~0.1mol/Lが好ましく、0.02~0.08mol/Lがより好ましく、0.03~0.06mol/Lが更に好ましい。電解液のナトリウムイオン濃度は、例えば、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定することができる。 When the electrolytic solution contains sodium ions, the sodium ion concentration is preferably 0.01 mol / L or more, based on the total amount of the electrolytic solution, and preferably 0.02 mol / L or more from the viewpoint of further improving the 5-hour capacity cycle characteristics. More preferred is 0.03 mol / L or more. The sodium ion concentration of the electrolytic solution is preferably 0.1 mol / L or less, based on the total amount of the electrolytic solution, from the viewpoint of further improving the 5-hour capacity cycle characteristics, the charge acceptability and the ISS cycle characteristics, and is preferably 0.08 mol / L. L or less is more preferable, and 0.06 mol / L or less is still more preferable. From these viewpoints, the sodium ion concentration is preferably 0.01 to 0.1 mol / L, more preferably 0.02 to 0.08 mol / L, and more preferably 0.03 to 0.06 mol, based on the total amount of the electrolytic solution. / L is more preferable. The sodium ion concentration of the electrolytic solution can be measured, for example, by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
(正極材)
[正極活物質]
 正極材は、正極活物質を含有している。正極活物質は、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成の正極活物質を得た後に未化成の正極活物質を化成することで得ることができる。化成後の正極活物質は、β-二酸化鉛(β-PbO)を含むことが好ましく、α-二酸化鉛(α-PbO)を更に含んでいてもよい。正極活物質の原料としては、特に制限はなく、例えば鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb)を用いてもよい。未化成の正極材は、主成分として、三塩基性硫酸鉛を含む未化成の正極活物質を含有することが好ましい。
(Positive electrode material)
[Positive electrode active material]
The positive electrode material contains a positive electrode active material. The positive electrode active material can be obtained by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material to obtain an unformed positive electrode active material and then forming an unformed positive electrode active material. The positive electrode active material after chemical conversion preferably contains β-lead dioxide (β-PbO 2 ), and may further contain α-lead dioxide (α-PbO 2 ). There is no restriction | limiting in particular as a raw material of a positive electrode active material, For example, lead powder is mentioned. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). Red lead as a raw material of the positive electrode active material (Pb 3 O 4) may be used. The unformed positive electrode material preferably contains an unformed positive electrode active material containing tribasic lead sulfate as a main component.
 正極活物質の平均粒径は、充電受け入れ性及びサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。正極活物質の平均粒径は、サイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。正極活物質の前記平均粒径は、化成後の正極材における正極活物質の平均粒径である。正極活物質の平均粒径は、例えば、化成後の正極中央部の正極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。 The average particle diameter of the positive electrode active material is preferably 0.3 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more, from the viewpoint of further improving charge acceptance and cycle characteristics. The average particle diameter of the positive electrode active material is preferably 2.5 μm or less, more preferably 2 μm or less, and even more preferably 1.5 μm or less from the viewpoint of further improving the cycle characteristics. The average particle diameter of the positive electrode active material is an average particle diameter of the positive electrode active material in the positive electrode material after chemical conversion. The average particle diameter of the positive electrode active material is, for example, the long side of all active material particles in the image of a scanning electron micrograph (1000 times) in the range of 10 μm in length × 10 μm in the positive electrode material at the center of the positive electrode after chemical conversion It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
 正極活物質の含有量は、電池特性(容量、低温高率放電性能、充電受け入れ性、ISSサイクル特性等)に更に優れる観点から、正極材の全質量を基準として、95質量%以上が好ましく、97質量%以上がより好ましく、99質量%以上が更に好ましい。正極活物質の含有量の上限は、100質量%以下であってもよい。正極活物質の前記含有量は、化成後の正極材における正極活物質の含有量である。 The content of the positive electrode active material is preferably 95% by mass or more based on the total mass of the positive electrode material, from the viewpoint of further excellent battery characteristics (capacity, low temperature high rate discharge performance, charge acceptance, ISS cycle characteristics, etc.) 97 mass% or more is more preferable, and 99 mass% or more is still more preferable. The upper limit of the content of the positive electrode active material may be 100% by mass or less. The content of the positive electrode active material is the content of the positive electrode active material in the positive electrode material after chemical conversion.
[正極添加剤]
 正極材は、添加剤を更に含有していてもよい。添加剤としては、炭素材料(炭素質導電材。炭素繊維を除く)、補強用短繊維等が挙げられる。炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(ケッチェンブラック等)、チャンネルブラック、アセチレンブラック、サーマルブラックなどが挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。
[Positive electrode additive]
The positive electrode material may further contain an additive. Examples of the additive include carbon materials (carbonaceous conductive material, excluding carbon fibers), reinforcing short fibers, and the like. Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
[正極材の物性]
 正極材の比表面積の下限は、充電受け入れ性に更に優れる観点から、3m/g以上が好ましく、4m/g以上がより好ましく、5m/g以上が更に好ましい。正極材の比表面積の上限は、特に制限はないが、実用的な観点及び利用率に優れる観点から、15m/g以下が好ましく、13m/g以下がより好ましく、12m/g以下が更に好ましい。正極材の前記比表面積は、化成後の正極材の比表面積である。正極材の比表面積は、例えば、正極材ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の正極活物質の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。
[Physical properties of positive electrode material]
The lower limit of the specific surface area of the positive electrode material is preferably 3 m 2 / g or more, more preferably 4 m 2 / g or more, and still more preferably 5 m 2 / g or more from the viewpoint of further excellent charge acceptance. The upper limit of the specific surface area of the cathode material is not particularly limited, from the viewpoint of excellent practical point of view and utilization, preferably 15 m 2 / g or less, more preferably 13m 2 / g or less, is 12m 2 / g or less Further preferred. The specific surface area of the positive electrode material is the specific surface area of the positive electrode material after chemical conversion. The specific surface area of the positive electrode material is, for example, a method of adjusting the amount of sulfuric acid and water added when preparing the positive electrode material paste, a method of refining the active material at the stage of the unformed positive electrode active material, and changing the chemical conversion conditions. It can be adjusted by a method or the like.
 正極材の比表面積は、例えば、BET法で測定することができる。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。具体的には、以下のBET式に基づいて測定する。 The specific surface area of the positive electrode material can be measured by, for example, the BET method. The BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area. Specifically, it is measured based on the following BET equation.
 下記式(1)の関係式は、P/Pが0.05~0.35の範囲でよく成立する。なお、式(1)中、各符号の詳細は下記のとおりである。
 P:一定温度で吸着平衡状態であるときの吸着平衡圧
 P:吸着温度における飽和蒸気圧
 V:吸着平衡圧Pにおける吸着量
 V:単分子層吸着量(気体分子が固体表面で単分子層を形成したときの吸着量)
 C:BET定数(固体表面と吸着物質との間の相互作用に関するパラメータ)
Relationship of the following formula (1), P / P o is satisfied be in the range of 0.05-0.35. In addition, in Formula (1), the detail of each code | symbol is as follows.
P: Adsorption equilibrium pressure when in an adsorption equilibrium state at a constant temperature P o : Saturated vapor pressure at the adsorption temperature V: Adsorption amount at the adsorption equilibrium pressure P V m : Monomolecular layer adsorption amount (a gas molecule is a single molecule on a solid surface) Adsorption amount when layer is formed)
C: BET constant (parameter relating to the interaction between the solid surface and the adsorbent)
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)を変形する(左辺の分子分母をPで割る)ことにより下記式(2)が得られる。測定に用いる比表面積計では、吸着占有面積が既知のガス分子を試料に吸着させ、その吸着量(V)と相対圧力(P/P)との関係を測定する。測定したVとP/Pより、式(2)の左辺とP/Poをプロットする。ここで、勾配がsであるとすると、式(2)より下記式(3)が導かれる。切片がiであるとすると、切片i及び勾配sは、それぞれ下記式(4)及び下記式(5)のとおりとなる。 By transforming equation (1) (dividing the numerator denominator on the left side by P), the following equation (2) is obtained. In the specific surface area meter used for the measurement, gas molecules having a known adsorption occupation area are adsorbed on the sample, and the relationship between the adsorption amount (V) and the relative pressure (P / P o ) is measured. Than the measured V and P / P o, to plot the left side and the P / Po of the formula (2). Here, assuming that the gradient is s, the following formula (3) is derived from the formula (2). Assuming that the intercept is i, the intercept i and the gradient s are as shown in the following formula (4) and the following formula (5), respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(4)及び式(5)を変形すると、それぞれ下記式(6)及び式(7)が得られ、単分子層吸着量Vを求める下記式(8)が得られる。すなわち、ある相対圧力P/Pにおける吸着量Vを数点測定し、プロットの勾配及び切片を求めると、単分子層吸着量Vが求まる。 When Expression (4) and Expression (5) are modified, the following Expression (6) and Expression (7) are obtained, respectively, and the following Expression (8) for obtaining the monomolecular layer adsorption amount V m is obtained. That is, when the adsorption amount V at a certain relative pressure P / Po is measured at several points and the slope and intercept of the plot are obtained, the monomolecular layer adsorption amount V m is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 試料の全表面積Stotal(m)は、下記式(9)で求められ、比表面積S(m/g)は、全表面積Stotalより下記式(10)で求められる。なお、式(9)中、Nは、アボガドロ数を示し、ACSは、吸着断面積(m)を示し、Mは、分子量を示す。また、式(10)中、wは、サンプル量(g)を示す。 The total surface area S total (m 2 ) of the sample is obtained by the following formula (9), and the specific surface area S (m 2 / g) is obtained by the following formula (10) from the total surface area S total . In the formula (9), N denotes the Avogadro's number, A CS shows the adsorption cross sectional area (m 2), M indicates the molecular weight. Moreover, in Formula (10), w shows a sample amount (g).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 正極材の多孔度は、正極材中の空孔部(孔)に硫酸が入り込む領域が多くなり容量が増加しやすい観点から、50体積%以上が好ましく、55体積%以上がより好ましい。正極材の多孔度の上限に特に制限はないが、正極材中の空孔部への硫酸含浸量が適度あり、活物質同士の結合力を良好に維持できる観点から、70体積%以下が好ましい。多孔度の上限は、実用的な観点から、60体積%以下がより好ましい。正極材の前記多孔度は、化成後の正極材の多孔度である。なお、正極材の多孔度は、例えば、水銀ポロシメーター測定から得られる値(体積基準の割合)である。正極材の多孔度は、例えば、正極材ペーストを作製する際に加える希硫酸量によって調整することができる。 The porosity of the positive electrode material is preferably 50% by volume or more, more preferably 55% by volume or more, from the viewpoint that the area where sulfuric acid enters the pores (holes) in the positive electrode material increases and the capacity tends to increase. Although there is no restriction | limiting in particular in the upper limit of the porosity of a positive electrode material, 70 volume% or less is preferable from a viewpoint that the amount of sulfuric acid impregnation to the void | hole part in a positive electrode material is moderate, and can maintain the bonding force of active materials favorably. . The upper limit of the porosity is more preferably 60% by volume or less from a practical viewpoint. The porosity of the positive electrode material is the porosity of the positive electrode material after chemical conversion. The porosity of the positive electrode material is, for example, a value (ratio based on volume) obtained from mercury porosimeter measurement. The porosity of the positive electrode material can be adjusted by, for example, the amount of dilute sulfuric acid added when producing the positive electrode material paste.
(負極材)
[負極活物質]
 負極材は、負極活物質を含有している。負極活物質は、負極活物質の原料を含む負極材ペーストを熟成及び乾燥することにより未化成の負極活物質を得た後に未化成の負極活物質を化成することで得ることができる。化成後の負極活物質としては、海綿状鉛(Spongylead)等が挙げられる。前記海綿状鉛は、電解液中の硫酸と反応して、次第に硫酸鉛(PbSO)に変わる傾向がある。負極活物質の原料としては、鉛粉等が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。未化成の負極活物質は、例えば、塩基性硫酸鉛及び金属鉛、並びに、低級酸化物から構成される。
(Negative electrode material)
[Negative electrode active material]
The negative electrode material contains a negative electrode active material. The negative electrode active material can be obtained by chemical conversion of an unformed negative electrode active material after obtaining an unformed negative electrode active material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material. Examples of the negative electrode active material after chemical conversion include spongy lead. The spongy lead tends to react with sulfuric acid in the electrolyte and gradually change to lead sulfate (PbSO 4 ). Examples of the raw material for the negative electrode active material include lead powder. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). The unformed negative electrode active material is composed of, for example, basic lead sulfate, metallic lead, and a lower oxide.
 負極活物質の平均粒径は、充電受け入れ性及びISSサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。負極活物質の平均粒径は、ISSサイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。負極活物質の前記平均粒径は、化成後の負極材における負極活物質の平均粒径である。負極活物質の平均粒径は、例えば、化成後の負極中央部の負極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)の画像内における全ての活物質粒子の長辺長さ(最大粒径)の値を算術平均化した数値として得ることができる。 The average particle diameter of the negative electrode active material is preferably 0.3 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more, from the viewpoint of further improving charge acceptance and ISS cycle characteristics. The average particle diameter of the negative electrode active material is preferably 2.5 μm or less, more preferably 2 μm or less, and even more preferably 1.5 μm or less from the viewpoint of further improving the ISS cycle characteristics. The average particle diameter of the negative electrode active material is an average particle diameter of the negative electrode active material in the negative electrode material after chemical conversion. The average particle diameter of the negative electrode active material is, for example, the long side of all the active material particles in the scanning electron micrograph (1000 times) image of the negative electrode material in the central part of the negative electrode after chemical conversion in the range of 10 μm in length × 10 μm in width. It can be obtained as a numerical value obtained by arithmetically averaging the length (maximum particle size) value.
 負極活物質の含有量は、電池特性(容量、低温高率放電性能、充電受け入れ性、ISSサイクル特性等)に更に優れる観点から、負極材の全質量を基準として、93質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。負極活物質の含有量の上限は、100質量%以下であってもよい。負極活物質の前記含有量は、化成後の負極材における負極活物質の含有量である。 The content of the negative electrode active material is preferably 93% by mass or more based on the total mass of the negative electrode material, from the viewpoint of further excellent battery characteristics (capacity, low temperature high rate discharge performance, charge acceptance, ISS cycle characteristics, etc.) 95 mass% or more is more preferable, and 98 mass% or more is still more preferable. The upper limit of the content of the negative electrode active material may be 100% by mass or less. The said content of a negative electrode active material is content of the negative electrode active material in the negative electrode material after chemical conversion.
[負極添加剤]
 負極材は、添加剤を更に含有していてもよい。添加剤としては、スルホン基(スルホン酸基、スルホ基)及びスルホン酸塩基(スルホン基の水素原子がアルカリ金属で置換された基等)からなる群より選ばれる少なくとも一種を有する樹脂(スルホン基及び/又はスルホン酸塩基を有する樹脂);硫酸バリウム;炭素材料(炭素質導電材。炭素繊維を除く);補強用短繊維などが挙げられる。スルホン基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を負極材が含むことにより、充電受け入れ性を更に向上させることができる。
[Negative electrode additive]
The negative electrode material may further contain an additive. As an additive, a resin having at least one selected from the group consisting of a sulfone group (sulfonic acid group, sulfo group) and a sulfonic acid group (a group in which a hydrogen atom of the sulfone group is substituted with an alkali metal) (sulfone group and And / or a resin having a sulfonate group); barium sulfate; a carbon material (carbonaceous conductive material, excluding carbon fiber); a reinforcing short fiber. When the negative electrode material contains a resin having at least one selected from the group consisting of a sulfone group and a sulfonate group, the charge acceptability can be further improved.
 スルホン基及び/又はスルホン酸塩基を有する樹脂としては、スルホン基及び/又はスルホン酸塩基を有するビスフェノール系樹脂(以下、単に「ビスフェノール系樹脂」という)、リグニンスルホン酸、リグニンスルホン酸塩等が挙げられる。リグニンスルホン酸は、リグニンの分解物の一部がスルホン化された化合物である。リグニンスルホン酸塩としては、例えば、リグニンスルホン酸カリウム及びリグニンスルホン酸ナトリウムが挙げられる。これらの中でも、充電受け入れ性が更に向上する観点から、ビスフェノール系樹脂が好ましい。 Examples of the resin having a sulfone group and / or a sulfonate group include bisphenol resins having a sulfone group and / or a sulfonate group (hereinafter simply referred to as “bisphenol resins”), lignin sulfonic acid, and lignin sulfonate. It is done. Lignin sulfonic acid is a compound in which a part of the degradation product of lignin is sulfonated. Examples of the lignin sulfonate include potassium lignin sulfonate and sodium lignin sulfonate. Among these, bisphenol-based resins are preferable from the viewpoint of further improving charge acceptance.
 ビスフェノール系樹脂は、ビスフェノール系化合物と、アミノアルキルスルホン酸、アミノアルキルスルホン酸誘導体、アミノアリールスルホン酸及びアミノアリールスルホン酸誘導体からなる群より選ばれる少なくとも一種と、ホルムアルデヒド及びホルムアルデヒド誘導体からなる群より選ばれる少なくとも一種と、を反応させて得られる樹脂であることが好ましい。 The bisphenol resin is selected from the group consisting of a bisphenol compound, at least one selected from the group consisting of aminoalkyl sulfonic acid, aminoalkyl sulfonic acid derivatives, aminoaryl sulfonic acid and aminoaryl sulfonic acid derivatives, and formaldehyde and formaldehyde derivatives. It is preferable that the resin is obtained by reacting at least one of the above.
 ビスフェノール系化合物は、2個のヒドロキシフェニル基を有する化合物である。ビスフェノール系化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(「ビスフェノールA」ともいう)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン(「ビスフェノールS」ともいう)等が挙げられる。 A bisphenol compound is a compound having two hydroxyphenyl groups. Examples of bisphenol compounds include 2,2-bis (4-hydroxyphenyl) propane (also referred to as “bisphenol A”), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, , 2-bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) butane, bis (4-hydroxyphenyl) ) Diphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) sulfone ("Bisphenol S" Also).
 アミノアルキルスルホン酸としては、アミノメタンスルホン酸、2-アミノエタンスルホン酸、3-アミノプロパンスルホン酸、2-メチルアミノエタンスルホン酸等が挙げられる。アミノアルキルスルホン酸誘導体としては、アミノアルキルスルホン酸の水素原子がアルキル基(例えば炭素数1~5のアルキル基)等で置換された化合物、アミノアルキルスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属(例えばナトリウム又はカリウム)で置換されたアルカリ金属塩などが挙げられる。アミノアリールスルホン酸としては、アミノベンゼンスルホン酸(4-アミノベンゼンスルホン酸等)、アミノナフタレンスルホン酸などが挙げられる。アミノアリールスルホン酸誘導体としては、アミノアリールスルホン酸の水素原子がアルキル基(例えば炭素数1~5のアルキル基)等で置換された化合物、アミノアリールスルホン酸のスルホン基(-SOH)の水素原子がアルカリ金属(例えばナトリウム又はカリウム)で置換されたアルカリ金属塩などが挙げられる。 Examples of the aminoalkylsulfonic acid include aminomethanesulfonic acid, 2-aminoethanesulfonic acid, 3-aminopropanesulfonic acid, 2-methylaminoethanesulfonic acid and the like. Examples of aminoalkyl sulfonic acid derivatives include compounds in which the hydrogen atom of aminoalkyl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, and sulfone groups of aminoalkyl sulfonic acid (—SO 3 H). Examples include alkali metal salts in which a hydrogen atom is substituted with an alkali metal (for example, sodium or potassium). Examples of aminoarylsulfonic acid include aminobenzenesulfonic acid (4-aminobenzenesulfonic acid and the like), aminonaphthalenesulfonic acid and the like. Examples of aminoaryl sulfonic acid derivatives include compounds in which a hydrogen atom of aminoaryl sulfonic acid is substituted with an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms) or the like, a sulfone group of aminoaryl sulfonic acid (—SO 3 H) Examples include alkali metal salts in which a hydrogen atom is substituted with an alkali metal (for example, sodium or potassium).
 ホルムアルデヒド誘導体としては、パラホルムアルデヒド、ヘキサメチレンテトラミン、トリオキサン等が挙げられる。 Examples of formaldehyde derivatives include paraformaldehyde, hexamethylenetetramine, and trioxane.
 ビスフェノール系樹脂は、下記式(I)で表される構造単位、及び、下記式(II)で表される構造単位からなる群より選ばれる少なくとも一種を有することが好ましい。 The bisphenol-based resin preferably has at least one selected from the group consisting of a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000011
[式(I)中、Xは、2価の基を示し、Aは、炭素数1~4のアルキレン基、又は、アリーレン基を示し、R11は、アルカリ金属又は水素原子を示し、R12は、メチロール基(-CHOH)を示し、R13及びR14は、それぞれ独立にアルカリ金属又は水素原子を示し、n11は、1~600の整数を示し、n12は、1~3の整数を示し、n13は、0又は1を示す。]
Figure JPOXMLDOC01-appb-C000011
[In Formula (I), X 1 represents a divalent group, A 1 represents an alkylene group having 1 to 4 carbon atoms, or an arylene group, R 11 represents an alkali metal or a hydrogen atom, R 12 represents a methylol group (—CH 2 OH), R 13 and R 14 each independently represents an alkali metal or a hydrogen atom, n11 represents an integer of 1 to 600, and n12 represents 1 to 3 N13 represents 0 or 1. ]
Figure JPOXMLDOC01-appb-C000012
[式(II)中、Xは、2価の基を示し、Aは、炭素数1~4のアルキレン基、又は、アリーレン基を示し、R21は、アルカリ金属又は水素原子を示し、R22は、メチロール基(-CHOH)を示し、R23及びR24は、それぞれ独立にアルカリ金属又は水素原子を示し、n21は、1~600の整数を示し、n22は、1~3の整数を示し、n23は、0又は1を示す。]
Figure JPOXMLDOC01-appb-C000012
[In Formula (II), X 2 represents a divalent group, A 2 represents an alkylene group having 1 to 4 carbon atoms, or an arylene group, R 21 represents an alkali metal or a hydrogen atom, R 22 represents a methylol group (—CH 2 OH), R 23 and R 24 each independently represents an alkali metal or a hydrogen atom, n 21 represents an integer of 1 to 600, and n 22 represents 1 to 3 N23 represents 0 or 1. ]
 式(I)で表される構造単位、及び、式(II)で表される構造単位の比率は、特に制限はなく、合成条件等によって変化し得る。ビスフェノール系樹脂としては、式(I)で表される構造単位、及び、式(II)で表される構造単位のいずれか一方のみを有する樹脂を用いてもよい。 The ratio of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) is not particularly limited, and may vary depending on synthesis conditions and the like. As the bisphenol-based resin, a resin having only one of the structural unit represented by the formula (I) and the structural unit represented by the formula (II) may be used.
 X及びXとしては、例えば、アルキリデン基(メチリデン基、エチリデン基、イソプロピリデン基、sec-ブチリデン基等)、シクロアルキリデン基(シクロヘキシリデン基等)、フェニルアルキリデン基(ジフェニルメチリデン基、フェニルエチリデン基等)などの有機基;スルホニル基が挙げられ、充電受け入れ性に更に優れる観点からはイソプロピリデン基(-C(CH-)が好ましく、放電特性に更に優れる観点からはスルホニル基(-SO-)が好ましい。X及びXは、フッ素原子等のハロゲン原子により置換されていてもよい。X及びXがシクロアルキリデン基である場合、炭化水素環はアルキル基等により置換されていてもよい。 X 1 and X 2 include, for example, alkylidene groups (methylidene group, ethylidene group, isopropylidene group, sec-butylidene group, etc.), cycloalkylidene groups (cyclohexylidene group, etc.), phenylalkylidene groups (diphenylmethylidene group, An organic group such as a phenylethylidene group; a sulfonyl group; an isopropylidene group (—C (CH 3 ) 2 —) is preferable from the viewpoint of further excellent charge acceptability, and a sulfonyl group from the viewpoint of further excellent discharge characteristics. The group (—SO 2 —) is preferred. X 1 and X 2 may be substituted with a halogen atom such as a fluorine atom. When X 1 and X 2 are cycloalkylidene groups, the hydrocarbon ring may be substituted with an alkyl group or the like.
 A及びAとしては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等の炭素数1~4のアルキレン基;フェニレン基、ナフチレン基等の2価のアリーレン基が挙げられる。前記アリーレン基は、アルキル基等により置換されていてもよい。 Examples of A 1 and A 2 include alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, and a butylene group; and divalent arylene groups such as a phenylene group and a naphthylene group. The arylene group may be substituted with an alkyl group or the like.
 R11、R13、R14、R21、R23及びR24のアルカリ金属としては、例えば、ナトリウム及びカリウムが挙げられる。n11及びn21は、ISSサイクル特性及び溶媒への溶解性に更に優れる観点から、5~300が好ましい。n12及びn22は、充電受け入れ性、放電特性及びISSサイクル特性がバランス良く向上する観点から、1又は2が好ましく、1がより好ましい。n13及びn23は、製造条件により変化するが、ISSサイクル特性に更に優れると共にビスフェノール系樹脂の保存安定性に優れる観点から、0が好ましい。 Examples of the alkali metal of R 11 , R 13 , R 14 , R 21 , R 23 and R 24 include sodium and potassium. n11 and n21 are preferably 5 to 300 from the viewpoint of further excellent ISS cycle characteristics and solubility in a solvent. n12 and n22 are preferably 1 or 2, and more preferably 1, from the viewpoint of improving the charge acceptance, discharge characteristics, and ISS cycle characteristics in a well-balanced manner. n13 and n23 vary depending on production conditions, but 0 is preferable from the viewpoint of further excellent ISS cycle characteristics and excellent storage stability of a bisphenol-based resin.
 スルホン基及び/又はスルホン酸塩基を有する樹脂(ビスフェノール系樹脂等)の重量平均分子量は、スルホン基及び/又はスルホン酸塩基を有する樹脂が鉛蓄電池において電極から電解液に溶出することを抑制することによりISSサイクル特性が向上しやすくなる観点から、3000以上が好ましく、10000以上がより好ましく、20000以上が更に好ましく、30000以上が特に好ましい。スルホン基及び/又はスルホン酸塩基を有する樹脂の重量平均分子量は、電極活物質に対する吸着性が低下して分散性が低下することを抑制することによりISSサイクル特性が向上しやすくなる観点から、200000以下が好ましく、150000以下がより好ましく、100000以下が更に好ましい。 The weight average molecular weight of a resin having a sulfonic group and / or a sulfonic acid group (such as a bisphenol-based resin) suppresses the elution of a resin having a sulfonic group and / or a sulfonic acid group from an electrode to an electrolyte in a lead storage battery Is preferably 3000 or more, more preferably 10,000 or more, still more preferably 20000 or more, and particularly preferably 30000 or more. The weight average molecular weight of the resin having a sulfone group and / or a sulfonate group is 200000 from the viewpoint that the ISS cycle characteristics are easily improved by suppressing the decrease in the adsorptivity to the electrode active material and the decrease in the dispersibility. The following is preferable, 150,000 or less is more preferable, and 100,000 or less is still more preferable.
 スルホン基及び/又はスルホン酸塩基を有する樹脂の重量平均分子量は、例えば、下記条件のゲルパーミエイションクロマトグラフィー(以下、「GPC」という)により測定することができる。(GPC条件)
 装置:高速液体クロマトグラフ LC-2200 Plus(日本分光株式会社製)
    ポンプ:PU-2080
    示差屈折率計:RI-2031
    検出器:紫外可視吸光光度計UV-2075(λ:254nm)
    カラムオーブン:CO-2065
 カラム:TSKgel SuperAW(4000)、TSKgel SuperAW(3000)、TSKgel SuperAW(2500)(東ソー株式会社製)
 カラム温度:40℃
 溶離液:LiBr(10mM)及びトリエチルアミン(200mM)を含有するメタノール溶液
 流速:0.6mL/分
 分子量標準試料:ポリエチレングリコール(分子量:1.10×10、5.80×10、2.55×10、1.46×10、1.01×10、4.49×10、2.70×10、2.10×10;東ソー株式会社製)、ジエチレングリコール(分子量:1.06×10;キシダ化学株式会社製)、ジブチルヒドロキシトルエン(分子量:2.20×10;キシダ化学株式会社製)
The weight average molecular weight of the resin having a sulfone group and / or a sulfonate group can be measured, for example, by gel permeation chromatography (hereinafter referred to as “GPC”) under the following conditions. (GPC conditions)
Apparatus: High performance liquid chromatograph LC-2200 Plus (manufactured by JASCO Corporation)
Pump: PU-2080
Differential refractometer: RI-2031
Detector: UV-visible spectrophotometer UV-2075 (λ: 254 nm)
Column oven: CO-2065
Column: TSKgel SuperAW (4000), TSKgel SuperAW (3000), TSKgel SuperAW (2500) (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Eluent: methanol solution containing LiBr (10 mM) and triethylamine (200 mM) Flow rate: 0.6 mL / min Molecular weight standard sample: Polyethylene glycol (molecular weight: 1.10 × 10 6 , 5.80 × 10 5 , 2.55 × 10 5 , 1.46 × 10 5 , 1.01 × 10 5 , 4.49 × 10 4 , 2.70 × 10 4 , 2.10 × 10 4 ; manufactured by Tosoh Corporation), diethylene glycol (molecular weight: 1 .06 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.), dibutylhydroxytoluene (molecular weight: 2.20 × 10 2 ; manufactured by Kishida Chemical Co., Ltd.)
 スルホン基及び/又はスルホン酸塩基を有する樹脂を用いる場合、スルホン基及び/又はスルホン酸塩基を有する樹脂の含有量は、更に優れた充電受け入れ性を得る観点から、負極材の全質量を基準として、固形分換算で0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。スルホン基及び/又はスルホン酸塩基を有する樹脂の含有量は、更に優れた放電特性を得る観点から、負極材の全質量を基準として、固形分換算で2質量%以下が好ましく、1質量%以下がより好ましく、0.3質量%以下が更に好ましい。 When using a resin having a sulfone group and / or a sulfonate group, the content of the resin having a sulfone group and / or a sulfonate group is based on the total mass of the negative electrode material from the viewpoint of obtaining further excellent charge acceptability. Moreover, 0.01 mass% or more is preferable in conversion of solid content, 0.05 mass% or more is more preferable, and 0.1 mass% or more is still more preferable. The content of the resin having a sulfone group and / or a sulfonate group is preferably 2% by mass or less, preferably 1% by mass or less in terms of solid content, based on the total mass of the negative electrode material, from the viewpoint of obtaining further excellent discharge characteristics. Is more preferable, and 0.3 mass% or less is still more preferable.
 炭素材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(ケッチェンブラック等)、チャンネルブラック、アセチレンブラック、サーマルブラックなどが挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。 Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.
[負極材の物性]
 負極材の比表面積は、電解液と負極活物質との反応性を高める観点から、0.4m/g以上が好ましく、0.5m/g以上がより好ましく、0.6m/g以上が更に好ましい。負極材の比表面積は、サイクル時の負極の収縮を更に抑制する観点から、2m/g以下が好ましく、1.8m/g以下がより好ましく、1.5m/g以下が更に好ましい。負極材の前記比表面積は、化成後の負極材の比表面積である。負極材の比表面積は、例えば、負極材ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の負極活物質の段階で活物質を微細化させる方法及び化成条件を変化させる方法により調整することができる。負極材の比表面積は、例えば、BET法で測定することができる。
[Physical properties of negative electrode material]
The specific surface area of the negative electrode material is preferably 0.4 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 0.6 m 2 / g or more from the viewpoint of increasing the reactivity between the electrolytic solution and the negative electrode active material. Is more preferable. The specific surface area of the negative electrode material, from the further suppression of the contraction of the negative electrode at the time of the cycle is preferably not more than 2m 2 / g, more preferably not more than 1.8 m 2 / g, more preferably not more than 1.5 m 2 / g. The specific surface area of the negative electrode material is the specific surface area of the negative electrode material after chemical conversion. The specific surface area of the negative electrode material changes, for example, the method of adjusting the addition amount of sulfuric acid and water when preparing the negative electrode material paste, the method of refining the active material at the stage of the unformed negative electrode active material, and the chemical conversion conditions It can be adjusted by the method. The specific surface area of the negative electrode material can be measured by, for example, the BET method.
(集電体)
 集電体の製造法としては、鋳造方式、エキスパンド方式、打ち抜き方式等が挙げられる。集電体の材料としては、例えば、鉛-カルシウム-錫系合金及び鉛-アンチモン系合金が挙げられる。これらにセレン、銀、ビスマス等を微量添加することができる。例えば、これらの材料を上述の製造法で格子状又はメッシュ状に形成することにより集電体を得ることができる。正極及び負極の集電体の材料及び/又は製造法は、互いに同一であってもよく、互いに異なっていてもよい。
(Current collector)
Examples of the method for producing the current collector include a casting method, an expanding method, and a punching method. Examples of the current collector material include a lead-calcium-tin alloy and a lead-antimony alloy. A small amount of selenium, silver, bismuth or the like can be added to these. For example, the current collector can be obtained by forming these materials into a lattice shape or a mesh shape by the above-described manufacturing method. The material and / or manufacturing method of the positive and negative electrode current collectors may be the same or different from each other.
<鉛蓄電池の製造方法>
 本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極)を得る電極製造工程と、前記電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。
<Method for producing lead-acid battery>
The method for manufacturing a lead storage battery according to the present embodiment includes, for example, an electrode manufacturing process for obtaining electrodes (positive electrode and negative electrode) and an assembly process for obtaining a lead storage battery by assembling constituent members including the electrodes.
 電極製造工程では、例えば、電極材ペースト(正極材ペースト及び負極材ペースト)を集電体(鋳造方式により得られる鋳造格子体、エキスパンド方式により得られるエキスパンド格子体等)に充填した後に、熟成及び乾燥を行うことにより未化成の電極を得る。正極材ペーストは、例えば、正極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。負極材ペーストは、負極活物質の原料(鉛粉等)を含有しており、分散剤として、スルホン基及び/又はスルホン酸塩基を有する樹脂(ビスフェノール系樹脂等)を含有していることが好ましく、他の添加剤を更に含有していてもよい。 In the electrode manufacturing process, for example, after filling an electrode material paste (a positive electrode material paste and a negative electrode material paste) into a current collector (a cast lattice obtained by a casting method, an expanded lattice obtained by an expanding method, etc.), aging and An unformed electrode is obtained by drying. The positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives. The negative electrode material paste preferably contains a raw material for the negative electrode active material (such as lead powder), and preferably contains a resin having a sulfone group and / or a sulfonate group (such as a bisphenol-based resin) as a dispersant. Further, other additives may be further contained.
 正極材を得るための正極材ペーストは、例えば、下記の方法により得ることができる。正極材ペーストを作製するに際しては、化成時間を短縮できる観点から、正極活物質の原料として鉛丹(Pb)を用いてもよい。 The positive electrode material paste for obtaining the positive electrode material can be obtained, for example, by the following method. In producing the positive electrode material paste, lead (Pb 3 O 4 ) may be used as a raw material for the positive electrode active material from the viewpoint of shortening the chemical formation time.
 まず、正極活物質の原料に添加剤(補強用短繊維等)を添加して乾式混合することにより混合物を得る。そして、この混合物に硫酸(希硫酸等)及び溶媒(イオン交換水等の水、有機溶媒など)を加えて混練することにより正極材ペーストが得られる。 First, an additive (reinforcing short fiber, etc.) is added to the raw material of the positive electrode active material and dry mixed to obtain a mixture. And a positive electrode material paste is obtained by adding and knead | mixing a sulfuric acid (dilute sulfuric acid etc.) and a solvent (water, such as ion-exchange water, an organic solvent) to this mixture.
 正極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の正極を得ることができる。 An unformed positive electrode can be obtained by filling the positive electrode material paste into the current collector and then aging and drying.
 正極材ペーストにおいて補強用短繊維を用いる場合、補強用短繊維の配合量は、正極活物質の原料(鉛粉等)の全質量を基準として、0.005~0.3質量%が好ましく、0.05~0.3質量%がより好ましい。 When reinforcing short fibers are used in the positive electrode material paste, the blending amount of the reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode active material (lead powder, etc.) 0.05 to 0.3% by mass is more preferable.
 未化成の正極を得るための熟成条件としては、温度35~85℃、相対湿度50~98%RHの雰囲気で15~60時間が好ましい。乾燥条件は、温度45~80℃で15~30時間が好ましい。 As aging conditions for obtaining an unformed positive electrode, 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a relative humidity of 50 to 98% RH. The drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
 負極材ペーストは、例えば、下記の方法により得ることができる。まず、負極活物質の原料に添加剤(スルホン基及び/又はスルホン酸塩基を有する樹脂、炭素材料、補強用短繊維、硫酸バリウム等)を添加して乾式混合することにより混合物を得る。そして、この混合物に硫酸(希硫酸等)及び溶媒(イオン交換水等の水、有機溶媒など)を加えて混練することにより負極材ペーストが得られる。この負極材ペーストを集電体に充填した後に熟成及び乾燥を行うことにより未化成の負極を得ることができる。 The negative electrode material paste can be obtained, for example, by the following method. First, an additive (a resin having a sulfone group and / or a sulfonate group, a carbon material, a reinforcing short fiber, barium sulfate, or the like) is added to the raw material of the negative electrode active material and dry mixed to obtain a mixture. And a negative electrode material paste is obtained by adding and knead | mixing a sulfuric acid (diluted sulfuric acid etc.) and a solvent (water, such as ion-exchange water, an organic solvent) to this mixture. An unformed negative electrode can be obtained by filling the negative electrode material paste into the current collector and then aging and drying.
 負極材ペーストにおいて、スルホン基及び/又はスルホン酸塩基を有する樹脂(ビスフェノール系樹脂等)、炭素材料、補強用短繊維又は硫酸バリウムを用いる場合、各成分の配合量は下記の範囲が好ましい。スルホン基及び/又はスルホン酸塩基を有する樹脂の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、樹脂固形分換算で、0.01~2.0質量%が好ましく、0.05~1.0質量%がより好ましく、0.1~0.5質量%が更に好ましく、0.1~0.3質量%が特に好ましい。炭素材料の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.1~3質量%が好ましく、0.2~1.4質量%がより好ましい。補強用短繊維の配合量は、負極活物質の原料(鉛粉等)の全質量を基準として0.05~0.3質量%が好ましい。硫酸バリウムの配合量は、負極活物質の原料(鉛粉等)の全質量を基準として、0.01~2.0質量%が好ましく、0.01~1.0質量%がより好ましい。 In the negative electrode material paste, when a resin having a sulfone group and / or a sulfonate group (such as a bisphenol-based resin), a carbon material, a reinforcing short fiber, or barium sulfate is used, the amount of each component is preferably within the following range. The amount of the resin having a sulfone group and / or a sulfonate group is preferably 0.01 to 2.0% by mass in terms of resin solid content based on the total mass of the raw material of the negative electrode active material (such as lead powder). 0.05 to 1.0 mass% is more preferable, 0.1 to 0.5 mass% is still more preferable, and 0.1 to 0.3 mass% is particularly preferable. The blending amount of the carbon material is preferably 0.1 to 3% by mass, and more preferably 0.2 to 1.4% by mass, based on the total mass of the negative electrode active material (such as lead powder). The blending amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass based on the total mass of the negative electrode active material (lead powder or the like). The compounding amount of barium sulfate is preferably 0.01 to 2.0% by mass, more preferably 0.01 to 1.0% by mass, based on the total mass of the negative electrode active material (lead powder, etc.).
 未化成の負極を得るための熟成条件としては、温度45~65℃、相対湿度70~98%RHの雰囲気で15~30時間が好ましい。乾燥条件は、温度45~60℃で15~30時間が好ましい。 The aging conditions for obtaining the unformed negative electrode are preferably 15 to 30 hours in an atmosphere of a temperature of 45 to 65 ° C. and a relative humidity of 70 to 98% RH. The drying conditions are preferably 45 to 60 ° C. and 15 to 30 hours.
 組み立て工程では、例えば、前記のように作製した未化成の負極及び未化成の正極を、セパレータを介して交互に積層し、同極性の電極の集電部をストラップで連結(溶接等)させて電極群を得る。この電極群を電槽内に配置して未化成の電池を作製する。次に、未化成の電池に電解液を注入した後、直流電流を通電して電槽化成する。化成後の電解液の比重を適切な比重に調整して鉛蓄電池が得られる。 In the assembling process, for example, the unformed negative electrode and the unformed positive electrode produced as described above are alternately stacked via separators, and the current collectors of the same polarity electrodes are connected (welded, etc.) with a strap. An electrode group is obtained. This electrode group is arranged in a battery case to produce an unformed battery. Next, after injecting an electrolyte into an unformed battery, a direct current is applied to form a battery case. The lead acid battery can be obtained by adjusting the specific gravity of the electrolyte after the formation to an appropriate specific gravity.
 前記電解液は、例えば、硫酸及びアルミニウムイオンを含有しており、硫酸及び硫酸アルミニウム粉末を混合することにより得ることができる。電解液中に溶解させる硫酸アルミニウムは、無水物又は水和物として添加することができる。 The electrolytic solution contains, for example, sulfuric acid and aluminum ions, and can be obtained by mixing sulfuric acid and aluminum sulfate powder. Aluminum sulfate to be dissolved in the electrolytic solution can be added as an anhydride or a hydrate.
 電解液(アルミニウムイオンを含む電解液)の化成後の比重は下記の範囲であることが好ましい。電解液の比重は、浸透短絡又は凍結を更に抑制すると共に放電特性に更に優れる観点から、1.25以上が好ましく、1.26以上がより好ましく、1.27以上が更に好ましく、1.275以上が特に好ましい。電解液の比重は、充電受け入れ性及びISSサイクル特性が更に向上する観点から、1.33以下が好ましく、1.32以下がより好ましく、1.31以下が更に好ましく、1.30以下が特に好ましい。電解液の比重の値は、例えば、浮式比重計、又は、京都電子工業株式会社製のデジタル比重計によって測定することができる。 The specific gravity after chemical conversion of the electrolytic solution (electrolytic solution containing aluminum ions) is preferably in the following range. The specific gravity of the electrolytic solution is preferably 1.25 or more, more preferably 1.26 or more, further preferably 1.27 or more, and 1.275 or more from the viewpoint of further suppressing the osmotic short circuit or freezing and further improving the discharge characteristics. Is particularly preferred. The specific gravity of the electrolytic solution is preferably 1.33 or less, more preferably 1.32 or less, still more preferably 1.31 or less, and particularly preferably 1.30 or less, from the viewpoint of further improving charge acceptability and ISS cycle characteristics. . The value of the specific gravity of the electrolytic solution can be measured by, for example, a floating hydrometer or a digital hydrometer manufactured by Kyoto Electronics Industry Co., Ltd.
 電槽は、内部に電極(極板等)を収納可能なものである。電槽は、電極を収納しやすい観点から、上面が開放された箱体と、この箱体の上面を覆う蓋体とを有するものが好ましい。なお、箱体と蓋体との接着には、接着剤、熱溶着、レーザ溶着、超音波溶着等を適宜用いることができる。電槽の形状としては、特に限定されるものではないが、電極(板状体である極板等)の収納時に無効空間が少なくなるように方形のものが好ましい。 The battery case can accommodate electrodes (electrode plates, etc.) inside. The battery case preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of easily accommodating the electrode. Note that an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid. The shape of the battery case is not particularly limited, but a rectangular shape is preferable so that an ineffective space is reduced when an electrode (a plate plate or the like) is accommodated.
 電槽の材料は、特に制限されるものではないが、電解液(希硫酸等)に対し耐性を有するものである必要がある。電槽の材料の具体例としては、PP(ポリプロピレン)、PE(ポリエチレン)、ABS樹脂等が挙げられる。材料がPPであると、耐酸性、加工性及び経済性の面で有利である。PPは、電槽と蓋の熱溶着が困難であるABS樹脂と比較して加工性の面で有利である。 The material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (such as dilute sulfuric acid). Specific examples of the material for the battery case include PP (polypropylene), PE (polyethylene), and ABS resin. When the material is PP, it is advantageous in terms of acid resistance, processability and economy. PP is advantageous in terms of workability as compared with ABS resin, which is difficult to thermally weld the battery case and the lid.
 電槽が箱体及び蓋体により構成される場合、箱体及び蓋体の材料は、互いに同一の材料であってもよく、互いに異なる材料であってもよい。箱体及び蓋体の材料としては、無理な応力が発生しない観点から、熱膨張係数の等しい材料が好ましい。 When the battery case is composed of a box and a lid, the material of the box and the lid may be the same material or different materials. As the material for the box and the lid, materials having the same thermal expansion coefficient are preferable from the viewpoint of not generating excessive stress.
 化成条件及び硫酸の比重は電極活物質の性状に応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程における熟成及び乾燥後に実施されてもよい(タンク化成)。 Chemical conversion conditions and specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. The chemical conversion treatment is not limited to being performed after the assembly process, and may be performed after aging and drying in the electrode manufacturing process (tank chemical conversion).
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
<鉛蓄電池の作製>
(実施例1)
[正極板の作製]
 正極活物質の原料として、鉛粉及び鉛丹(Pb)を用いた(鉛粉:鉛丹=96:4(質量比))。この正極活物質の原料と、正極活物質の原料100質量部に対して0.07質量部の補強用短繊維(アクリル繊維)と、水とを混合して混練した。続いて、希硫酸(比重1.280)を少量ずつ添加しながら混練して、正極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体(正極集電体)にこの正極材ペーストを充填した。次いで、正極材ペーストが充填された格子体(正極集電体)を温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の正極板を作製した。
<Production of lead acid battery>
(Example 1)
[Production of positive electrode plate]
Lead powder and red lead (Pb 3 O 4 ) were used as raw materials for the positive electrode active material (lead powder: red lead = 96: 4 (mass ratio)). The raw material for the positive electrode active material, 0.07 parts by mass of reinforcing short fibers (acrylic fibers) with respect to 100 parts by mass of the positive electrode active material, and water were mixed and kneaded. Then, it knead | mixing, adding dilute sulfuric acid (specific gravity 1.280) little by little, and produced the positive electrode material paste. An expanded lattice (positive electrode current collector) produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with this positive electrode material paste. Next, the grid (positive electrode current collector) filled with the positive electrode material paste was aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried and produced the unchemically formed positive electrode plate.
[負極板の作製]
 負極活物質の原料として鉛粉を用いた。この鉛粉100質量部に対して、ビスパーズP215(ビスフェノール系化合物とアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、商品名、日本製紙株式会社製)0.2質量部(固形分換算)、補強用短繊維(アクリル繊維)0.1質量部、硫酸バリウム1.0質量部及び炭素材料(ファーネスブラック)0.2質量部を含む混合物を添加し、乾式混合した後、水を加えて混練した。続いて、希硫酸(比重1.280)を少量ずつ添加しながら混練して、負極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体(負極集電体)にこの負極材ペーストを充填した。次いで、負極材ペーストが充填された格子体(負極集電体)を温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の負極板を作製した。
[Production of negative electrode plate]
Lead powder was used as a raw material for the negative electrode active material. For 100 parts by mass of the lead powder, Bispers P215 (condensation product of bisphenol compound, aminobenzenesulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Industries Co., Ltd.) 0.2 parts by mass (solid content conversion), for reinforcement A mixture containing 0.1 parts by mass of short fibers (acrylic fibers), 1.0 part by mass of barium sulfate and 0.2 parts by mass of carbon material (furnace black) was added and dry-mixed, and then water was added and kneaded. Subsequently, the mixture was kneaded while dilute sulfuric acid (specific gravity 1.280) was added little by little to prepare a negative electrode material paste. This negative electrode material paste was filled in an expanded lattice (negative electrode current collector) produced by subjecting a rolled sheet made of a lead alloy to an expanding process. Next, the grid body (negative electrode current collector) filled with the negative electrode material paste was aged for 24 hours in an atmosphere of a temperature of 50 ° C. and a humidity of 98%. Then, it dried and produced the unchemically formed negative electrode plate.
[セパレータの準備]
 ポリエチレン及びシリカ粒子を含み且つ一方面に複数の線状のリブ及びミニリブが配置されている長尺のシート状物を、リブ及びミニリブが配置されている面が外側に位置するように袋状に加工して、袋状のセパレータを用意した(図1及び図3参照)。リブ及びミニリブのそれぞれは、互いに略平行に配置されており、セパレータの長手方向に延びている。セパレータの短手方向において、リブを含む第1の領域は、ミニリブを含む二つの第2の領域の間に位置している。セパレータの詳細を以下に示す。
 ・総厚み:0.75mm(ベース部の厚みT:0.2mm、リブの高さH:0.55mm、H/T=2.75)
 ・リブの間隔:7.35mm、リブの上底幅B:0.4mm、リブの下底幅A:0.8mm
 ・前記第2の領域のそれぞれにおけるミニリブの数:20本
 ・シリカ粒子:粒径(最長径)2μm以上のシリカ粒子の数は、セパレータの断面を走査型電子顕微鏡(SEM)で分析した際に任意に選択される30μm×40μmの範囲内において9個であった。
[Preparation of separator]
A long sheet-like material containing polyethylene and silica particles and having a plurality of linear ribs and mini-ribs arranged on one side is formed into a bag shape so that the surface on which the ribs and mini-ribs are arranged is located outside. It processed and the bag-shaped separator was prepared (refer FIG.1 and FIG.3). Each of the ribs and the mini-ribs is disposed substantially parallel to each other and extends in the longitudinal direction of the separator. In the short direction of the separator, the first region including the rib is located between the two second regions including the mini-rib. Details of the separator are shown below.
Total thickness: 0.75 mm (base portion thickness T: 0.2 mm, rib height H: 0.55 mm, H / T = 2.75)
-Rib spacing: 7.35 mm, rib upper base width B: 0.4 mm, rib lower base width A: 0.8 mm
-Number of miniribs in each of the second regions: 20-Silica particles: The number of silica particles having a particle size (longest diameter) of 2 μm or more is determined by analyzing the cross section of the separator with a scanning electron microscope (SEM). Nine within a range of 30 μm × 40 μm arbitrarily selected.
[電池の組み立て]
 前記袋状のセパレータに未化成の負極板を収容した。次に、未化成の正極板5枚と、前記袋状のセパレータに収容された未化成の負極板6枚とを、セパレータのリブが正極板に接するようにして交互に積層した。続いて、キャストオンストラップ(COS)方式で同極性の極板の耳部同士を溶接して極板群を作製した。極板群を電槽に挿入して2V単セル電池(JIS D 5301規定のB19サイズの単セルに相当)を組み立てた。アルミニウムイオン濃度が0.08mol/Lになるように硫酸アルミニウム無水物を溶解させた比重1.23の希硫酸(電解液)をこの電池に注入した。その後、50℃の水槽中で、通電電流10Aで16時間化成し、化成後の電解液の比重を1.280に調整して、実施例1の鉛蓄電池を得た。
[Battery assembly]
An unformed negative electrode plate was accommodated in the bag-shaped separator. Next, five unchemically formed positive electrode plates and six unchemically formed negative electrode plates accommodated in the bag-shaped separator were alternately laminated so that the ribs of the separator were in contact with the positive electrode plate. Subsequently, the ears of the same polarity electrode plates were welded together by a cast on strap (COS) method to produce an electrode plate group. The electrode plate group was inserted into a battery case to assemble a 2V single cell battery (corresponding to a B19 size single cell defined in JIS D 5301). Dilute sulfuric acid (electrolytic solution) having a specific gravity of 1.23 in which aluminum sulfate anhydride was dissolved so that the aluminum ion concentration was 0.08 mol / L was injected into the battery. Then, in a 50 degreeC water tank, it formed for 16 hours with the energizing current 10A, the specific gravity of the electrolyte solution after formation was adjusted to 1.280, and the lead acid battery of Example 1 was obtained.
[負極材に対する正極材の質量比]
 化成後の鉛蓄電池を解体し、正極板、及び、セパレータに収容された負極板を電池から取り出し、さらに、セパレータから負極板を取り出した。正極板及び負極板を1時間水洗した後、50℃で約1日間放置して乾燥させた。その後、乾燥させた正極板及び負極板の化成後の正極材及び化成後の負極材をそれぞれ正極集電体及び負極集電体から除去した。電極材(化成後の正極材及び化成後の負極材)を除去する前後での正極板及び負極板の質量の変化量をそれぞれ正極材及び負極材の質量として求めた。その結果から、負極材に対する正極材の質量比(正極材/負極材)を算出した。結果を表1に示す。
[Mass ratio of positive electrode material to negative electrode material]
The formed lead-acid battery was disassembled, the positive electrode plate and the negative electrode plate accommodated in the separator were taken out of the battery, and the negative electrode plate was taken out of the separator. The positive electrode plate and the negative electrode plate were washed with water for 1 hour and then left to dry at 50 ° C. for about 1 day. Thereafter, the dried positive electrode plate and negative electrode plate after the formation of the positive electrode material and the formed negative electrode material were removed from the positive electrode current collector and the negative electrode current collector, respectively. The amount of change in the mass of the positive electrode plate and the negative electrode plate before and after removing the electrode material (the positive electrode material after conversion and the negative electrode material after conversion) was determined as the mass of the positive electrode material and the negative electrode material, respectively. From the result, the mass ratio of the positive electrode material to the negative electrode material (positive electrode material / negative electrode material) was calculated. The results are shown in Table 1.
[セパレータ中における酸素及びケイ素の合計量]
 まず、イオンミリング装置E-3500(株式会社日立ハイテクノロジーズ製、商品名)により、電池の組み立て前のセパレータを切断して断面を露出させた。次に、走査型電子顕微鏡(商品名:JSM-6010LA、日本電子株式会社製)を用いてセパレータ断面のEDX分析を行った。倍率300倍でマッピング分析を行い、測定後、セパレータ部分を選択して炭素、酸素及びケイ素の存在量を定量し、各元素の質量へ換算した。得られた炭素、酸素及びケイ素の質量の合計を基準として、セパレータ中における酸素及びケイ素の質量の合計量(質量%)を計算した。なお、マッピング分析の条件は、加速電圧が15kV、スポットサイズが72、低真空モードで圧力が35Pa、ドゥエルタイムが1ミリ秒、プロセスタイムがT4、画素数が512×384、積算回数を5回とした。各元素の定量結果を表1に示す。
[Total amount of oxygen and silicon in the separator]
First, the separator before battery assembly was cut by an ion milling apparatus E-3500 (trade name, manufactured by Hitachi High-Technologies Corporation) to expose the cross section. Next, EDX analysis of the separator cross section was performed using a scanning electron microscope (trade name: JSM-6010LA, manufactured by JEOL Ltd.). Mapping analysis was performed at a magnification of 300 times, and after the measurement, the separator portion was selected, and the abundances of carbon, oxygen, and silicon were quantified and converted to the mass of each element. Based on the total mass of carbon, oxygen and silicon obtained, the total mass (% by mass) of oxygen and silicon in the separator was calculated. The conditions for mapping analysis are as follows: acceleration voltage is 15 kV, spot size is 72, pressure is 35 Pa in low vacuum mode, dwell time is 1 millisecond, process time is T4, number of pixels is 512 × 384, and integration is 5 times. It was. Table 1 shows the quantitative results of each element.
[比表面積の測定]
 比表面積の測定試料は、下記の手順により作製した。まず、化成した電池を解体して電極板(正極板及び負極板)を取り出し、水洗した後、50℃で24時間乾燥した。次に、前記電極板の中央部から電極材(正極材及び負極材)を2g採取して、130℃で30分乾燥して測定試料を作製した。
[Specific surface area measurement]
A sample for measuring the specific surface area was prepared by the following procedure. First, the formed battery was disassembled, electrode plates (positive and negative plates) were taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 2 g of an electrode material (a positive electrode material and a negative electrode material) was collected from the center of the electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.
 化成後の正極材及び負極材の比表面積は、前記で作製された測定試料を液体窒素で冷却しながら液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って算出した。測定条件は下記のとおりであった。このようにして測定した結果、正極材の比表面積は5m/gであり、負極材の比表面積は0.6m/gであった。 The specific surface areas of the positive electrode material and the negative electrode material after chemical conversion were calculated according to the BET method by measuring the nitrogen gas adsorption amount at a liquid nitrogen temperature by a multipoint method while cooling the measurement sample prepared above with liquid nitrogen. The measurement conditions were as follows. As a result of the measurement, the specific surface area of the positive electrode material was 5 m 2 / g, and the specific surface area of the negative electrode material was 0.6 m 2 / g.
{比表面積の測定条件}
 装置:HM-2201FS(Macsorb社製)
 脱気時間:130℃で10分
 冷却:液体窒素で4分
 吸着ガス流量:25mL/分
{Measurement conditions for specific surface area}
Apparatus: HM-2201FS (manufactured by Macsorb)
Degassing time: 10 minutes at 130 ° C. Cooling: 4 minutes with liquid nitrogen Adsorbed gas flow rate: 25 mL / min
(実施例2及び3)
 電解液として、アルミニウムイオン濃度が表1に示す値になるように調製した比重1.280(化成後)の希硫酸を用いたこと以外は、実施例1と同様にして、実施例2及び3の鉛蓄電池を作製した。
(Examples 2 and 3)
Examples 2 and 3 are the same as Example 1 except that dilute sulfuric acid having a specific gravity of 1.280 (after chemical conversion) prepared so that the aluminum ion concentration becomes the value shown in Table 1 is used as the electrolytic solution. A lead storage battery was prepared.
(実施例4~6)
 化成後の負極材に対する化成後の正極材の質量比(正極材/負極材)が表1に示す値となるように正極材及び負極材の量を調整したこと以外は、実施例1と同様にして、実施例4~6の鉛蓄電池を作製した。
(Examples 4 to 6)
The same as Example 1 except that the amounts of the positive electrode material and the negative electrode material were adjusted so that the mass ratio (positive electrode material / negative electrode material) of the positive electrode material after conversion to the negative electrode material after conversion was the value shown in Table 1. Thus, lead acid batteries of Examples 4 to 6 were produced.
(実施例7)
 電解液として、アルミニウムイオン濃度及びナトリウムイオン濃度が表1に示す値となるように硫酸アルミニウム無水物及び硫酸ナトリウムを溶解させた比重1.280(化成後)の希硫酸を用いたこと以外は、実施例1と同様にして、実施例7の鉛蓄電池を作製した。
(Example 7)
Except for using dilute sulfuric acid having a specific gravity of 1.280 (after chemical conversion) in which aluminum sulfate anhydride and sodium sulfate are dissolved so that the aluminum ion concentration and sodium ion concentration are the values shown in Table 1, as the electrolytic solution, In the same manner as in Example 1, a lead storage battery of Example 7 was produced.
(比較例1)
 電解液として、アルミニウムイオンを含まない比重1.280(化成後)の希硫酸を用いたこと以外は、実施例1と同様にして、比較例1の鉛蓄電池を作製した。
(Comparative Example 1)
A lead acid battery of Comparative Example 1 was produced in the same manner as Example 1 except that dilute sulfuric acid having a specific gravity of 1.280 (after chemical conversion) not containing aluminum ions was used as the electrolytic solution.
(比較例2)
 化成後の負極材に対する化成後の正極材の質量比(正極材/負極材)が0.95となるように正極材及び負極材の量を調整したこと以外は、実施例1と同様にして、比較例2の鉛蓄電池を作製した。
(Comparative Example 2)
Except having adjusted the quantity of the positive electrode material and the negative electrode material so that the mass ratio (positive electrode material / negative electrode material) of the positive electrode material after conversion with respect to the negative electrode material after conversion was 0.95, it carried out similarly to Example 1. The lead acid battery of Comparative Example 2 was produced.
<電池特性の評価>
 実施例及び比較例で得られた鉛蓄電池について、5時間率容量サイクル特性、低温高率放電性能、充電受け入れ性、浸透短絡の抑制効果及びISSサイクル特性を下記のとおり評価した。結果を表1に示す。なお、表1中の「-」は、硫酸アルミニウム又は硫酸ナトリウムを配合しなかったことを意味する。
<Evaluation of battery characteristics>
About the lead acid battery obtained by the Example and the comparative example, the 5-hour rate capacity cycle characteristic, the low-temperature high-rate discharge performance, the charge acceptance property, the suppression effect of an osmotic short circuit, and the ISS cycle characteristic were evaluated as follows. The results are shown in Table 1. “-” In Table 1 means that aluminum sulfate or sodium sulfate was not blended.
(5時間率容量サイクル特性)
 作製した鉛蓄電池を、雰囲気温度25℃において、5.6Aで定電流放電し、セル電圧が1.75Vを下回るまでの放電持続時間から5時間率放電容量を算出した。その後、5時間率充電容量が5時間率放電容量に対して150%になるまで5.6Aで定電流充電した。次いで、セル電圧が1.75Vになるまで5.6Aで定電流放電した。前記充電と放電を繰り返した。初期の5時間率放電容量に対して、得られる5時間率放電容量が50%を下回ったときを寿命として、そのときのサイクル数を測定した。5時間率容量サイクル特性は、比較例1の測定結果を100として相対評価した。
(5 hour rate capacity cycle characteristics)
The produced lead storage battery was discharged at a constant current of 5.6 A at an ambient temperature of 25 ° C., and the 5-hour rate discharge capacity was calculated from the discharge duration until the cell voltage fell below 1.75 V. Thereafter, constant current charging was performed at 5.6 A until the 5-hour charge capacity was 150% of the 5-hour discharge capacity. Next, constant current discharge was performed at 5.6 A until the cell voltage reached 1.75V. The charging and discharging were repeated. With respect to the initial 5-hour rate discharge capacity, when the obtained 5-hour rate discharge capacity was less than 50%, the cycle was measured. The 5-hour rate capacity cycle characteristics were evaluated relative to the measurement result of Comparative Example 1 as 100.
(低温高率放電性能)
 作製した鉛蓄電池を、雰囲気温度-15℃において、150Aで定電流放電し、セル電圧が1.0Vを下回るまでの放電持続時間を測定した。低温高率放電性能は、比較例1の測定結果を100として相対評価した。
(Low temperature high rate discharge performance)
The produced lead storage battery was discharged at a constant current of 150 A at an ambient temperature of −15 ° C., and the discharge duration until the cell voltage fell below 1.0 V was measured. The low-temperature high-rate discharge performance was evaluated relative to the measurement result of Comparative Example 1 as 100.
(充電受け入れ性)
 作製した鉛蓄電池を、雰囲気温度25℃において、5.6Aで30分間定電流放電し、6時間放置した。その後、鉛蓄電池を、100Aの制限電流の下、2.33Vで60秒間定電圧充電し、充電開始から5秒目の電流値を測定した。充電受け入れ性は、比較例1の測定結果を100として相対評価した。
(Charge acceptance)
The produced lead acid battery was discharged at a constant current of 5.6 A for 30 minutes at an ambient temperature of 25 ° C. and left for 6 hours. Thereafter, the lead-acid battery was charged at a constant voltage of 2.33 V for 60 seconds under a limit current of 100 A, and the current value at 5 seconds from the start of charging was measured. The charge acceptance was evaluated relative to the measurement result of Comparative Example 1 as 100.
(浸透短絡抑制効果)
 作製した鉛蓄電池を、雰囲気温度25℃において、1.4Aで定電流放電した。次に、セル電圧が1.75Vに至るまで放電した後、鉛蓄電池を、雰囲気温度40℃で、10Wのランプに接続して5日間過放電状態で放置した。その後、雰囲気温度25℃で25Aの制限電流の下、セル電圧2.33Vで8時間充電した。前記の放電と充電を繰り返して、充電時に電流のふらつき(0.3A以上の電流変動)又は末期電流(充電開始から約8時間後における電流)の高止まり(3A以上)が生じた時点を短絡と判断し、短絡までの繰り返し回数を測定した。浸透短絡の抑制効果は、比較例1の測定結果を100として相対評価した。
(Infiltration short-circuit suppression effect)
The produced lead acid battery was discharged at a constant current of 1.4 A at an ambient temperature of 25 ° C. Next, after the cell voltage was discharged to 1.75 V, the lead storage battery was connected to a 10 W lamp at an ambient temperature of 40 ° C. and left in an overdischarged state for 5 days. Thereafter, the battery was charged for 8 hours at a cell voltage of 2.33 V under a limiting current of 25 A at an ambient temperature of 25 ° C. Repeat the above discharging and charging, and short-circuit the time point when current fluctuation (current fluctuation of 0.3 A or more) or high end current (current about 8 hours after charging starts) (3 A or more) occurs during charging. And the number of repetitions until short circuit was measured. The suppression effect of the penetration short circuit was evaluated relative to the measurement result of Comparative Example 1 as 100.
(ISSサイクル特性)
 作製した鉛蓄電池に対し、雰囲気温度25℃において、45A-59秒間、300A-1秒間の定電流放電を行った後、100A-2.33V-60秒間の定電流・定電圧充電を行うことを1サイクルとする試験を行った。この試験はISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。このサイクル試験では、放電量に対して充電量が少ないため、充電が完全に行われないと徐々に充電不足になる。その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。このサイクル試験では、300A放電時の1秒目電圧を測定し、この1秒目電圧が1.2Vを下回ったときのサイクル数をISSサイクル特性とした。ISSサイクル特性は、比較例1の測定結果を100として相対評価した。
(ISS cycle characteristics)
The produced lead-acid battery is subjected to constant current discharge for 45 A-59 seconds and 300 A-1 seconds at an ambient temperature of 25 ° C., followed by constant current / constant voltage charging for 100 A-2.33 V-60 seconds. A test for one cycle was performed. This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this cycle test, since the amount of charge is small with respect to the amount of discharge, if the charging is not performed completely, the charging gradually becomes insufficient. As a result, the first-second voltage when the discharge current is 300 A for 1 second is gradually reduced. That is, if the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging. In this cycle test, the first-second voltage at the time of 300 A discharge was measured, and the cycle number when the first-second voltage fell below 1.2 V was defined as the ISS cycle characteristics. The ISS cycle characteristics were evaluated relative to the measurement result of Comparative Example 1 as 100.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1に示した結果から明らかなように、実施例1~7の鉛蓄電池は、浸透短絡の評価結果が比較例1及び2の鉛蓄電池よりも優れることが確認された。実施例1~7の鉛蓄電池は、化成後の負極材に対する化成後の正極材の質量比が1.05以上であるため、当該質量比が前記条件を満たさない比較例2の鉛蓄電池に比べ、過放電状態のときの電解液比重の低下が小さく、硫酸鉛の溶解度の上昇を抑制できることで、浸透短絡を抑制する効果に優れたものと推測される。一方、化成後の負極材に対する化成後の正極材の質量比が1.05以上であるものの、電解液がアルミニウムイオンを含まない比較例1の鉛蓄電池では、実施例1~7の鉛蓄電池に比べ、浸透短絡の評価結果が劣ることが確認された。 As is clear from the results shown in Table 1, it was confirmed that the lead storage batteries of Examples 1 to 7 were superior to the lead storage batteries of Comparative Examples 1 and 2 in the evaluation results of the penetration short circuit. Since the lead acid batteries of Examples 1 to 7 have a mass ratio of the positive electrode material after chemical conversion to the negative electrode material after chemical conversion is 1.05 or more, the mass ratio does not satisfy the above conditions, compared with the lead acid battery of Comparative Example 2 The decrease in the specific gravity of the electrolyte in the overdischarged state is small, and the increase in the solubility of lead sulfate can be suppressed, so that it is presumed that the effect of suppressing the penetration short circuit is excellent. On the other hand, the lead acid battery of Comparative Example 1 in which the mass ratio of the positive electrode material after chemical conversion to the negative electrode material after chemical conversion is 1.05 or more but the electrolyte does not contain aluminum ions is different from the lead acid batteries of Examples 1-7. In comparison, it was confirmed that the evaluation result of the penetration short circuit was inferior.
 10,20…セパレータ、10a…一方面、10b…他方面、11…ベース部、12…リブ、13…ミニリブ、14,14a,14b…電極、22…メカニカルシール部、A…リブの下底幅、B…リブの上底幅、H…リブの高さ、T…ベース部の厚み。 DESCRIPTION OF SYMBOLS 10,20 ... Separator, 10a ... One side, 10b ... The other side, 11 ... Base part, 12 ... Rib, 13 ... Minirib, 14, 14a, 14b ... Electrode, 22 ... Mechanical seal part, A ... Bottom width of rib , B: rib top bottom width, H: rib height, T: base portion thickness.

Claims (9)

  1.  セパレータを介して対向する正極及び負極と、電解液と、を備え、
     前記セパレータがポリオレフィン及びシリカを含み、
     前記正極が、正極集電体と、当該正極集電体に保持された正極材と、を有し、
     前記負極が、負極集電体と、当該負極集電体に保持された負極材と、を有し、
     前記電解液がアルミニウムイオンを含み、
     化成後の前記負極材に対する化成後の前記正極材の質量比が1.05以上である、鉛蓄電池。
    A positive electrode and a negative electrode facing each other through a separator, and an electrolyte solution,
    The separator comprises polyolefin and silica;
    The positive electrode has a positive electrode current collector and a positive electrode material held by the positive electrode current collector;
    The negative electrode has a negative electrode current collector and a negative electrode material held by the negative electrode current collector,
    The electrolyte contains aluminum ions;
    The lead acid battery whose mass ratio of the said positive electrode material after conversion with respect to the said negative electrode material after conversion is 1.05 or more.
  2.  エネルギー分散型X線分光法による元素分析において、前記セパレータにおける酸素及びケイ素の質量の合計が、炭素、酸素及びケイ素の質量の合計を基準として30~80質量%である、請求項1に記載の鉛蓄電池。 The elemental analysis by energy dispersive X-ray spectroscopy, wherein the total mass of oxygen and silicon in the separator is 30 to 80 mass% based on the total mass of carbon, oxygen and silicon. Lead acid battery.
  3.  前記電解液における前記アルミニウムイオンの濃度が0.01~0.3mol/Lである、請求項1又は2に記載の鉛蓄電池。 The lead storage battery according to claim 1 or 2, wherein the concentration of the aluminum ions in the electrolytic solution is 0.01 to 0.3 mol / L.
  4.  前記電解液がナトリウムイオンを更に含む、請求項1~3のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 3, wherein the electrolytic solution further contains sodium ions.
  5.  化成後の前記負極材に対する化成後の前記正極材の質量比が1.05~1.60である、請求項1~4のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 4, wherein a mass ratio of the positive electrode material after chemical conversion to the negative electrode material after chemical conversion is 1.05 to 1.60.
  6.  化成後の前記負極材に対する化成後の前記正極材の質量比が1.05~1.50である、請求項1~5のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 5, wherein a mass ratio of the positive electrode material after chemical conversion to the negative electrode material after chemical conversion is 1.05 to 1.50.
  7.  前記正極材の比表面積が3m/g以上である、請求項1~6のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 6, wherein a specific surface area of the positive electrode material is 3 m 2 / g or more.
  8.  前記負極材の比表面積が0.4m/g以上である、請求項1~7のいずれか一項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 7, wherein a specific surface area of the negative electrode material is 0.4 m 2 / g or more.
  9.  前記セパレータが、第1のリブと、第2のリブと、ベース部と、を有する長尺のセパレータであり、
     前記ベース部が、前記第1のリブ及び前記第2のリブを支持しており、
     前記第1のリブ及び前記第2のリブが、前記セパレータの長手方向に延びており、
     前記セパレータの短手方向における両端部のそれぞれが前記第2のリブを10~40本含み、
     前記両端部の間の領域が前記第1のリブを含む、請求項1~8のいずれか一項に記載の鉛蓄電池。
    The separator is a long separator having a first rib, a second rib, and a base;
    The base portion supports the first rib and the second rib;
    The first rib and the second rib extend in a longitudinal direction of the separator;
    Each of both end portions in the short direction of the separator includes 10 to 40 second ribs,
    The lead acid battery according to any one of claims 1 to 8, wherein a region between the both end portions includes the first rib.
PCT/JP2016/067119 2015-06-18 2016-06-08 Lead storage cell WO2016204049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017525170A JP6338020B2 (en) 2015-06-18 2016-06-08 Lead acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-122777 2015-06-18
JP2015122777 2015-06-18

Publications (1)

Publication Number Publication Date
WO2016204049A1 true WO2016204049A1 (en) 2016-12-22

Family

ID=57545865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067119 WO2016204049A1 (en) 2015-06-18 2016-06-08 Lead storage cell

Country Status (2)

Country Link
JP (3) JP6338020B2 (en)
WO (1) WO2016204049A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099144A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead storage battery
WO2017099141A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead storage battery
JPWO2019087686A1 (en) * 2017-10-31 2020-11-12 株式会社Gsユアサ Lead-acid battery
EP3683885A4 (en) * 2017-10-31 2021-06-30 GS Yuasa International Ltd. Lead storage battery
EP3683886A4 (en) * 2017-10-31 2021-07-07 GS Yuasa International Ltd. Lead storage battery
CN113316862A (en) * 2018-11-26 2021-08-27 昭和电工材料株式会社 Lead-acid battery
JP2021163610A (en) * 2020-03-31 2021-10-11 古河電池株式会社 Lead-acid battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH09231995A (en) * 1996-02-26 1997-09-05 Matsushita Electric Ind Co Ltd Lead acid battery
JP2001093500A (en) * 1999-09-24 2001-04-06 Nippon Muki Co Ltd Separator for lead-acid storage battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery
JP2015032481A (en) * 2013-08-02 2015-02-16 株式会社Gsユアサ Lead storage battery
WO2016121510A1 (en) * 2015-01-28 2016-08-04 日立化成株式会社 Lead storage cell and automobile provided with same
JP2016154131A (en) * 2015-02-18 2016-08-25 株式会社Gsユアサ Lead acid storage battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020449B2 (en) * 2001-09-28 2012-09-05 日本板硝子株式会社 Sealed separator for sealed lead-acid battery
JP4314805B2 (en) * 2002-10-04 2009-08-19 パナソニック株式会社 Lead acid battery
JP2006228637A (en) * 2005-02-18 2006-08-31 Nippon Sheet Glass Co Ltd Separator for lead-acid battery and lead-acid battery
JP2008130516A (en) * 2006-11-24 2008-06-05 Furukawa Battery Co Ltd:The Liquid lead-acid storage battery
JP5012047B2 (en) * 2007-01-29 2012-08-29 パナソニック株式会社 Lead acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH09231995A (en) * 1996-02-26 1997-09-05 Matsushita Electric Ind Co Ltd Lead acid battery
JP2001093500A (en) * 1999-09-24 2001-04-06 Nippon Muki Co Ltd Separator for lead-acid storage battery
JP2013073716A (en) * 2011-09-27 2013-04-22 Gs Yuasa Corp Lead acid battery
JP2015032481A (en) * 2013-08-02 2015-02-16 株式会社Gsユアサ Lead storage battery
WO2016121510A1 (en) * 2015-01-28 2016-08-04 日立化成株式会社 Lead storage cell and automobile provided with same
JP2016154131A (en) * 2015-02-18 2016-08-25 株式会社Gsユアサ Lead acid storage battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099144A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead storage battery
WO2017099141A1 (en) * 2015-12-11 2017-06-15 日立化成株式会社 Lead storage battery
JPWO2017099144A1 (en) * 2015-12-11 2018-06-07 日立化成株式会社 Lead acid battery
JPWO2017099141A1 (en) * 2015-12-11 2018-07-12 日立化成株式会社 Lead acid battery
JP2018170285A (en) * 2015-12-11 2018-11-01 日立化成株式会社 Lead storage battery
JPWO2019087686A1 (en) * 2017-10-31 2020-11-12 株式会社Gsユアサ Lead-acid battery
EP3680978A4 (en) * 2017-10-31 2021-06-23 GS Yuasa International Ltd. Lead storage battery
EP3683885A4 (en) * 2017-10-31 2021-06-30 GS Yuasa International Ltd. Lead storage battery
EP3683886A4 (en) * 2017-10-31 2021-07-07 GS Yuasa International Ltd. Lead storage battery
JP7255492B2 (en) 2017-10-31 2023-04-11 株式会社Gsユアサ lead acid battery
CN113316862A (en) * 2018-11-26 2021-08-27 昭和电工材料株式会社 Lead-acid battery
JP2021163610A (en) * 2020-03-31 2021-10-11 古河電池株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JP6338020B2 (en) 2018-06-06
JPWO2016204049A1 (en) 2017-09-21
JP2020017547A (en) 2020-01-30
JP2018116943A (en) 2018-07-26
JP6614273B2 (en) 2019-12-04
JP6849040B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6614273B2 (en) Lead acid battery
JP6421895B2 (en) Lead acid battery
WO2016121510A1 (en) Lead storage cell and automobile provided with same
JP6361513B2 (en) Lead acid battery
WO2017098666A1 (en) Lead storage battery
WO2017098665A1 (en) Lead acid storage battery
WO2017170422A1 (en) Lead storage battery, micro-hybrid vehicle and start-stop system vehicle
JP6432609B2 (en) Lead acid battery, micro hybrid vehicle and idling stop system vehicle
JP6779883B2 (en) Separator for lead-acid battery, lead-acid battery and manufacturing method thereof
JP2017045539A (en) Lead acid storage battery
JP2017054629A (en) Lead storage battery
JP7014501B2 (en) Lead-acid battery
JP6958693B2 (en) Lead-acid battery
JP6638241B2 (en) Lead storage battery
JP6760347B2 (en) Lead-acid battery
JP6601536B2 (en) Lead acid battery
JP6781365B2 (en) Lead-acid battery
JP2020057622A (en) Lead acid battery
WO2018100639A1 (en) Lead storage battery and production method therefor
JPWO2018100635A1 (en) Lead-acid battery and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017525170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811524

Country of ref document: EP

Kind code of ref document: A1